DETERMINAÇÃO DA CAUSA DE FALHA EM INSTRUMENTAIS CIRÚRGICOS NA IMPLANTODONTIA

Documentos relacionados
Palavras-Chave: Mecânica da fratura, aço inoxidável, resistência mecânica. Keywords: fracture mechanics, stainless steel, mechanical strength.

PRECIPITAÇÃO DA AUSTENITA SECUNDÁRIA DURANTE A SOLDAGEM DO AÇO INOXIDÁVEL DUPLEX S. A. Pires, M. Flavio, C. R. Xavier, C. J.

Determinação das resistências à esterilização em autoclave, à corrosão e à exposição térmica da chave de instalação do implante Tryon estudo de caso

Determinação das resistências à esterilização em autoclave, à corrosão e à exposição térmica de instrumental cirúrgico - estudo de caso

TTT VI Conferência Brasileira sobre Temas de Tratamento Térmico 17 a 20 de Junho de 2012, Atibaia, SP, Brasil

Dependendo da habilidade do material em deformar plasticamente antes da fratura, dois tipos de fratura pode ocorrer: Dúctil Frágil.

UNIVERSIDADE FEDERAL DO ABC MATERIAIS E SUAS PROPRIEDADES (BC 1105) ENSAIOS MECÂNICOS ENSAIOS DE TRAÇÃO E FLEXÃO

T v. T f. Temperatura. Figura Variação da viscosidade com a temperatura para materiais vítreos e cristalinos (CARAM, 2000).

João Carmo Vendramim 1 Jan Vatavuk 2 Thomas H Heiliger 3 R Jorge Krzesimovski 4 Anderson Vilele 5

PROPRIEDADES MECÂNICAS DE

Sistema Ferro - Carbono

21º CBECIMAT - Congresso Brasileiro de Engenharia e Ciência dos Materiais 09 a 13 de Novembro de 2014, Cuiabá, MT, Brasil

MÓDULO 2: Propriedades mecânicas dos metais. Deformação elástica, Deformação plástica

Efeito da temperatura de tratamento térmico sobre a dureza de um ferro fundido branco multicomponente com alto teor de molibdênio

AVALIAÇÃO DA RESISTÊNCIA AO REVENIDO E DA TENACIDADE DO AÇO FERRAMENTA H13

INFLUÊNCIA DE ASPECTOS MICROESTRUTURAIS NA RESISTÊNCIA À FRATURA DE AÇO ESTRUTURAL COM APLICAÇÕES OFFSHORE

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007

ANÁLISE DE FALHA EM CABO DE TRANSMISSÃO DE ENERGIA ELÉTRICA

Figura 49 Dispositivo utilizado no ensaio Jominy e detalhe do corpo-de-prova (adaptado de Reed-Hill, 1991).

ANÁLISE DO COMPORTAMENTO METAL-MECÂNICO APÓS CONFORMAÇÃO A QUENTE

INFLUÊNCIA DO CAMINHO DE AQUECIMENTO NAS PROPRIEDADES MECÂNICAS DE UM AÇO 1020 TEMPERADO A PARTIR DE TEMPERATURAS INTERCRÍTICAS

AÇOS INOXIDÁVEIS (Fe-Cr-(Ni))

CARACTERIZAÇÃO MICROESTRUTURAL DO AÇO INOXIDÁVEL MARTENSÍTICO CA15

Prof. Dr. André Paulo Tschiptschin ANÁLISE DE FRATURA DE CILINDRO BACK-UP DE LAMINAÇÃO

A IMPORTÂNCIA DA ANÁLISE DE FALHA NA INVESTIGAÇÃO DE ACIDENTES AERONAUTICOS.

UNIVERSIDADE FEDERAL DO ABC CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS MATERIAIS E SUAS PROPRIEDADES (BC 1105)

Palavras chave: Aço-carbono, Tratamento Térmico, Propriedade Mecânica.

