Camada de Enlace e Física

Documentos relacionados
Redes de Computadores

Camada de Enlace. 5: Camada de Enlace 5b-1

Capítulo 5: A Camada de Enlace. Entender os princípios por trás dos serviços da camada de enlace:

Capítulo 5: A camada de enlace

Redes Industriais Módulo 5 Camada de Enlace. Prof. Rone Ilídio

PTC Aula Protocolos de acesso múltiplo 2.4 Redes Locais Comutadas. (Kurose, p ) (Peterson, p.

Redes de Computadores

Agenda Camada de Enlace

Aula 3B. Camada de Enlace de Dados. Disciplina: IF66B Redes de Computadores 2018/1 Universidade Tecnológica Federal do Paraná Câmpus Curitiba.

Redes Locais (LANs): PRINCÍPIOS

Redes de Computadores

AULA 6 - ENLACE SEM FIO. Prof. Pedro Braconnot Velloso

O Nível de Enlace nas Redes Locais. Técnicas de acesso múltiplo Aloha. Aloha

Controle de acesso ao meio

Sub-camada de Acesso ao Meio

Capítulo 5: A camada de enlace

Redes Ethernet: Camada Física e de Ligação

AULA 4 - REDES. Prof. Pedro Braconnot Velloso

Técnicas de acesso múltiplo Aloha. O Nível de Enlace nas Redes Locais. Aloha. Aloha. Aloha. Multiple. Sense. Access) CSMA (Carrier(

Arquitetura IEEE 802 Padrões IEEE 802.3, , 802.2

TP308 Introdução às Redes de Telecomunicações

Tecnologias de rede. Diversas tecnologias com características diferentes Exemplos. Ethernet FDDI ATM

1.1) Explique porque o CSMA-CD não é usado em redes de satélites nem em redes de alta velocidade.

Redes de Computadores

Curso de Redes de Computadores

REDES DE COMPUTADORES. Vinícius Pádua

Redes de Computadores

Controle de Acesso ao Meio

REDES DE COMPUTADORES

Redes de Computadores. Aula: Camada de Enlace Professor: Jefferson Silva

Redes de Computadores

AULA 04 CONCEITOS DA CAMADA 02 PARTE 02

REDES DE COMPUTADORES

Introdução a Redes de Computadores. Elementos de Interconexão

Interconexão de redes locais. Repetidores. Hubs. Existência de diferentes padrões de rede

PEL/FEN Redes de Computadores 2018/1 Terceira Lista de Exercícios Prof. Marcelo Gonçalves Rubinstein

Prof. Antonio P. Nascimento Filho. Tecnologias de rede. Ethernet e IEEE Token ring ATM FDDI Frame relay. Uni Sant Anna Teleprocessamento e Redes

Tecnologias de rede. Diversas tecnologias com características diferentes Exemplos. Ethernet FDDI ATM

Noções de Ethernet (enlace) Endereçamento Físico Dispositivos de Rede. Introdução às Redes de Computadores

Redes de Computadores

Definição Rede Computadores

FUNDAMENTOS DE REDES DE COMPUTADORES AULA 5: REDE DE ACESSO CAMADA ENLACE. Prof. LUIZ LEÃO

Protocolos de Interligação de Redes Locais e a Distância Protocolos de Enlace. Thiago Leite

CURSO DE SISTEMAS DE INFORMAÇÃO/ PROCESSAMENTO DE DADOS DISCIPLINA: ADM e PROJETO DE REDES PROFESSOR: Msc Walter Augusto Varella

Redes de Computadores

PTC Aula LANs 2.5 virtualização de enlace: MPLS. (Kurose, p ) (Peterson, p ) 29/05/2014

Interconexão de redes locais. Repetidores. Pontes (Bridges) Existência de diferentes padrões de rede. Interconexão pode ocorrer em diferentes âmbitos

terça-feira, 30 de julho de 13 Equipamentos de Interconexão

ÍNDICE CAPÍTULO 1 INTRODUÇÃO... 6 O QUE É UMA REDE E PARA QUE SERVE?... 7 O PORQUE DE UMA REDE... 9

CCT0023 INFRAESTRUTURA DE REDES DE COMPUTADORES Aula 9: Equipamentos Rede / Topologia Hierárquica

