ANÁLISE COMPARATIVA DOS PROCESSOS DE SOLDAGEM ARAME TUBULAR E ELETRODO REVESTIDO NA SOLDAGEM DO AÇO API 5LX - GRAU 70



Documentos relacionados
SOLDAGEM DO AÇO API 5LX - GRAU 70 COM ARAME TUBULAR AWS E-81T1-Ni1 E ELETRODO REVESTIDO AWS E-8010-G.

MICROESTRUTURA E TENACIDADE DO AÇO API 5LX GRAU 70 SOLDADO COM ARAME TUBULAR AWS E-81T1-Ni1 E ELETRODO REVESTIDO AWS E-8010-G

TENACIDADE AO IMPACTO DO METAL DE SOLDA DO AÇO API X70 SOLDADO COM ARAME TUBULAR AWS E-81T1-Ni1

RELAÇÃO ENTRE MICROESTRUTURA / TENACIDADE AO IMPACTO DO METAL DE SOLDA DO AÇO API X-70 SOLDADO POR ELETRODO REVESTIDO AWS E8010-G

MICROESTRUTURAS DO METAL DE SOLDA DO AÇO API X-70 SOLDADO COM ARAME TUBULAR AWS E81T1-Ni1

Curso de Engenharia de Produção. Processos de Fabricação

Soldabilidade de Metais. Soldagem II

Desenho e Projeto de Tubulação Industrial

ESTUDO DA MICROESTRUTURA E PROPRIEDADES DO METAL DE SOLDA DEPOSITADO POR ELETRODOS REVESTIDOS IMPERMEÁVEIS DO TIPO BAIXO HIDROGÊNIO 1

Qualificação de Procedimentos

Comparação entre Tratamentos Térmicos e Método Vibracional em Alívio de Tensões após Soldagem

SOLDAGEM POR ARCO SUBMERSO

Influence of Austenitizing Temperature On the Microstructure and Mechanical Properties of AISI H13 Tool Steel.

INFLUÊNCIA DO TRATAMENTO DE VIBRAÇÃO NAS TENSÕES RESIDUAIS GERADAS NA SOLDAGEM A LASER DE AÇOS ARBL E IF

INFLUÊNCIA DO PROCESSO E DOS PARAMETROS DE SOLDAGEM SOBRE O CICLO TERMICO EM JUNTAS SOLDADAS DE AÇOS ARBL.

- Bibliografia Recomendada

Soldagem de Aço Inox Utilizando Arco Gasoso com Tungstênio (GTAW ou TIG)

Trabalho Prático N o :. Técnica Operatória da Soldagem GMAW

INFLUÊNCIA DOS GASES DE PROTEÇÃO EMPREGADOS NO PROCESSO MIG/MAG SOBRE AS PROPRIEDADES MECÂNICAS DO METAL DE SOLDA

EFEITO DA ESTRUTURA BAINÍTICA EM AÇOS PARA ESTAMPAGEM

INFLUÊNCIA DOS PARÂMETROS DE SOLDAGEM NA MICROESTRUTURA DA ZONA AFETADA TERMICAMENTE - ZAT DA JUNTA SOLDADA DE UM AÇO DE ALTA RESISTÊNCIA

INVESTIGAÇÃO DA INFLUENCIA DA GEOMETRIA DO CHANFRO NAS PROPRIEDADES MECÂNICAS DE JUNTAS SOLDADAS DE UM AÇO ARBL

1.OBJETIVO. Os principais objetivos da prática de soldagem com eletrodo revestido são:

CARACTERIZAÇÃO DE REVESTIMENTOS SOLDADOS COM ARAME TUBULAR AWS E309LT-1 EM FUNÇÃO DA ADIÇÃO DE CO 2 NO GÁS DE PROTEÇÃO

DISSOLUÇÃO DA FERRITA DELTA EM AÇO INOXIDÁVEL ENDURECIDO POR PRECIPITAÇÃO

ÍNDICE CORROSÃO E MEDIDAS DE PROTEÇÃO ESPECIFICAÇÃO DE AÇOS, LIGAS ESPECIAIS E FERROS FUNDIDOS (Módulo I)... 4 ACABAMENTO DE SUPERFÍCIE...