DIAGRAMAS DE FASE II TRANSFORMAÇÕES DE FASE

Ciência e Engenharia dos Materiais. Propriedades Mecânicas. Prof. C. Brunetti

CARGA HORÁRIA TOTAL: 60 TEORIA: 60 PRÁTICA:-x- CÓDIGO: 245 E M E N T A

5 INFLUÊNCIA DOS TRATAMENTOS TÉRMICOS NAS PROPRIEDADES MECÂNICAS

A Tabela 2 apresenta a composição química do depósito do eletrodo puro fornecida pelo fabricante CONARCO. ELETRODO P S C Si Ni Cr Mo Mn

ESTUDO DO PROCESSO METALÚRGICO DE FABRICAÇÃO DE RODETES DE MOENDA

ESTUDO DAS PROPRIEDADES MECÂNICAS DOS AÇ OS INOXIDÁVEIS 304 E 434

TRANSFORMAÇÕES DE FASES EM METAIS

PROPRIEDADES MECÂNICAS III Propriedades de tração

Caracterização das Propriedades Mecânicas de Materiais Metálicos: A Influência da velocidade da máquina sobre a tensão obtida no ensaio de tração 1

AÇOS INOXIDÁVEIS considerações sobre estampagem

Aços Inoxidáveis. A.S.D Oliveira

PROPRIEDADES MECÂNICAS DOS MATERIAIS PROPRIEDADES MECÂNICAS DOS MATERIAIS

MÉTODO NUMÉRICO PARA A DETERMINAÇÃO DO MÓDULO DE TENACIDADE DE MATERIAIS A PARTIR DE ENSAIOS DE TRAÇÃO

RESOLUÇÃO. Universidade Técnica de Lisboa. Instituto Superior Técnico. Ciência de Materiais 1º Teste (21.Abril.2012)

Tratamento Térmico. Profa. Dra. Daniela Becker

Principais propriedades mecânicas

Ensaio de Dureza. Propriedade utilizada na especificação de materiais

Deformação e Mecanismos de Endurecimento Metais DEMEC TM242-B Prof Adriano Scheid

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013

Comparação de resultados obtidos de testes experimentais com método de elementos finitos aplicados ao desenvolvimento de produtos em implantodontia

Propriedades dos Aços e sua Classificação

Tratamentos térmicos de aços inoxidáveis

Aço Inoxidável Ferrítico ACE P444A

ESTAMPAGEM ESTAMPAGEM

Material conforme recebido (CR) e/ou metal base (MB)

INFLUÊNCIA DA MICROESTRUTURA NAS PROPRIEDADES ELÉTRICAS DE LIGAS Al-Mg-Th E Al-Mg-Nb

Nos gráficos 4.37 a 4.43 pode-se analisar a microdureza das amostras tratadas a

Biomateriais Aços inoxidáveis

Palavras-chave: Estratégia Didática, Propriedades Mecânicas, Ensaio de Tração, Aço Inox AISI 316L. 1. INTRODUÇÃO

Ensaio de Fluência. A temperatura tem um papel importantíssimo nesse fenômeno; Ocorre devido à movimentação de falhas (como discordâncias);

INFLUÊNCIA DO PROCESSO DE ELETROEROSÃO A FIO NAS PROPRIEDADES DO AÇO AISI D6.

Universidade Estadual de Ponta Grossa/Departamento de Engenharia de Materiais/Ponta Grossa, PR. Engenharias, Engenharia de Materiais e Metalúrgica

Ferro Fundido. A.S.D Oliveira

Fundamentos da mecânica de fratura e suas potenciais. Falhas

Rem: Revista Escola de Minas ISSN: Escola de Minas Brasil

Soldadura de Aços Inoxidáveis e Resistentes ao Calor

4. RESULTADOS EXPERIMENTAIS. Após a preparação metalográfica das amostras, foi realizado o ataque Behara

Estudo do tratamento térmico de têmpera do aço-ferramenta VMO sob duas diferentes condições de resfriamento 1

Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais

Aços Ferramenta. A.S.D Oliveira

EQUACIONAMENTO E AUTOMATIZAÇÃO DA NORMA SAE J 1397 PARA AÇOS CARBONO

ENSAIO DE DUREZA EM-641

Universidade Estadual de Campinas Faculdade de Engenharia Civil Departamento de Estruturas. Aços para concreto armado

I Encontro de Engenharia, Ciência de Materiais e Inovação do Estado do Rio de Janeiro

Influence of Austenitizing Temperature On the Microstructure and Mechanical Properties of AISI H13 Tool Steel.

Propriedades Mecânicas dos Materiais

Estudo de falha do eixo de correia transportadora de Minério

COMPORTAMENTO MECÂNICO DOS MATERIAIS

12, foram calculados a partir das equações mostradas seguir, com base nas análises químicas apresentadas na Tabela 8.

Influência das condições de tratamento isotérmico sobre a precipitação de fases secundárias em aço inox superduplex

Introdução ao estudo das Estruturas Metálicas

Tratamentos Térmicos

PROPRIEDADES FÍSICAS, QUÍMICAS E MECÂNICAS DOS MATERIAIS

ANÁLISE METALOGRÁFICA DO AÇO INOX 304 SUBMETIDO A DIFERENTES ESFORÇOS MECÂNICOS

3URFHGLPHQWR([SHULPHQWDO

CARACTERIZAÇÃO ESTRUTURAL E MECÂNICA DE CHAPAS EXPANDIDAS CONFECCIONADAS A PARTIR DOS AÇOS ABNT1010, AISI304A E AISI439

3 MATERIAL E PROCEDIMENTO EXPERIMENTAL

CARACTERIZAÇÃO MICRO-ESTRUTURAL E MECÂNICA DE UM AÇO BAIXO TEOR DE CARBONO TRATADO EM MEIOS DIVERSOS DE RESFRIAMENTO

AVALIAÇÃO DA RESISTÊNCIA À CORROSÃO E DAS PROPRIEDADES MECÂNICAS DO AÇO INOXIDÁVEL MARTENSÍTICO CONTENDO 15% DE CRÓMIO EM MEIO DE H 2 S E CO 2

Os processos de fabricação mecânica podem ser agrupados em 5 grupos principais.

Along. (50mm) 25% Custo (aço + Frete + impostos) R$ 1450,00/ton

2. Considerando a figura dada na questão 2, explique a principal dificuldade de conformação da sílica fundida em relação ao vidro de borosilicato.

Transição Dúctil-Frágil

CALIBRAÇÕES. Goniômetro º 04. Nível de Bolha até 20 mm/m 0,0029 mm/m (0,6") Nível Eletrônico até 20 mm/m 0,0029 mm/m (0,6")

Ensaio de compressão

PMR 2202 Projeto 2 - Estampagem

Falhas. Fraturas. Tipos de fraturas: a) Fratura Dúctil b) Fratura moderadamente dúctil c) Fratura frágil

Movimentação de discordâncias

RELATÓRIO DE ENSAIO LCP

Ciência dos Materiais CM2

ANÁLISE DAS PROPRIEDADES MECÂNICAS DO AÇO 1045 NITRETADO A PLASMA: COM E SEM TRATAMENTO DE REVENIMENTO

Foram realizados nos corpos de prova prismáticos com base no método A da norma ASTM

Transcrição:

VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA VI NATIONAL CONGRESS OF MECHANICAL ENGINEERING 18 a 21 de agosto de 2010 Campina Grande Paraíba - Brasil August 18 21, 2010 Campina Grande Paraíba Brazil DETERMINAÇÃO DA CAUSA DE FALHA EM INSTRUMENTAIS CIRÚRGICOS NA IMPLANTODONTIA Ciuccio, Ricardo Luiz rciuccio@hotmail.com 1 Jacomini Filho, Athos athosjf@gmail.com 2 Rubens Vieira Quadrelli rqua10@hotmail.com 3 Rafael Lira rafael.lira@amgcorp-br.com 2 Danilo Alves de Arruda danilo.arruada@sinimplante.com.br 2 Francisco Pereira Leite francisco.leite@amgcorp-br.com 2 1 Faculdade Politécnica de Jundiaí Rua do Retiro, 3000 Jd. Retiro, CEP 13209-002 Jundiaí - SP 2 SIN Sistema de Implantes Nacional Av. Vereador Abel Ferreira, 1100 Jd. Anália Franco, CEP 03340-000 São Paulo SP. 3 Universidade Nove de Junho Rua Guaranésia, 425 Vila Maria, CEP 03340-000 São Paulo SP. Resumo: O aço inoxidável é um dos prinicpais materiais empregados na fabricação de instrumentais cirúrgicos dentro da implantodontia, devido à combinação de propriedades mecânicas adequadas e elevada resistência a corrosão. Este trabalho apresenta um estudo de instrumentais cirurgicos dentro da implantodontia com o propósito de determinar as causas de falha em chave digital hexagonal, composta por uma haste de aço inoxidável martensítico (M340) e o conjunto de tambor e arruela de aço inoxidável austenitico (ABNT 303), por meio do estudo de superfície de fratura. O objetivo principal deste estudo é identificar a presença de trincas e outros sinais que auxiliem na determinação da causa de falha do produto. A metodologia empregada nesta pesquisa é de caráter exploratório, foi desenvolvida, a partir de ensaios metalográficos e microscópio eletrônico de varredura. Os resultados apresentados servirão de referência para futuras pesquisas relacionadas à implantodontia. Palavras-chave: mecânica da fratura, aço inoxidável, resistência mecânica 1. INTRODUÇÃO Os aços inoxidáveis têm sido amplamente empregados como instrumentais cirúrgicos por meio século, as chaves odontológicas são importantes instrumentais cirúrgicos que têm a função de fixar as próteses sob implante. Os aços inoxidáveis martensíticos, mediante tratamento térmico adequado, combinam elevada dureza/resistência mecânica com boa resistência à corrosão. A microestrutura ideal desses aços deve ser 100% martensítica e isenta de ferrita delta, já que esta fase, que se forma durante a solidificação, reduz a resistência mecânica, por ser bem menos dura que a martensítica revenida [1,2]. Para materiais de engenharia, são possíveis dois modos de fratura: dúctil e frágil. A classificação está baseada na habilidade de um material em experimentar deformação plástica. Os materiais dúcteis exibem tipicamente uma deformação plástica substancial com grande absorção de energia antes da ocorrência da fratura. Por outro lado, existe normalmente pouca ou nenhuma deformação plástica com baixa absorção de energia acompanhando uma fratura frágil [3]. A resistência à fratura de um material sólido é uma função das forças de coesão que existem entre átomos. Com base nisto, a resistência coesiva teórica de um sólido elástico frágil foi estimada como sendo de aproximadamente E/10, onde E representa o módulo de elasticidade [3]. O efeito de um fator de concentração de tensões é mais significativo em materiais frágeis do que em materiais dúcteis. Para um material dúctil, a deformação plástica acontece quando a tensão máxima excede o limite de escoamento. Isso leva a uma distribuição mais uniforme das tensões na vizinhança do fator de concentração de tensões e ao desenvolvimento de um fator de concentração de tensões máximo, que é menor do que o valor teórico. Já a fratura frágil irá resultar quando, com a aplicação de uma tensão de tração, a resistência à tração teórica do material é excedida na extremidade de um desses defeitos. Isso leva à formação de uma trinca que então se propaga rapidamente. Este trabalho apresenta um estudo de instrumentais cirúrgicos dentro da implantodontia com o propósito de determinar as causas de falha em chave digital hexagonal, composta por uma haste de aço inoxidável martensítico