Aula 2 Topologias de rede

Capítulo 5: A Camada de Enlace e Redes Locais

A subcamada de controle de acesso ao meio

MAC Ethernet (IEEE ) Ethernet: domínio de colisão. Ethernet: domínio de colisão. Redes

Capítulo 5 Camada de enlace: enlaces, redes de acesso e redes locais

A subcamada de controle de acesso ao meio. LANs sem fios Pontes entre LANs

Aula 3. Delay (Atraso); Jitter - Variação do atraso; LANs e MANs: Padrão IEEE 802; OSI x IEEE 802; Controle de Link Lógico (LLC); Padrão IEEE

Disciplina: Dispositivos de Rede II. Professor: Jéferson Mendonça de Limas. 4º Semestre. Aula 02 Dispositivos Básicos de Rede

Capítulo6-7 Redes de Computadores Camada 2 Conceitos

IEEE 802. Walter Fetter Lages

PTC Aula Introdução à camada de enlace 5.2 Detecção, correção de erros 5.3 Protocolos de acesso múltiplo

Redes de comunicação. Mod 2 Redes de computadores. Professor: Rafael Henriques

- Curso: ANÁLISE E DESENVOLVIMENTO DE SISTEMAS Redes de Computadores Lista de Exercício I

Agente Administrativo da Receita Federal REDES DE COMPUTADORES

REDES DE COMPUTADORES

Capítulo 6 - Conceitos Básicos de Ethernet. Associação dos Instrutores NetAcademy - Fevereiro Página

A camada de Enlace. Serviços e Protocolos

Ethernet. IEEE padronizou várias redes locais e metropolitanas com o nome IEEE 802 Os mais importantes são:

O Problema do Acesso Múltiplo ao Meio em Sistemas RFID. Módulo II-B

Subcamada de Acesso ao Meio (MAC)

Tecnologia em Sistemas para Internet Redes de Computadores e Aplicações

Computadores Digitais II

FUNDAMENTOS DE REDES DE COMPUTADORES TP1

Redes de Computadores. Segurança e Auditoria de. Redes de Computadores. Sistemas

FUNDAMENTOS DE REDES DE COMPUTADORES TP2

Fund. De Redes. Ethernet

Parte 05. Camada 1 - Repetidores e domínios de colisão

Tecnologia Ethernet. Controle de Acesso ao Meio

Comunicação em tempo real

Open Systems Interconnection

ARQUITETURA FDDI P E D R O M O N T E I R O N º 14 G P S I

REDES DE COMPUTADORES

REDES DE COMPUTADORES

Aulas 3 e 4 Camada de Enlace Protocolos ponto-a-ponto e de controle de acesso ao meio

Protocolo Ethernet e Dispositivos de Interconexão de LANs

Lista de Exercícios. Camada de Enlace de Dados

CST em Redes de Computadores

CST em Redes de Computadores

Tecnologias de Rede. Tecnologias ETHERNET PADRÃO Professor Airton Ribeiro

Capítulo 7 - Tecnologias Ethernet. Associação dos Instrutores NetAcademy - agosto de Página

Capítulo 2: Introdução às Redes de Computadores - A Camada de Enlace de Dados. Redes para Automação Industrial Luiz Affonso Guedes

FDDI. Marcelo Assunção 10º13. Curso Profissional Técnico de Gestão e Programação de Sistemas Informáticos. Disciplina: Redes de Comunicação

Tipos de cabos. cabos de par trançado cabos coaxiais cabos de fibra óptica Sem Fio *

Prof. Marcelo Machado Cunha Parte 2

Exercícios de Revisão Redes de Computadores Edgard Jamhour. VLANs, Switching e Padrões IEEE 802

Transcrição:

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA CAMPUS SÃO JOSÉ SANTA CATARINA Camada de Enlace e Física Prof. Tiago Semprebom tisemp@sj.cefetsc.edu.br www.sj.cefetsc.edu.br/~tisemp

