TERCEIRÃO TERCEIRÃO FTD TERCEIRÃO FTD. 3 (UERN) A seqüência de números positivos. (x, x 0 10, x 2,...) Θ PA de números positivos.

Tamanho: px
Começar a partir da página:

Download "TERCEIRÃO TERCEIRÃO FTD TERCEIRÃO FTD. 3 (UERN) A seqüência de números positivos. (x, x 0 10, x 2,...) Θ PA de números positivos."

Transcrição

1 M0 TERCEIRÃO TERCEIRÃO FTD TERCEIRÃO FTD TERCEIRÃO FTD TERCEIRÃO FTD TERCEIRÃO FTD TERCEIRÃO TERCEIRÃO FTD (Unifor-CE) Considere seqüênci ( n ), n qul n 7 Μ {0} e,,, 8 etc. O termo gerl dess seqüênci é um dos que estão ddos bixo. Qul deles? ) n n d) n n 5n b) n n n e) n 5n 6 c) n n 6 ) n n (não stisfz) b) n n n (não stisfz) c) n n (não stisfz) d) n n 5n e) n 5n 6 (não stisfz) Logo, o termo gerl é n n 5n. (UERN) A seqüênci de números positivos (x, x 0 0, x,...) é um PA, cujo 0 o termo é: ) 9 b) 95 c) 0 d) 0 e) 05 (x, x 0 0, x,...) PA de números positivos x x ( x 0 ) 0 0 x x 0 0 x ± 9 x 5 x (não convém) PA: (5, 5, 5,...) 5; r r Ι 0 95 Cderno de Atividdes (MACK-P) e f(n), n 7 Μ, é um seqüênci definid por: f(0) f(n 0 ) f(n) 0, então f(00) é: ) 597 b) 600 c) 60 d) 60 e) 607 (Unifesp-P) A som dos termos que são números primos d seqüênci cujo termo gerl é ddo por n n 0, pr n nturl, vrindo de 5, é: ) 0 b) 6 c) 8 d) e) 6 Os termos d seqüênci n n 0, < n < 5 (n 7 Μ) são: A som dos termos que são primos é: f(0) n 0 f() f(0) 0 0 n f() f() n f() (,, 7, 0,...) PA r Como f(0); f(); f(), temos: f(00) r f(00) 60 9

2 M0 5 (UFRN) Num PA de termo gerl n, tem-se que 8 0 O o termo dess progressão é: ) 6 b) 5 c) d) e) r 8 0 r 0 0 r r 8 r e 0 () r 8 r 0 r 8 (Vunesp-P) Em 5 de junho de 00, foi inugurd um pizzri que só bre os sábdos. No di d inugurção, pizzri recebeu 0 fregueses. A prtir dí, o número de fregueses que pssrm freqüentr pizzri cresceu em PA de rzão 6, té que tingiu cot máxim de 6 pessos, qul tem se mntido. O número de sábdos que se pssrm, excluindo-se o sábdo de inugurção, pr que cot máxim de fregueses fosse tingid pel primeir vez, foi: ) 5 d) 8 b) 6 e) 6 c) 7 Do enuncido, temos PA (0, 6,..., 6), de rzão 6. Assim o número n de sábdos que se pssrm desde inugurção té tingir cot máxim pel primeir vez pode ser obtido por: n 0 (n )r (n ) 9 6 n 7 Excluindo-se o sábdo d inugurção, o número de sábdos que se pssrm pr que cot máxim fosse tingid pel primeir vez foi 6. 6 (PUC-P) Considere s seqüêncis (,, 7, 0,..., 67) e (8,, 6, 0,..., 0). O número de termos comuns esss dus progressões é: ) 5 b) 6 c) 7 d) 8 e) 9 Admitindo que s dus seqüêncis são progressões ritmétics, temos: (,, 7, 0,, 6, 9,, 5, 8,,, 7, 0,, 6, 9, 5, 55, 58, 6, 6, 67) e (8,, 6, 0,, 8,, 6, 0,, 8, 5, 56, 60, 6, 68,..., 0) Os termos comuns são: 6, 8, 0, 5 e 6. Assim, o número de termos comuns esss dus progressões é 5. 9 (UEL-PR) Interpolndo-se sete termos ritméticos entre os números 0 e 98, obtém-se um PA cujo termo centrl é: ) 5 b) 5 c) 5 d) 55 e) 57 (0,, 98) 7 termos 0 0 8r r 98 n 9 8r 88 r? r 7 (UFPE/UFRPE) Nos quilômetros e 9 de um rodovi estão instldos telefones de emergênci. Ao longo d mesm rodovi e entre esses quilômetros, pretende-se instlr 0 outros telefones de emergênci. e os pontos djcentes de instlção dos telefones estão situdos um mesm distânci, qul é ess distânci, em quilômetros? Termo centrl: r Ι 5 5 Devemos ter: n 0 (n )r 9 0 ( )r r 8 Portnto, distânci é igul 8 m. 0