(M340) e o conjunto de tambor e arruela de aço inoxidável austenitico (ABNT 303), por meio do estudo de superfície de fratura. O objetivo principal deste estudo é identificar a presença de trincas e outros sinais que auxiliem na determinação da causa de falha do produto. 2. MATERIAIS E MÉTODOS A metodologia empregada nesta pesquisa científica de caráter exploratório foi desenvolvida, a partir de pesquisas bibliográficas e testes experimentais. Como se trata de um instrumental cirúrgico, conforme Fig. (1), a amostra foi inicialmente limpa e higienizada para remoção de qualquer contaminação biológica. A limpeza da amostra foi feita com álcool etílico em ultrassom por 10 minutos, a amostra foi introduzida no microscópio eletrônico de varredura (MEV), da marca Joel Scanning Electom Microscope JSM 6390LV e teve sua superfície analisada por meio de imagens formadas por elétrons secundários, operando a 20KV. As imagens obtidas foram analisadas buscando a identificação de trincas e outros defeitos. A amostra foi submetida a ensaio de dureza superficial Rockwell na escala C. Para medição de dureza superficial Rockwell foi utilizado um durômetro de bancada Pantec modelo RASN/RS e empregada uma carga de 15 kgf. Foram realizadas no corpo de prova 5 medidas, a partir das quais obteve-se um valor médio de dureza superficial Rockwell (HRC). Utilizou-se um penetrador de diamante do tipo cone com 120, Hexágono 1.2mm Comprimento 27mm Figura 1 Dimensões da chave digital hexagonal. 2.1. Material A designação inox M340, é o nome que o fornecedor de aço inoxidável utiliza para codificar seu produto, esse tem características semelhantes ao aço inox 420B (NBR 5601), que é um aço-cromo martensítico utilizado principalmente em instrumentais cirúrgicos e dentários, peças de máquinas, moldes para plástico e indústria de vidro. Na Tab. (1) é apresentada a composição química do aço inoxidável M340 [4]. Tabela 1. Composição química do aço inoxidável M340. Limites máximos de Composição % C Si Mn Cr Mo V +N 0,54 0,45 0,40 17,30 1,10 0,10 O endurecimento desse tipo de aço se dá por têmpera onde o mecanismo é aquecido lentamente até 980 C 1040 C, e depois, no caso de peças pequenas, é resfriado bruscamente através de ar, sendo necessário o processo de revenimento imediatamente após o tratamento de têmpera, para evitar a ocorrência de trincas térmicas. A Tab. (2) é apresentada as principais propriedades mecânicas do aço inoxidável M340. Material Tabela 2. Propriedades mecânicas do aço inoxidável M340. Resistência a Tração (min.) MPa Limite de Escoamento (min.) MPa % Alongamento (min.) M340 665 350 20

3. RESULTADOS E DISCUSSÕES Na Fig. (2) é mostrada uma visão geral da peça com fratura. Figura 2 Chave digital hexagonal com fratura. A Fig. (3) é mostrada a região de trinca com um aumento de 50x. Figura 3 Região da trinca. Analisando-se a superfície de fratura através do microscópio eletrônico de varredura (MEV), pode-se constatar que as regiões próximas à borda (indicadas por A na Fig. (4)) apresentam aspecto de fratura frágil intergranular, enquanto a região central possui características de fratura dúctil (indicadas por B na Fig. (5)).

A B Figura 4 Aspecto de fratura intergranular. A B Figura 5 Região da trinca. Os valores de dureza Rockwell C obtidos no ensaio de dureza são apresentados na tabela 3. Tabela 3. Resultados de dureza na chave digital hexagonal. Amostra Rockwell C (HRC) 1 48 2 46 3 50 4 48 5 50 Desvio Padrão 1,50 Média 48,4 O valor médio obtido das medições de dureza da amostra foi 48,4HRC.