Capítulo 5: Camada de Enlace e Física Nossos objetivos: entender os princípios por trás dos serviços da camada de enlace: detecção de erros, correção compartilhando um canal broadcast: acesso múltiplo endereçamento da camada de enlace transferência de dados confiável, controle de fluxo: já visto! instanciação e implementação de várias tecnologias da camada de enlace Visão Geral: serviços da camada de enlace detecção de erros, correção protocolos de acesso múltiplo e LANs endereçamento da camada de enlace, ARP tecnologias específicas da camada de enlace: Ethernet hubs, pontes, switches PPP

Camada de enlace: definindo o contexto fluxo real de PDUs Roteador R1 protocolo de enlace Roteador R2 Roteador R3 Roteador R3 Roteador R4

Camada de enlace: definindo o contexto dois elementos físicos fisicamente conectados: host-roteador, roteador-roteador, host-host unidade de dados: quadro (frame) Hl Ht HnHt HnHt M M M M aplicação transporte rede enlace física protocolo de enlace enlace físico rede enlace física Hl HnHt quadro M placa adaptadora

Serviços da Camada de Enlace Enquadramento, acesso ao enlace: encapsula datagramas em quadros, acrescentando cabeçalhos e trailer implementa acesso ao canal se o meio é compartilhado endereços físicos usados nos cabeçalhos dos quadros para identificar a fonte e o destino dos quadros diferente do endereço IP! Entrega confiável entre dois equipamentos fisicamente conectados: já aprendemos como isto deve ser feito (Cam. Transp.)! raramente usado em enlaces com baixa taxa de erro (fibra, alguns tipos de par trançado) enlaces sem-fio (wireless): altas taxas de erro Q: porque prover confiabilidade fim-a-fim na camada de enlace?

Serviços da Camada de Enlace (cont.) Controle de Fluxo: limitação da transmissão entre transmissor e receptor Detecção de Erros: erros causados pela atenuação do sinal e por ruídos. o receptor detecta a presença de erros: avisa o transmissor para reenviar o quadro perdido Correção de Erros: o receptor identifica e corrige o bit com erro(s) sem recorrer à retransmissão

Implementação: Camada de Enlace implementado no adaptador ex., placa PCMCIA, placa Ethernet tipicamente inclui: RAM, chips DSP, interface com barramento do host, e interface do enlace Hl Ht HnHt HnHt M M M M aplicação transporte rede enlace física protocolo de enlace enlace físico rede enlace física Hl HnHt quadro M placa adaptadora

Enlaces de Acesso Múltiplo e Protocolos Três tipos de enlaces: ponto-a-ponto (fio único, ex. PPP) broadcast (fio ou meio compartilhado; ex, Ethernet, Wavelan, etc.) switched (ex., switched Ethernet, ATM etc)

Protocolos de Acesso Múltiplo canal de comunicação único e compartilhado duas ou mais transmissões pelos nós: interferência apenas um nó pode transmitir com sucesso num dado instante de tempo protocolo de múltiplo acesso: algoritmo distribuído que determina como as estações compartilham o canal, isto é, determinam quando cada estação pode transmitir comunicação sobre o compartilhamento do canal deve utilizar o própro canal!

Protocolos MAC: uma taxonomia Três grandes classes: Particionamento de canal dividem o canal em pedaços menores (compartimentos de tempo, freqüência) aloca um pedaço para uso exclusivo de cada nó Acesso Aleatório permite colisões recuperação das colisões Passagem de Permissão compartilhamento estritamente coordenado para evitar colisões

Protocolos MAC com Particionamento de Canal: TDMA TDMA: acesso múltiplo por divisão temporal acesso ao canal é feito por turnos" cada estação controla um compartimento ( slot ) de tamanho fixo (tamanho = tempo de transmissão de pacote) em cada turno compartimentos não usados são desperdiçados exemplo: rede local com 6 estações: 1,3,4 têm pacotes, compartimentos 2,5,6 ficam vazios TDM (Time Division Multiplexing): channel divided into N time slots, one per user; inefficient with low duty cycle users and at light load. FDM (Frequency Division Multiplexing): frequency subdivided.