3 0 (UFRJ) eu Juc resolveu dr seu filho Riquinho um mesd de R$ 00,00 por mês. Riquinho, que é muito esperto, disse seu pi que, em vez d mesd de R$ 00,00, gostri de receber um pouquinho cd di: R$,00 no primeiro di de cd mês e, cd di, R$,00 mis que no di nterior. eu Juc concordou, ms, o finl do primeiro mês, logo percebeu que hvi sído no prejuízo. Clcule qunto, em um mês com 0 dis, Riquinho receberá mis do que receberi com mesd de R$ 00,00. Em 0 dis Riquinho receberá: (PA de rzão ) A som desses termos é: n 0 n n ( 0) ou 0 R$ 65,00 Portnto, Riquinho receberá mis: R$ 65,00 M0 (UFMA) Chicão, professor do DEMAT/UFMA, comprou um computdor e contriu um dívid no vlor de R$ 00,00, que deverá ser pg em prestções mensis em PA. Após o pgmento de 8 prestções, há um sldo devedor de R$ 590,00. Qul o vlor d primeir prestção? ( 0 ) ( 0 8 ) Dí, vem: 0 0 r 50 0 r r r 90 6r 60 r 0 Logo: 0 r A primeir prestção é igul R$ 60,00. (Ftec-P) Dois vijntes prtem juntos, pé, de um cidde A pr um cidde B, por um mesm estrd. O primeiro nd quilômetros por di. O segundo nd 0 quilômetros no o di e dí celer o psso, em meio quilômetro cd di que segue. Nesss condições, é verdde que o segundo: ) lcnçrá o primeiro no 9 o di. b) lcnçrá o primeiro no 5 o di. c) nunc lcnçrá o primeiro. d) lcnçrá o primeiro ntes de 8 dis. e) lcnçrá o primeiro no o di. O primeiro vijnte nd m por di. Ao finl de n dis, terá nddo (n) m. O segundo vijnte nd, por di, distâncis que, em m, são termos d PA (0; 0,5; ;...; n ;...), em que n 0 0 (n ) 9 0,5 n 0,5n 0 9,5 Ao finl de n dis, terá nddo: (0 0 0, 5n 0 9, 5)n 9, 5n 0 0, 5n O segundo lcnçrá o primeiro qundo 9, 5n 0 0, 5n n 0,5n,5n 0 n 9, pois n. 0. (Vunesp-P) Um pesso resolve cminhr todos os finis de trde. No o di de cminhd, el percorre um distânci de x metros. No o di, el cminh o dobro do que cminhou no o di; no o di, cminh o triplo do que cminhou no o di, e ssim por dinte. Considerndo o período do o o 5 o di, ininterruptos, el cminhou um totl de 750 metros. ) Encontre distânci x percorrid no o di. b) Verifique qunto el terá percorrido no 0 o di. Do enuncido, temos PA: (x, x, x,...) ) x, 5 5x e ( 0 5 ) 5 (x 0 5x) x 750 m b) No 0 o di, el terá percorrido: 0 0x 0 0(750) 500 m