4. CONCLUSÕES Verificou-se a presença de uma trinca extensa na haste, que pode ter sido causada por tensões acumuladas durante o processo de conformação mecânica deste produto. As imagens mostram uma microestrutura constituída de martensita e austenita retida. Observa-se também a presença de contornos de grãos. Na imagem do detalhe de fratura (Fig. 5), é possível notar que a quebra ocorreu preferencialmente nos contornos de grãos, caracterizando assim uma fratura frágil. Estamos desenvolvendo novas formas para tratar termicamente estes produtos, com o objetivo de minimizar a falha em campo. E todo o processo de fabricação foi avaliado e melhorado para evitar futuros problemas relacionado a falha. 5. AGRADECIMENTOS Os autores agradecem ao INEPO Instituto Nacional de Experimentos e Pesquisas Odontológicas e a SIN Sistema de Implante por terem fornecido as amostras, as instalações e equipamentos necessários à realização deste trabalho. 6. REFERÊNCIAS [1] Schafer, L. Influence of delta ferrite and dendritic carbides on the impact and tensile properties of martensitic chromium steel. Journal of Nuclear Materials, 258 263, 1998, 1336 1339. [2] Thomson, R.C.; Badeshia, H.K.D.H. Carbide precipitation in 12Cr1MoV Power plant steel, Metallurgical Transactions A, v.23a, April, 1992,. 1171 1179. [3] William D. Callister, Jr. Ciência e Engenharia de Materiais. Editora LTC, quinta edição, 2002. [4] Aços especiais BOHLER. Ficha técnica do aço M340 ISOPLAST edição 03 junho de 2005. [5] ASTM E 140-02 Standard Hardness conversion tables for metals relationship Among Brinell Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness and Scleroscope Hardness. [6] NBR 5601 Aços Inoxidáveis classificação por composição química. [7] CALLISTER, W.D. Materials science and engineering: an introduction. 5. Ed. New York: John Willey and Sons, 1999. [8] VAN VLACK, L. H. Princípio de ciências e tecnologia dos materiais. São Paulo, SP: Campos, 1988.

VI Congresso Nacional de Engenharia Mecânica, 18 a 21 de Agosto 2010, Campina Grande - Paraíba DETERMINING THE CAUSE OF FAILURE TO VEHICLES IN SURGICAL IMPLANTODONTICS Ciuccio, Ricardo Luiz rciuccio@hotmail.com 1 Jacomini Filho, Athos athosjf@gmail.com 2 Rubens Vieira Quadrelli rqua10@hotmail.com 3 Rafael Lira rafael.lira@amgcorp-br.com 2 Danilo Alves de Arruda danilo.arruada@sinimplante.com.br 2 Francisco Pereira Leite francisco.leite@amgcorp-br.com 2 1 Faculdade Politécnica de Jundiaí Rua do Retiro, 3000 Jd. Retiro, CEP 13209-002 Jundiaí - SP 2 SIN Sistema de Implantes Nacional Av. Vereador Abel Ferreira, 1100 Jd. Anália Franco, CEP 03340-000 São Paulo SP. 3 Universidade Nove de Junho Rua Guaranésia, 425 Vila Maria, CEP 03340-000 São Paulo SP. Abstract. Stainless steel is one of principals materials used in the manufacture of surgical instruments inside the implant, due to the combination of mechanical properties and high resistance to corrosion. This trabalhdo presents a study of surgical instruments inside the implant in order to determine the causes of failure in key digital hexagonal, rod made by a martensitic stainless steel (M340) and the barrel assembly and washer austenitic stainless steel (ABNT 303) through the study of fracture surface. The objective of this study is to identify the presence of cracks and other signs that may help in determining the cause of product failure. The methodology used in this research is exploratory, was developed from tests metallographic and scanning electron microscope. The results presented serve as a reference for future research related to implantology. Keywords: fracture mechanics, stainless steel, mechanical strength.