ARAME PARA SOLDA MIG GERDAU A MELHOR OPÇÃO PARA INDÚSTRIAS

CAPÍTULO V RESULTADOS DOS ENSAIOS IMPLANTES

EFEITO DA TENSÃO DO ARCO ELÉTRICO EM SOLDAGEM POR ARAME TUBULAR COM ELETRODO AWS E-81T1-Ni1 NA MICROESTRUTURA DO METAL DE SOLDA

CARACTERIZAÇÃO DO METAL DE SOLDA DO AÇO API 5LX GRAU70 SOLDADO COM LASER PULSADO Nd:YAG

SOLDAGEM A LASER DE AÇOS ESTRUTURAIS

COLETÂNEA DE INFORMAÇÕES TÉCNICAS AÇO INOXIDÁVEL SOLDAGEM DE AÇOS INOXIDÁVEIS. Introdução


MONTAGEM INDUSTRIAL UNIDADE IV SOLDAGEM

VII Seminário da Pós-graduação em Engenharia Mecânica

AÇOS ESTRUTURAIS. Fabio Domingos Pannoni, M.Sc., Ph.D. 1

Tratamentos Térmicos [7]

1 Qual dos documentos apresentados a seguir não necessita ser mantido sob a responsabilidade do Inspetor de Soldagem?

PROPRIEDADES MECÂNICAS DE METAL DE SOLDA DE AÇO DE EXTRA ALTA RESISTÊNCIA PARA REPAROS DE COMPONENTES DE AMARRAÇÃO DE PLATAFORMAS

Título: TREFILAÇÃO DE ARAME ATRAVÉS DE FIEIRAS E ANÉIS

TRATAMENTOS TÉRMICOS DOS AÇOS

ESTUDO DO APORTE TÉRMICO NAS PROPRIEDADES MECÂNICAS DE METAIS DE SOLDA DE AÇO C-Mn OBTIDOS PELO PROCESSO ARCO SUBMERSO

Processos Construtivos

Propriedades Mecânicas dos Aços DEMEC TM175 Prof Adriano Scheid

SOLDAGEM DOS METAIS CAPÍTULO 8 SOLDAGEM MIG/MAG

0,8 0,9 1,0 1,2 1,32 1, ROSETADO AWS A 5.18 ER70S-6 0,15 0,15 0,15 0,03

PROGRAMA DE MANUTENÇÃO INDUSTRIAL POR SOLDAGEM

EME405 Resistência dos Materiais I Laboratório Prof. José Célio

FÓRUM NOVAS TECNOLOGIAS NA SOLDADURA. 15 de Abril de 2010

PROGRAMA DE MANUTENÇÃO INDUSTRIAL POR SOLDAGEM

ANÁLISE PRÁTICA DE PENETRAÇÃO DE SOLDA EM AÇO 1045

DESENVOLVIMENTO DE RODA MICROLIGADA COM NIÓBIO PARA TRANSPORTE HEAVY HAUL. Eng. (MSc) Domingos José Minicucci

4 Resultados. 4.1.Perfil do cordão de solda

APRESENTAÇÃO INSTITUCIONAL

OTIMIZAÇÃO DE PARÂMETROS DE SOLDA POR DEPOSIÇÃO SUPERFICIALPOR FRICÇÃO EM LIGA DE ALUMÍNIO AL 7075

Eng Mecânico. M.Sc.; D.Sc.; UNIFEI - Universidade Federal de Itajubá Itajubá MG. Brasil.

Curso de Engenharia de Produção. Processos de Fabricação

Richard Thomas Lermen (FAHOR)

I CONGRESSO PAN-AMERICANO DE SOLDAGEM XL CONSOLDA CONGRESSO NACIONAL DE SOLDAGEM SÃO PAULO BRASIL 20 23, Outubro, 2014

Compósitos. Os materiais compostos são formados apenas por duas fases: MATRIZ, que é contínua e envolve a outra fase, denominada FASE DISPERSA,

TRATAMENTOS TÉRMICOS: EFEITO DA VELOCIDADE DE RESFRIAMENTO SOBRE AS MICROESTRUTURAS DOS AÇOS ABNT 1045

AVALIAÇÃO DA RESISTÊNCIA À CORROSÃO DE AÇOS INOXIDÁVEIS SUBMETIDAS A CICLOS DE FADIGA TÉRMICA.