4 M0 (Unemt-MT) Um condomínio residencil, recéminugurdo, presentou um consumo de águ de 500 L (litros) em seu primeiro di. No primeiro mês de funcionmento, ocorreu um umento diário de 5 L. Podemos firmr: O consumo de águ no o di foi de 5 00 L. O consumo totl desse mês, com dis, foi de L. O consumo médio diário foi de 75 L. No 0 o di do mês o consumo foi de 55 L.. Flso A PA é: ( 500, 65, 70,...) 0 r L. Verddeiro 0 0r L 0 n L. Flso O consumo médio foi de: : 5 L ( ) 9. Verddeiro 0 0 9r L A primeir coro circulr pintd de mrelo tem áre igul : A π 9 π 9 A π m Pr pintr π m gst-se 9 0,5,5 L de tint. A segund coro circulr pintd de mrelo tem áre igul : A π 9 π 9 A 7π m Pr pintr 7π m gstm-se 7 9 0,5,5 L de tint. Pr terceir coro circulr pintd de mrelo, temos: A π 9 6 π 9 5 A π m Gstm-se 9 0,5 5,5 L de tint. Assim, temos PA:,5;,5; 5,5;...; o di o di 6 o di 0 o di Durnte 0 dis ele usou tint mrel. Assim, temos: 0 0 (n )r 0,5 0 (0 ) 9 0 9,5 L A quntidde totl de tint mrel gst é igul : n 0 n n (, 5 0 9, 5) L 5 (UFG) Desej-se pintr com tints de cores pret e mrel, lterndmente, um disco no qul estão mrcdos círculos concêntricos, cujos rios estão em PA de rzão m. Pint-se no primeiro di o círculo centrl do disco, de rio m, usndo 0,5 L de tint pret. Nos dis seguintes, pint-se região delimitd pel circunferênci seguinte o círculo pintdo no di nterior. e tint usd, não importndo cor, tem sempre o mesmo rendimento, quntidde totl de tint mrel gst té o o di, em litros, será de: ) 00,0 d) 99,5 b) 05,0 e) 0,5 c) 5,5 6 (UENF-RJ) Dois corredores vão se preprr pr prticipr de um mrton. Um deles começrá correndo 8 m no primeiro di e umentrá, cd di, ess distânci em m; o outro correrá 7 m no primeiro di e umentrá, cd di, ess distânci em m. A preprção será encerrd no di em que eles percorrerem, em quilômetros, mesm distânci. Clcule som, em quilômetros, ds distâncis que serão percorrids pelos dois corredores durnte todos os dis do período de preprção. Corredor : (8 m, 0 m, m,...) PA de rzão e 8 Corredor : (7 m, 8 m, 9 m,...) PA de rzão e b 7 Pr que preprção sej encerrd, devemos ter: n 8 0 (n ) (n ) 9 n 0 Portnto, no 0 o di. Distânci percorrid pelo corredor : ( 8 0 6) m 0 Distânci percorrid pelo corredor : ( 7 0 6) 90 ' 5 m 0 Logo, som ds distâncis será: 0 0 δ m b n A P A P O círculo centrl pintdo de preto tem áre igul : P πr P π 9 P π m Pr pintr π m gst-se 0,5 L de tint.

5 7 (UFPI) Os números, x e ( 0 x) formm ness ordem um PG. endo x um número positivo, podemos firmr que: ) x 6 d) x b) x 0 e) x 6 c) x Devemos ter: x 0 x x x 0 x x x 0 xδ 6 ou xφ (não serve) 8 (Unesp-P) Váris tábus iguis estão em um mdeireir. A espessur de cd tábu é 0,5 cm. Form-se um pilh de tábus colocndo-se um tábu n primeir vez e, em cd um ds vezes seguintes, tnts qunts já houverm sido colocds nteriormente. Pilh n vez Pilh n vez Pilh n vez Determine, o finl de 9 desss operções: ) qunts tábus terá pilh; b) ltur, em metros, d pilh. M0 0 (UDEC) Num PG, o o termo é igul, o 5 o termo igul e o 8 o termo é igul 8. Encontre o o e o o termos dess PG. Cso não for possível, justifique. Do enuncido, temos: q 5 q 8 8 q7 8 De e, vem: q q q q q ou q ubstituindo em, vem: q q 9 6 q 9 6 e q e 6, de, vem: (Verddeiro) e q e 6, vem: (Flso) Portnto, n PG 6,,,, 8,,, 8,... 6 e 8. ) A quntidde de tábus n pilh, em função do número de vezes em que se repetiu operção descrit, é dd pel seqüênci ( n ) (,,, 8,...), um PG de rzão. Após non operção, quntidde de tábus n pilh é b) A ltur d pilh será de ,5 8 cm,8 m. 9 (Unicp-PE) Os números que representm, em grus, os ângulos internos de um qudrilátero estão em PG de rzão. Qul o vlor, em grus, do menor dos ângulos internos? (PUC-P) Num PG, diferenç entre o o e o o termo é 9 e diferenç entre o 5 o e o o termo é 576. O o termo d progressão é: ) b) c) 6 d) 8 e) ejm ε, ψ, υ e τ os ângulos internos do qudrilátero. Portnto: ε 0 ψ 0 υ 0 τ 60) Como (ε, ψ, υ, τ) é PG de rzão, temos: ε 0 ε 0 ε 0 8ε 60) 5ε 60) ε ) q 9 q q 576 (q ) 9 q (q ) 576 : q 6 Ι q ubstituindo em, vem: ( ) 9 Ι.