Protocolos MAC com Particionamento de Canal: FDMA FDMA: acesso múltiplo por divisão de freqüência o espectro do canal é dividido em bandas de freqüência cada estação recebe uma banda de freqüência tempo de transmissão não usado nas bandas de freqüência é desperdiçado exemplo: rede local com 6 estações: 1,3,4 têm pacotes, as bandas de freqüência 2,5,6 ficam vazias bandas de freqüência tempo

Protocolos de Acesso Aleatório Quando o nó tem um pacote a enviar: transmite com toda a taxa do canal R. não há uma regra de coordenação a priori entre os nós dois ou mais nós transmitindo -> colisão, Protocolo MAC de acesso aleatório especifica: como detectar colisões como as estações se recuperam das colisões (ex., via retransmissões atrasadas) Exemplos de protocolos MAC de acesso aleatório: slotted ALOHA ALOHA CSMA e CSMA/CD

Slotted Aloha tempo é dividido em compartimentos de tamanho igual (= tempo de transmissão de um pacote) nó com pacote pronto: transmite no início do próximo compartimento se houver colisão: retransmite o pacote nos futuros compartimentos com probabilidade p, até que consiga enviar. Compartimentos: Sucesso (S), Colisão (C), Vazio (E)

ALOHA Puro (unslotted) unslotted Aloha: operação mais simples, não há sincronização pacote necessita transmissão: enviar sem esperar pelo início de um compartimento a probabilidade de colisão aumenta: pacote enviado em t 0 colide com outros pacotes enviados em [t 0-1, t 0 +1]

CSMA: Carrier Sense Multiple Access CSMA: escuta antes de transmitir: Se o canal parece vazio: transmite o pacote Se o canal está ocupado, adia a transmissão CSMA Persistente: tenta outra vez imediatamente com probabilidade p quando o canal se torna livre (pode provocar instabilidade) (versão com slot qdo p <> 1) CSMA Não-persistente: tenta novamente após um intervalo aleatório analogia humana: não interrompa os outros!

Colisões no CSMA colisões podem ocorrer: o atraso de propagação implica que dois nós podem não ouvir as transmissões de cada outro colisão: todo o tempo de transmissão do pacote é desperdiçado nota: papel da distância e do atraso de propagação na determinação da probabilidade de colisão.

CSMA/CD (Detecção de Colisão) CSMA/CD: detecção de portadora, diferimento como no CSMA colisões detectadas num tempo mais curto transmissões com colisões são interrompidas, reduzindo o desperdício do canal retransmissões persistentes ou não-persistentes detecção de colisão: fácil em LANs cabeadas: medição da intensidade do sinal, comparação dos sinais transmitidos e recebidos difícil em LANs sem fio: receptor desligado enquanto transmitindo analogia humana: o bom-de-papo educado

Protocolos MAC com Passagem de Permissão Protocolos MAC com particionamento de canais: compartilham o canal eficientemente quando a carga é alta e bem distribuída ineficiente nas cargas baixas: atraso no acesso ao canal. A estação consegue uma banda de 1/N da capacidade do canal, mesmo que haja apenas 1 nó ativo! Protocolos MAC de acesso aleatório eficiente nas cargas baixas: um único nó pode usar todo o canal cargas altas: excesso de colisões Protocolos de passagem de permissão buscam o melhor dos dois mundos! Determinismo

Protocolos MAC com Passagem de Permissão Polling: nó mestre convida os escravos a transmitirem um de cada vez Mensagens Request to Send e Clear to Send problemas: polling overhead latência ponto único de falha (mestre) Token passing: controla um token passado de um nó a outro sequencialmente. mensagem token problemas: token overhead latência ponto único de falha (token)

Endereços de LAN e ARP Endereços IP de 32-bit: endereços da camada de rede usados para levar o datagrama até a rede de destino (lembre da definição de rede IP) Endereço de LAN (ou MAC ou físico): usado para levar o datagrama de uma interface física a outra fisicamente conectada com a primeira (isto é, na mesma rede) Endereços MAC com 48 bits (na maioria das LANs) gravado na memória fixa (ROM) do adaptador de rede

Endereços de LAN e ARP Cada adaptador numa LAN tem um único endereço de LAN

Endereços de LAN (mais) A alocação de endereços MAC é administrada pelo IEEE O fabricante compra porções do espaço de endereço MAC (para assegurar a unicidade) Analogia: (a) endereço MAC: semelhante ao número do CPF (b) endereço IP: semelhante a um endereço postal endereçamento MAC é flat => portabilidade é possível mover uma placa de LAN de uma rede para outra sem reconfiguração de endereço MAC endereçamento IP hierárquico => NÃO portável depende da rede na qual se está ligado