PÓS-GRADUAÇÃO LATO SENSU ENGENHARIA DE SOLDAGEM

SOLDAGEM EM OPERAÇÃO EM PLANTAS DE PROCESSO

ESTRUTURAS METÁLICAS - UFPR CAPÍTULO 1 AÇOS ESTRUTURAIS

Soldagem de manutenção II

AVALIAÇÃO DAS PROPRIEDADES MECÂNICAS DE UM AÇO FUNDIDO DE BAIXO CARBONO, COMO FUNÇÃO DA SEQUÊNCIA DE PROCESSOS DE TRATAMENTO TÉRMICO E SOLDAGEM

Radiologia Industrial. Radiografia de Soldas. Agenda. Tubulações e Equipamentos 23/08/2009. Walmor Cardoso Godoi, M.Sc.

ESPECIFICAÇÕES DE MATERIAL PARA TUBOS

ANCORAS METALICAS. Projetos / Aplicações / Importância / Análise de danos

UNIVERSIDADE FEDERAL DE MINAS GERAIS Departamento de Engenharia Metalúrgica e de Materiais

Conceitos Iniciais. Forjamento a quente Forjamento a frio

INFLUÊNCIA DA ENERGIA DE SOLDAGEM NO DESGASTE ABRASIVO DE REVESTIMENTOS DUROS APLICADOS PELO PROCESSO FCAW

DIAGRAMA Fe-C. DIAGRAMA Fe-Fe 3 C

Número 1 em arames tubulares sem costura

SOLDAGEM DOS METAIS CAPÍTULO 11 TENSÕES E DEFORMAÇÕES EM SOLDAGEM

UNIVERSIDADE FEDERAL DE ITAJUBÁ INSTITUTO DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

ANÁLISE MICROESTRUTURAL DO METAL DE SOLDA DE PERFIS SOLDADOS DE UM LADO SÓ UTILIZADOS NA CONSTRUÇÃO CIVIL

AVALIAÇÃO DA SOLDAGEM PELO PROCESSO MIG EM AÇO INOXIDÁVEL MARTENSÍTICO

Avaliação da Soldabilidade do Aço Naval EH36 TMCP Soldado por Arco Submerso com Elevado Aporte de Calor a

Soldagem em Operação de Dutos de Alta Resistência e Baixa Espessura com Ênfase nas Trincas a Frio

Rodas Microligadas: Estudo e aplicação nas ferrovias da Vale

CONTROLE DE QUALIDADE DO CONCRETO REFORÇADO COM FIBRAS PARA TÚNEIS

Processo de Soldagem por Arame Tubular

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007

3 Material e Procedimento Experimental

ANÁLISE DA SENSITIZAÇÃO DE JUNTAS SOLDADAS EM AÇO INOXIDÁVEL AISI 409 PARA USO EM SISTEMA DE EXAUSTÃO VEICULAR

Tratamento Térmico. Profa. Dra. Daniela Becker

SOLDAGEM DOS METAIS CAPÍTULO 9 SOLDAGEM COM ELETRODO REVESTIDO

O tipo de Metal de Base (MB) escolhido é um aço ASTM A 36, de espessura 3/8 e

ANÁLISE MICROESTRUTURAL DE UMA JUNTA SOLDADA - MICRODUREZA E FRAÇÃO VOLUMÉTRICA -

ANÁLISE MICROESTRUTURAL DO METAL DE SOLDA DE PERFIS SOLDADOS DE UM LADO SÓ UTILIZADOS NA CONSTRUÇÃO CIVIL

AVALIAÇÃO DA TENACIDADE AO IMPACTO DO AÇO INOXIDÁVEL AISI 304 EM JUNTAS SOLDADAS

Tensões Admissíveis e Tensões Últimas; Coeficiente de Segurança

Processo de Forjamento

Soldagem Circunferencial de Tubo API 5L X80 Empregando Processos Manual / Semi-Automático

CARACTERIZAÇÃO MICROESTRUTURAL DE UM AÇO API 5L-X80 ATRAVÉS DE MICRODUREZA E MICROSCOPIA ÓTICA E ELETRÔNICA 1 Mario González Ramírez 2