6 M0 (Cesesp-PE) Um lg cresce de modo que cd di el cobre um superfície de áre igul o dobro d cobert no di nterior. e ess lg cobre superfície de um lgo em 00 dis, ssinle lterntiv correspondente o número de dis necessários pr que dus lgs d mesm espécie d nterior cubrm superfície do mesmo lgo. ) 50 dis c) 98 dis e) dis b) 5 dis d) 99 dis ej x áre cobert por um lg no o di. Então: x áre cobert no o di x áre cobert no o di 8x áre cobert no o di No 00 o di, áre cobert será: 00 q 99 x Pr dus lgs, teremos: o di: x o di: x o di: 8x. (x, x, 8x,...) PG x q Depois de n dis, esss dus lgs cobrirm um áre de: n q n x 9 n x 9 n Fzendo n 00 x 9 n x 9 99 n 99. (x, x, x, 8x,...) PG Dus lgs levrão 99 dis pr cobrir superfície do lgo. x q ) Clcule distânci percorrid pelo objeto o finl dos 0 primeiros minutos. Constte que, nesse instnte, su distânci o ponto B é inferior metro. b) Constru o gráfico d função definid por f(t) distânci percorrid pelo objeto em t minutos, prtir do instnte t 0. ) Do enuncido, distânci percorrid, em metros, pelo objeto no enésimo minuto é o elemento de um PG cujo primeiro termo é 00 e rzão é. Assim, distânci percorrid o finl dos 0 primeiros minutos é: Λ 799, Logo, su distânci o ponto B é inferior metro. b) A distânci percorrid pós t minutos é: d t 00 t (t 7 Μ) d t t Além disso, do enuncido, velocidde se reduz linermente; então, celerção é constnte em cd período considerdo. Assim, concluímos que P P ; P P ;...; P P ;... são rcos de prábols. 0 t t 0 Logo, o gráfico de f(t) é: t dt d t (m) P P P P 0 0 t (min) (Unifesp-P) Um objeto prte do ponto A, no instnte t 0, em direção o ponto B, percorrendo, cd minuto, metde d distânci que o sepr do ponto B, conforme figur. Considere como sendo de 800 metros distânci entre A e B. 800 m 00 m 50 m 00 m 00 m A A A A A B Desse modo, o finl do primeiro minuto ( o período) ele deverá se encontrr no ponto A ; o finl do segundo minuto ( o período), no ponto A ; o finl do terceiro minuto ( o período), no ponto A, e ssim sucessivmente. uponhmos que velocidde se reduz linermente em cd período considerdo.