Lembre a discussão anterior sobre roteamento Começando em A, dado que o datagrama está endereçado para B (endereço IP): procure rede.endereço de B, encontre B em alguma rede, no caso igual à rede de A camada de enlace envia datagrama para B dentro de um quadro da camada de enlace endereço de origem e destino do quadro A B endereço de origem e destino do pacote 223.1.1.1 223.1.1.2 223.1.2.1 223.1.1.4 223.1.2.9 223.1.1.3 223.1.3.27 223.1.2.2 223.1.3.1 223.1.3.2 E endereço MAC de B end. MAC de A end. IP de A end. IP de B dados IP quadro datagrama

ARP: Address Resolution Protocol (Protocolo de Resolução de Endereços) Questão: como determinar o endereço MAC de B dado o endereço IP de B? Cada nó IP (Host, Roteador) numa LAN tem um módulo e uma tabela ARP Tabela ARP: mapeamento de endereços IP/MAC para alguns nós da LAN < endereço IP; endereço MAC; TTL> <.. > TTL (Time To Live): tempo depois do qual o mapeamento de endereços será esquecido (tipicamente 20 min)

Protocolo ARP A conhece o endereço IP de B, quer aprender o endereço físico de B A envia em broadcast um pacote ARP de consulta contendo o endereço IP de B todas as máquinas na LAN recebem a consulta ARP B recebe o pacote ARP, responde a A com o seu (de B) endereço de camada física A armazena os pares de endereço IP-físico até que a informação se torne obsoleta (esgota a temporização) soft state: informação que desaparece com o tempo se não for re-atualizada

A camada de Enlace de Dados (Data Link Layer) - Geralmente decomposta em 2 subcamadas (proposta IEEE): MAC (Medium Access Control): controle de acesso ao meio (muito importante em redes de difusão) LLC (Logical Link Control): controle lógico de enlace, faz todas as demais funções e oferece serviços à camada logo acima IEEE 802.2 - LLC IEEE 802.3 1-Persistente CSMA-CD (Ethernet ->Xerox) IEEE 802.4 Token Bus (Fisico:Barramento, Lógico:Anel) IEEE 802.5 Token Ring Passagem de Ficha em Anel (IBM)

Ethernet Tecnologia de rede local dominante : barato R$30 por 100Mbs! primeira tecnologia de LAN largamente usada Mais simples, e mais barata que LANs com token e ATM Velocidade crescente: 10, 100, 1000 Mbps Esboço da Ethernet por Bob Metcalf

Estrutura do Quadro Ethernet Adaptador do transmissor encapsula o datagrama IP (ou outro pacote de protocolo da camada de rede) num quadro Ethernet Preâmbulo: 7 bytes com padrão 10101010 seguido por um byte com padrão 10101011 usado para sincronizar transmissor e receptor

Estrutura do Quadro Ethernet (mais) Endereços: 6 bytes, quadro é recebido por todos os adaptadores e descartado se o endereço do quadro não coincide com o endereço do adaptador Tipo: indica o protocolo da camada superior, geralmente é o protocolo IP mas outros podem ser suportados tais como Novell IPX e AppleTalk) CRC: verificado no receptor, se um erro é detectado, o quadro é simplesmente descartado.

Codificação Manchester de Banda Básica Banda básica significa que não se usa modulação de portadora; ao invés disto, bits são codificados usando codificação Manchester e transmitidos diretamente, modificando a voltagem de sinal de corrente contínua Codificação Manchester garante que ocorra uma transição de voltagem a cada intervalo de bit, ajudando sincronização entre relógios do remetente e receptor

Ethernet: usa CSMA/CD A: examina canal, se em silêncio então { transmite e monitora o canal; Se detecta outra transmissão então { aborta e envia sinal de jam ; atualiza número de colisões; espera como exigido pelo algoritmo exponential backoff ; vá para A } senão {quadro transmitido; zera contador de colisões} } senão {espera até terminar a transmissão em curso vá para A}