REDEMAT REDE TEMÁTICA EM ENGENHARIA DE MATERIAIS

UDDEHOLM NIMAX UDDEHOLM NIMAX

Transcrição:

ANÁLISE COMPARATIVA DOS PROCESSOS DE SOLDAGEM ARAME TUBULAR E ELETRODO REVESTIDO NA SOLDAGEM DO AÇO API 5LX - GRAU 70 Vicente Afonso Ventrella Prof. Dr. UNESP / Faculdade de Engenharia de Ilha Solteira - ventrella@dem.feis.unesp.br Av. Brasil Centro 56 - Ilha Solteira SP - CEP 15385-000 - Fone: (18) 3743-1095 Resumo: Neste trabalho estudou-se a microestrutura e a tenacidade ao impacto do metal de solda do aço API 5LX Grau 70 (limite de escoamento mínimo de 480 MPa), soldado pelos processos Arame Tubular e Eletrodo Revestido, utilizando-se arame AWS E-81T1-Ni1 e eletrodo AWS E- 8010-G, respectivamente. Suas microestruturas foram caracterizadas via microscopia ótica, para análise qualitativa e quantitativa dos constituintes microestruturais, em corpos de prova transversais ao cordão de solda. Foram realizados ensaios de impacto Charpy V para a obtenção de uma correlação entre microestrutura e propriedades mecânicas, no caso a tenacidade ao impacto. Os resultados mostraram que a taxa de resfriamento da junta soldada de aços API X-70 influi na microestrutura final do metal de solda e, a melhoria da tenacidade está relacionada à fração volumétrica de ferrita acicular presente no metal de solda. Espera-se que a conclusão deste trabalho forneça contribuições científicas e tecnológicas de grande valor, pois a soldagem do aço API X-70 é de suma importância, visto que o aço API X-70 é amplamente utilizado na indústria petrolífera, como por exemplo, o Gasoduto Bolívia-Brasil, apresentando características de elevada resistência, aliada a boa soldabilidade e baixo nível de inclusões. Palavras-chave: soldagem, aço API, microestrutura, eletrodo revestido e arame tubular. 1. INTRODUÇÃO Na fabricação de tubos de grande espessura, há necessidade de uso de aços de alta resistência mecânica à tração, como por exemplo, os aços da série API 5L X70 (limite de escoamento mínimo de 480 MPa ). Especificações internacionais requerem elevadas propriedades de impacto para este aço e, naturalmente, também para as suas juntas soldadas (o metal de solda deve absorver 56 J a 20 C e 40 J a 25 C). Estas exigências refletem não apenas a necessidade dos aços e das juntas soldadas possuírem uma temperatura de transição a mais baixa possível (característica essencial para usos em regiões frias), mas também um elevado patamar superior de energia de impacto, particularmente em gasodutos, cujas elevadas tensões de serviço podem contribuir para a ocorrência de falha no modo dúctil de propagação de trincas (Kirkwood et all, 1996; API, 1995). O principal guia para a soldagem de tubulações é a norma API 1104, a qual fornece dados necessários à obtenção de juntas soldadas com boas qualidades. As juntas em tubulações são soldadas no campo e somente do lado externo. Como o tubo é fixo, a soldagem deve ser realizada em todas as posições. O tipo de eletrodo revestido geralmente utilizado na soldagem de tubulações é o AWS EXX10, pois possui elevada penetração e pode ser utilizado em todas as posições. Nos dias atuais o eletrodo revestido celulósico começa a ser substituído pelo processo automático com arame tubular. Isso vem acontecendo muito lentamente, pois a indústria de soldagem de tubulações é muito conservadora (Widgery, 2000; AWS,1992).

Até hoje a terminologia dos diversos constituintes presentes em metais de solda dos aços baixa liga, no caso os aços API, não está totalmente padronizada. A terminologia adotada pelo Instituto Internacional de Soldagem (IIW / IIS), baseada fundamentalmente em observações feitas com microscopia ótica e na relação constituinte-tenacidade ainda é a mais utilizada, onde os microconstituintes são definido como segue (Dolby, 1986): a) Ferrita Primária de Contorno de Grão - PF(G) b) Ferrita Poligonal Intragranular - PF(I) c) Ferrita Acicular - AF d) Ferrita com Segunda Fase Alinhada - FS(A) e) Ferrita com Segunda Fase Não Alinhada - FS(NA) f) Agregado Ferrita-Carboneto - FC g) Martensita M Enquanto as vantagens do uso do arame tubular vêm se disseminando rapidamente em vários segmentos da indústria, a soldagem, de aços API para tubulações, tem se mostrado uma indústria conservadora, adaptando-se muito lentamente ao uso do arame tubular. Parece que esta situação está começando a mudar. Uma razão pela qual a soldagem semi-automática com arames sólidos não substituiu a soldagem por eletrodos revestidos na indústria de tubulações foi em função do receio do aparecimento de defeitos como a falta de fusão. A principal razão porque o arame tubular vem substituindo o eletrodo revestido na indústria naval, é justamente em função de sua baixa susceptibilidade à falta de fusão. 2 MATERIAIS E MÉTODOS Como metal de base foram utilizadas chapas de aços API 5LX-Grau 70, com 10,8 mm de espessura. A designação do aço é realizada pela Americam Petroleum Institute (API), especificamente a API 5L. Sua aplicação está voltada para as condições onde resistência mecânica, tenacidade e peso são requisitos principais. A composição química analisada e o carbono equivalente (CE), estão apresentados na Tabela 1. Tabela 1 - Composição química analisada (% em peso) e carbono equivalente (CE) do aço API 5L X-70. Elem. C Mn Si P S Ni Mo V Nb Al CE Teor % 0,117 1,49-0,018 0,006 - - 0,020 0,017 0,014 0,37 Como consumíveis de soldagem foram utilizados eletrodos revestidos celulósicos AWS E8010G com 3,25 mm de diâmetro, e arame tubular AWS E81T1-Ni1 com 1,6 mm de diâmetro, protegido com 75% Argônio e 25 % CO 2, todos designados sob a norma Americam Welding Society (AWS), respectivamente AWS A5.5 e AWS A5.29. O procedimento e parâmetros de soldagem adotados para a obtenção dos diversos corpos de prova estão mostrados na tabela 2. Tabela 2 - Condições de soldagem Eletrodo Revestido Arame Tubular Posição de soldagem Plana Plana Junta / chanfro Topo / X 60 Topo / X 60 Consumível AWS E8010G AWS E81T1-Ni1 Corrente / Tensão 80, 100 e 120 A 26, 29 e 32 V Velocidade de Soldagem 150 mm/min 400 mm/min Temperatura metal base 0, 25 e 300 C 0, 25 e 300 C