Ethernet CSMA/CD (mais) Sinal Jam : garante que todos os outros transmissores estão cientes da colisão; 48 bits; Exponential Backoff : Objetivo: adaptar tentativas de retransmissão para carga atual da rede carga pesada: espera aleatória será mais longa primeira colisão: escolha K entre {0,1}; espera é K tempo pré-definido após a segunda colisão: escolha K entre {0,1,2,3} após 10 ou mais colisões, escolha K entre {0,1,2,3,4,,1023}

Tecnologias Ethernet: 10Base2 10: 10Mbps; 2: comprimento máximo do cabo de 200 metros (de fato, 186 metros) cabo coaxial fino numa topologia em barramento pacotes transmitidos viajam nas duas direções conector T terminador repetidores são usados para conectar múltiplos segmentos repetidor repete os bits que ele recebe numa interface para as suas outras interfaces: atua somente na camada física! adaptador nó nó nó nó nó

Cabos Coaxiais Constituídos de 2 condutores concêntricos separados por isolante Capa protetora Capa isolante Trança metálica Alma de cobre Cabo com conectores BNC

10BaseT e 100BaseT Taxas de transmissão de 10 e 100 Mbps; este último é chamado de fast ethernet T significa Par Trançado Usa concentrador ( hub ) ao qual os nós estão ligados por cabos individuais de 2 pares trançados, apresentando, portanto uma topologia em estrela CSMA/CD implementado no hub

Par Trançado (Twisted Pair) - forma mais barata e clássica de conexão - cabo composto de n pares de fios de cobre isolados e arranjados de forma helicoidal - Efeito do arranjo helicoidal => reduzir induções eletromagnéticas parasitas => fios paralelos formam antena! - Categoria 3: telefone, LAN 2 pares - Categoria 5: isolamento teflon, LAN usado em 100BaseT Conector RJ45

10BaseT e 100BaseT (mais) Máxima distância do nó ao hub é de 100 metros Hub pode desconectar um adaptador que não pára de transmitir ( jabbering adapter ) Hub pode coletar e monitorar informações e estatísticas para apresentação ao administradores da LAN

Gbit Ethernet Usa formato do quadro Ethernet padrão Admite enlaces ponto-a-ponto e canais de difusão compartilhados Em modo compartilhado, usa-se CSMA/CD; para ser eficiente, as distâncias entre os nós devem ser curtas (poucos metros) Full-Duplex em 1 Gbps para enlaces ponto-a-ponto

Fibras Óticas - Sinais binários transmitidos como impulsos luminosos: - lógico 1 => presença de luz - lógico 0 => ausência de luz - Princípio de transmissão na fibra: - ângulo de incidência grande => reflexão e refração - ângulo de incidência pequeno => reflexão total Ar Feixe de fibras óticas β 1 β2 β3 fonte de luz α 1 α 2 α 3 Silício

Interconexão de redes - Problemas da interconexão: Como realizar o roteamento entre estações em sub-redes diferentes? Como interconectar sub-redes que usam protocolos diferentes e incompatíveis? ex. IBM Token-Ring x Ethernet Como interconectar sub-redes com arquiteturas diferentes? (ex.: ISO/OSI x TCP/IP)

As diferentes possibilidades de interconexão - Repetidores (Repeaters): operam a nível da camada física, reforçando sinais elétricos no meio. - Pontes (Bridges): operam a nível da camada de enlace, armazenando, modificando e retransmitindo quadros. - Passarelas (Gateways), classificados em 2 tipos: Gateway conversor de meio (media-convertion gateway), também chamado Roteador (Router): opera a nível da camada de rede e pode realizar funções de roteamento, além das funções das pontes. Gateway tradutor de protocolos (protocol-translation gateway), que chamaremos aqui simplesmente de Gateway: opera a nível de camada de aplicação e permite interligar subredes completamente diferentes.