Foram realizados ensaios de impacto Charpy V, segundo normas da ASTM E23, a 3 (três) diferentes temperaturas ( 20 o C, 0 o e 25 o C ), sendo que a cada temperatura foram ensaiados 3 (três) corpos de prova com seção de 10 X 10 X 55 mm com entalhe central em V 45 º. 4 - RESULTADOS Os resultados das medidas quantitativas das microestruturas das amostras das séries AT (soldadas pelo processo arame tubular) e ER (soldadas pelo processo eletrodo revestido) estão mostrados nas tabelas 3 e 4, respectivamente. Tabela 3 - Resultados da metalografia quantitativa (%) e dos valores médios da energia de impacto Charpy V nas temperaturas -20 C, 0 C e 25 C, presentes no segundo cordão de solda. Série AT. Tensão Temp AF PF(I) PF(G) FS(A) FS(NA) Energia Charpy V (J) (V) ( C) -20 0 25 AT01 26 0 59 1 15 20 5 45 + 2 50 + 1 52 + 3 AT02 26 25 69 1 15 10 5 49 + 3 54 + 2 53 + 2 AT03 26 300 72 2 22 3 1 60 + 4 67 + 2 61 + 3 AT04 29 0 65 2 10 18 5 61 + 1 68 + 2 85 + 1 AT05 29 25 75 1 15 5 4 64 + 2 73 + 3 94 + 3 AT06 29 300 80-20 - - 99 + 2 107 + 4 100 + 3 AT07 32 0 69 2 15 10 4 62 + 1 57 + 1 58 + 1 AT08 32 25 72 1 20 3 4 59 + 3 63 + 2 74 + 2 AT09 32 300 69 2 25 2 2 57 + 1 62 + 2 69 + 2 Tabela 4 - Resultados da metalografia quantitativa (%) e dos valores médios da energia de impacto Charpy V nas temperaturas -20 C, 0 C e 25 C, presentes no segundo cordão de solda. Série ER. Corrente Temp AF PF(I) PF(G) FS(A) FS(NA) Energia Charpy V (J) (A) ( C) -20 0 25 ER01 80 0 16 9 18 46 11 43 + 3 48 + 2 47 + 2 ER02 80 25 18 12 18 38 14 45 + 2 48 + 2 57 + 3 ER03 80 300 34 8 23 18 17 45 + 2 54 + 4 59 + 4 ER04 100 0 18 10 16 38 18 53 + 1 59 + 3 65 + 2 ER05 100 25 48 6 12 22 12 57 + 4 63 + 3 71 + 2 ER06 100 300 62 6 21 3 8 59 + 3 65 + 2 69 + 1 ER07 120 0 25 12 28 26 9 50 + 2 56 + 3 59 + 2 ER08 120 25 78 2 18-2 61 + 2 69 + 4 74 + 3 ER09 120 300 42 15 33 2 8 60 + 1 67 + 1 72 + 3 No caso das amostras soldadas por arame tubular, por exemplo, a amostra AT01, a qual foi soldada com tensão de 26 volts e metal de base na temperatura de 0 C, sendo, portanto a amostra que sofreu a maior taxa de resfriamento, em função do baixo aporte térmico, apresentou uma microestrutura com menor fração volumétrica de ferrita acicular (59 %), sendo sua microestrutura composta basicamente de ferrita com segunda fase alinhada (20%), além de 15% de ferrita primária de contorno de grão PF(G), 1% de ferrita primária poligonal intergranular PF (I) e 5% de ferrita com segunda fase não alinhada FS (NA). A figura 1a mostra uma microestrutura representativa do metal de solda da amostra AT01 obtida por microscopia ótica, onde é possível observar uma considerável fração volumétrica de ferrita com segunda fase alinhada FS (A), um constituinte microestrutural que reduz a tenacidade da junta soldada. Por outro lado, a amostra AT09 a qual foi soldada com tensão de 32 volts e metal de base pré-aquecido a 300 C, sendo, portanto a amostra que sofreu o maior aporte térmico, e conseqüentemente a menor taxa de resfriamento, apresentou uma microestrutura com elevada

fração volumétrica de ferrita primária (27%), sendo 25% de ferrita primária de contorno de grão e 2% de ferrita primária poligonal intergranular, além de 69% de ferrita acicular e 4 % de ferrita com segunda fase. A figura 1c mostra a microestrutura representativa do metal de solda da amostra AT09. A amostra AT05 foi soldada com uma tensão de 29 volts e metal de base a temperatura de 25 C, sendo, portanto uma condição média de taxa de resfriamento. Observando a tabela 3 podemos ver que a amostra AT05 apresentou 75% de ferrita acicular, 5% de ferrita com segunda fase alinhada, 15% de ferrita primária de contorno de grão, 1% de ferrita primária poligonal intergranular e 4% de ferrita com segunda fase não alinhada. Figura 1 - Microestruturas das amostras: a) AT-01, b) AT-05, c) AT-09. Microscopia ótica. Aumento 500 X. Ataque nital 2%. No caso das amostras soldadas pelo processo eletrodo revestido, por exemplo, a mostra ER01, a qual foi soldada com corrente de 80 amperes e metal de base na temperatura de 0 C, sendo, portanto a amostra da série ER que sofreu a maior taxa de resfriamento, em função do baixo aporte térmico, apresentou uma microestrutura com pequena fração volumétrica de ferrita acicular (16 %), sendo sua microestrutura composta basicamente de ferrita com segunda fase alinhada (46%), além de 18% de ferrita primária de contorno de grão PF(G), 9% de ferrita primária poligonal intergranular PF(I) e 11% de ferrita com segunda fase não alinhada FS(NA). A figura 2a mostra uma microestrutura representativa do metal de solda da amostra ER01 obtida por microscopia ótica, onde é possível observar uma grande fração volumétrica de ferrita com segunda fase alinhada FS(A), um constituinte microestrutural que reduz a tenacidade da junta soldada. Por outro lado, a amostra ER09 a qual foi soldada com corrente de 120 amperes e metal de base pré-aquecido a 300 C, sendo, portanto a amostra que sofreu o maior aporte térmico, conseqüentemente a menor taxa de resfriamento, apresentou uma microestrutura com elevada fração volumétrica de ferrita primária (48%), sendo 33% de ferrita primária de contorno de grão e 15% de ferrita primária poligonal intergranular, além de 42% de ferrita acicular e 10 % de ferrita com segunda fase. A figura 2c mostra a microestrutura representativa do metal de solda da amostra ER-09. Figura 2 - Microestruturas das amostras: a) ER-01, b) ER-05, c) ER-09. Microscopia ótica. Aumento 500 X. Ataque nital 2%.

A amostra ER-05 foi soldada com uma corrente de 100 amperes e metal de base a temperatura de 25 C, sendo, portanto uma condição média de taxa de resfriamento. Observando a tabela 4 pode-se ver que a amostra ER-05 apresentou 48% de ferrita acicular, 22% de ferrita com segunda fase alinhada, 12% de ferrita primária de contorno de grão, 6% de ferrita primária poligonal intergranular e 12% de ferrita com segunda fase não alinhada. Observou-se que a utilização de corrente de soldagem ou tensão do arco elétrico baixas, além de favorecer a formação da ferrita com segunda fase alinhada, resultou em juntas soldadas com presença de descontinuidades do tipo falta de fusão, falta de penetração e escória no interior do cordão, o que também reduz a tenacidade da junta soldada. Dessa forma, pode-se observar que na soldagem do aço API X-70 com o eletrodo revestido AWS E-8010G e com o arame tubular AWS E-81T1-Ni1, a taxa de resfriamento do metal de solda é um fator determinante da microestrutura resultante, isto é, o aumento da taxa de resfriamento favoreceu o aparecimento de constituintes do tipo ferrita com segunda fase alinhada, reduzindo a fração volumétrica de ferrita acicular. Por outro lado, com baixas taxas de resfriamento favoreceu-se o aparecimento de constituintes do tipo ferrita primária de contorno de grão e ferrita primária poligonal intergranular, reduzindo a fração volumétrica de ferrita acicular. Analisando ainda as tabelas 3 e 4, foi observado que os constituintes microestruturais, do metal de solda do aço API, que sofreram maior variação em função da taxa de resfriamento foi a ferrita acicular AF, a ferrita com segunda fase alinhada FS(NA) e a ferrita primária de contorno de grão PF(G), sendo os dois últimos, constituintes que reduzem a tenacidade da junta soldada, principalmente a ferrita com segunda fase alinhada. Pode-se observar que, na soldagem de chapas de aço API X-70 tanto com eletrodos revestidos quanto com arame tubular, no caso o AWS E- 8010G e o AWS E81T1-Ni1, a temperatura do metal de base deve ser controlada, principalmente em regiões frias, o que poderia favorecer o aparecimento de constituintes do tipo ferrita com segunda fase alinhada. Outro ponto a ser controlado é a temperatura entre-passes, isto no caso da soldagem multi-passe, onde o metal de solda sofre aquecimento entre um passe e outro. Nesse caso ocorreria o aparecimento de constituintes do tipo ferrita primária de contorno de grão e, conseqüentemente, redução da fração volumétrica de ferrita acicular. Pode-se dizer também que o efeito isolado, tanto da temperatura do metal de base quanto da corrente/tensão de soldagem, alteram a microestrutura final do metal de solda, sendo o efeito da temperatura mais significativo do que o efeito da corrente/tensão de soldagem. Os resultados da energia de impacto Charpy V absorvida (médias aritméticas dos valores obtidos) estão mostrados nas tabelas 3 e 4 (ensaios realizados nas temperaturas de 20 C, 0 C e 25 C). Além disso, através dessas tabelas pode-se correlacionar os valores de corrente, tensão, temperatura do metal de base e a quantidade de ferrita acicular (AF) presente no metal de solda de cada corpo de prova. Os resultados dos ensaios charpy, mostrados nas tabelas 3 e 4, para os diferentes corpos de prova mostraram que a energia absorvida aumenta, em geral, com a temperatura de ensaio, independentemente da condição de soldagem. Existem algumas exceções a este comportamento, isto provavelmente ocorreu devido a descontinuidades no metal de solda, por exemplo, uma condição de baixo aporte térmico poderia gerar uma junta soldada com falta de fusão e/ou falta de penetração. Observou-se também que quanto maiores foram as tensões e correntes de soldagem, em geral, maior é a energia absorvida. Observou-se também que quanto maior for o teor de ferrita acicular (AF), no metal de solda, maior será a energia absorvida na junta soldada. Dessa forma, pode-se dizer que a qualquer das três temperaturas, a energia absorvida aumenta com a quantidade de ferrita acicular. Essa redução de ferrita acicular é explicada em função das condições com baixa taxa de resfriamento favorecerem a formação de constituintes como ferrita primária de contorno de grão PF(G) e ferrita primária poligonal intragranular PF (I), reduzindo, portanto a fração volumétrica de ferrita acicular.