Bridges (Pontes)

Gateways (Passarelas) REDE MAP (OSI) Aplicação GATEWAY TRADUTOR Aplicação Usuário REDE SNA Usuário Apresentação Apresentação serviços NAU serviços NAU Sessão Sessão Fluxo Dados Fluxo Dados Transporte Transporte Controle Transmissão Controle Transmissão Rede Rede Controle Caminho Controle Caminho Enlace Enlace Controle Enlace Controle Enlace Física Física Ligação Física Ligação Física

Camada 7 SUBREDE A Routers (Roteadores) SUBREDE B Camada 7 Camada 6 Camada 6 Camada 5 Camada 5 Camada 4 Camada 3 ROTEADOR Camada 3 Camada 3 Camada 4 Camada 3 Camada 2 Camada 2 Camada 2 Camada 2 Camada 1 Camada 1 Camada 1 Camada 1 SUBREDE B SUBREDE A ROTEADOR SUBREDE C SUBREDE D

Hubs, Pontes e Comutadores Usados para estender as características das redes locais: cobertura geográfica, número de nós, funcionalidade administrativa, etc. Diferem entre si em respeito a: isolamento de domínios de colisão camada em que operam Diferentes de roteadores plug and play não provêem roteamento ótimo de pacotes IP

Hubs Dispositivos da camada física: basicamente são repetidores operando ao nível de bit: repete os bits recebidos numa interface para as demais interfaces Hubs podem ser dispostos numa hierarquia (ou projeto de múltiplos níveis), com um hub backbone na raiz

Hubs (cont) Vantagens de Hubs: Dispositivos simples, baratos Configuração em múltiplos níveis provê degradação suave: porções da rede local continuam a operar se um dos hubs parar de funcionar Estende a distância máxima entre pares de nós (100m por Hub) Desvantagens de Hubs: Não se pode misturar tipos diferentes de Ethernet (p.ex., 10BaseT and 100BaseT) não isolam domínios de colisão: um nó pode colidir com qualquer outro nó residindo em qualquer segmento da rede local

Hubs...

Pontes ( Bridges ) Dispositivos da camada de enlace: operam em quadros Ethernet, examinando o cabeçalho do quadro, e reencaminhando seletivamente um quadro com base no seu endereço de destino Ponte isola domínios de colisão pois ela armazena e reencaminha os quadros (resulta em aumento de vazão máxima total) Pode interligar tipos diferentes de Ethernet pois é um dispositivo armazena e reencaminha Transparente: não requer nenhuma modificação aos adaptadores dos nós da rede local

Pontes ( Bridges ) - Pontes são elementos inteligentes bidirecionais: escutam todas as mensagens enviadas em cada subrede - para cada mensagem, endereço de destino é verificado em uma tabela que indica em qual subrede este se encontra - se endereço de destino está na mesma subrede de origem, ponte ignora a mensagem - se endereço de destino está na outra subrede, ponte retransmite a mensagem na subrede destino

Pontes x Roteadores Ambos são dispositivos armazena e reencaminha, porém Roteadores são dispositivos da Camada de Rede (examinam cabeçalhos da camada de rede) enquanto Pontes são dispositivos da Camada de Enlace Roteadores mantêm tabelas de rotas e implementam algoritmos de roteamento; pontes mantêm tabelas de filtragem e implementam filtragem

Pontes x Roteadores (cont) Operação de uma Ponte é mais simples requerendo menor capacidade de processamento Roteadores: Requerem configuração de endereços IP (não são plug and play ) - Requerem maior capacidade de processamento Pontes são melhores em redes pequenas (algumas centenas de nós) enquanto roteadores são necessários em grandes redes (milhares de nós)

Comutadores Ethernet Um comutador Ethernet ( Ethernet switch ) é um dispositivo que estende funções normais de ponte para incluir conexões dedicadas ponto-a-ponto Uma estação ligada a um comutador através de uma conexão dedicada ponto-a-ponto sempre detecta que o meio está ocioso: não haverá colisões nunca! Comutadores Ethernet provêem combinações de conexões compartilhadas/dedicadas, a 10/100/1000 Mbps

Uso de um Comutador Ethernet Dedicated Shared

Exemplo de Comutador Ethernet A pode transmitir para A enquanto B transmite para B e C transmite para C, simultaneamente. A vazão agregada corresponde às três transferências simultâneas. Por exemplo, 3 x 10 Mbps.

Switchers (Comutadores) LC Atuam em nível da camada 2 (comutação pelo endereço MAC dos frames)