4. CONCLUSÕES As diferentes taxas de resfriamento do metal de solda do aço API X-70, gerou alterações significativas tanto na microestrutura quanto na tenacidade da junta soldada para ambos os processos. As juntas soldadas pelo processo arame tubular apresentaram melhor tenacidade do que aquelas obtidas pelo processo eletrodo revestido. As juntas soldadas pelo processo arame tubular apresentaram maior fração volumétrica de ferrita acicular (AF) do que aquelas obtidas pelo processo eletrodo revestido. As juntas soldadas pelo processo eletrodo revestido apresentaram maior fração volumétrica de ferrita com segunda fase (FS) do que aquelas obtidas pelo processo arame tubular. O metal de solda obtido pelo processo eletrodo revestido apresentou uma maior incidência de descontinuidades do que aquele obtido pelo processo arame tubular. 5. AGRADECIMENTOS O autor agradece à USIMINAS e à FAPESP pelo apoio ao desenvolvimento deste trabalho. 6. REFERÊNCIAS BIBLIOGRÁFICAS [1] Kirkwood, P.R.; Tait, W.P., 1996, Developments in welding consumables for the seam welding of high strength X70 line pipe, Paper 33 IIW, pp. 299-306. [2] AMERICAN PETROLEUM INSTITUTE, 1995, Specification for Line Pipe 5L. API, Washington, April, 25p. [3] Widgery, D., 1999, Linepipe welding beyond 2000, Svetsaren, Vol. 54, pp. 8 10. [4] AMERICAN WELDING SOCIETY, 1992, Welding Handbook., Vol. 4, 8 ed., Miami, USA. [5] Dolby, R.E., 1986, Guidelines for classification of ferritic steel weld metal microstructural constituents using the light microscope, Welding in the World, Vol.24, n.7/8, pp. 144-148. COMPARATIVE ANALYSIS OF API X-70 STEEL WELDED BY FLUX CORED AND SHIELDED METAL ARC WELDING Vicente Afonso Ventrella Prof. Dr. UNESP / Faculdade de Engenharia de Ilha Solteira - ventrella@dem.feis.unesp.br Av. Brasil Centro 56 - Ilha Solteira SP - CEP 15385-000 - Fone: (18) 3743-1095 Abstract. The present work has been studied the API X-70 (Minimum Yield Strength 480 Mpa) steel weld metal microstructure and toughness welded by Flux Cored Arc Welding and Shielded Metal Arc Welding, in different cooling rates, using AWS E-81T1-Ni1 and AWS E8010G stick. The microstructures were characterized by optical microscopy, to qualitative and quantitative analysis of the micro structural constituents, present in transversal welded samples. Impact Charpy V tests showed that API X-70 steel weld metal cooling rate is related with weld metal microstructure obtained and, good toughness is related to high volume fraction of acicular ferrite. Important scientific and technologic contributions were obtained with this work since API X-70 steel is largely used in petroleum industry, like Bolivia-Brazil pipeline, showing high tensile strength with good weldability and low inclusions level. Keywords: welding; API steel, microstructure, SMAW and FCAW.