7 (FGV-P) x x x ) Resolv equção x ,em 6 6 que o o membro é som dos termos de um PG infinit. b) Num PG infinit, som dos termos de ordem pr é 0, o psso que som dos termos de ordem ímpr é 0. Obtenh o o termo e rzão dess progressão. x x x ) A seqüênci x,,,,... é um PG em que 6 6 x x x x e q. Logo: x x 8 x 5 8 x 0 b) (, q, q, q, q,...) PG infinit 0 o 0 q 0 q ( q ) q 0 o 5 q 0 q 0 q 0... q 0 9 q 0 9( q ) q Fzendo :, vem: q 0( q ) q 0( q ) Em : (MACK-P) N seqüênci de números reis (log x, x,,, log y, y), os termos de ordem ímpr formm um PA e os de ordem pr, um PG. Então é igul : ) PA: (log x,, log y) log x 0 log y PG: (x,, y) xy xy 9 De e, vem: 9 Ι b) c) d) e) log (xy) xy 6 (UnB-DF) N figur o ldo, represent áre do -ésimo qudrdo sombredo, cujo ldo é o dobro do ldo do ( 0 )-ésimo qudrdo, pr,,,... Com bse n figur, julgue os itens que se seguem. ) 56 0 b) 8 00 c) , d) O menor vlor de pr o qul M0 Como os ldos dos qudrdos formm um PG de rzão, s áres formm um PG de rzão. n ( q ) q , , Portnto, o menor vlor de é 5. d) Verddeiro, pois é igul 5 00 c) Verddeiro, pois q 0 9( ) q , Pr que , 00 devemos ter: ) Verddeiro, pois q q 0 00 b) Flso, pois q. 5

8 M0 7 (FGV-P) A figur indic infinitos triângulos isósceles, cujs bses medem, em centímetros, 8,,,,... h d 8... bendo que som d áre dos infinitos triângulos sombredos n figur é igul 5, pode-se firmr que áre do retângulo de ldos h e d é igul : ) 68 d) 5 b) 0 e) 9 c) 6 d (Fuvest-P) Um PA e um PG têm, mbs, o o termo igul, sendo que os seus os termos são estritmente positivos e coincidem. be-se ind que o o termo de PA excede o o termo d PG em. Então, o o termo ds progressões é: ) 0 b) c) d) 6 e) 8 PA: (, 0 r, 0 r,...) PG: (, q, q,...) 0 r q ( 0 r) q ubstituindo em : q (q ) 0 q 8q 0 q q 0 q 0 (não convém) ou q q 9 6 O o termo d PG é 6. q r 0 r q h... d é som dos infinitos termos d PG (8,,,,...). 8 Assim, d d 6. A som ds áres dos infinitos triângulos sombredos é igul à som dos termos d PG h, h, h,.... Dess form, h 7 5 h. Dí, conclui-se que áre do retângulo de ldos h e d é (Cefet-PR) Ns seqüêncis: n log ; log 0, 00; log 79;... b n ; ; ;..., diferenç entre o 0 9 termo de n e o 9 o termo de b n é: ) 756 c) 70 e) 70 b) 70 d) 756 endo log 0; log 0, 00 ; log 79 6, então: n (0,, 6,...) b n,,, r () 7 b 9 b q 8 b b 9 7 (79) 70 PA com 0 e r PG com b e q 9 e 0 (IBMEC-P) O deprtmento de Arqueologi d Universidde de Oxford mntém em su bibliotec um coleção de proximdmente ppiros, todos com mis de 000 nos de idde, cujo conteúdo começou ser desvenddo prtir de 00, utilizndo-se um técnic chmd imgem multiespectrl, desenvolvid pel Ns. e um computdor, munido de um sistem de inteligênci rtificil, conseguir decifrr o conteúdo de cd um desses ppiros, sempre gstndo metde do tempo que precisou pr decifrr o ppiro nterior e, considerndo que o primeiro ppiro sej decifrdo por esse computdor em 0 nos, então tod coleção de ppiros citd será decifrd em: ) proximdmente 0 nos. b) proximdmente 0 nos. c) proximdmente 50 nos. d) proximdmente 80 nos. e) proximdmente 00 nos. A som dos primeiros n termos de um PG de rzão q, q ϑ e o termo é dd por: q n 9 q Com 0, q e n , temos: 0 9 Como Λ 0, temos: Λ 0 9 Λ 0 nos 6

Aulas 1 a 3. Aulas 4 e 5. Revisão Primeiro Semestre 2012 prof. Lessa. 4. (UNIFESP) Se 0 < a < b, racionalizando o denominador, tem-se que

Aulas 1 a 3. Aulas 4 e 5. Revisão Primeiro Semestre 2012 prof. Lessa. 4. (UNIFESP) Se 0 < a < b, racionalizando o denominador, tem-se que Revisão Primeiro Semestre 01 prof. Less Auls 1 1. (ESPM) A metde de vlem, respectivmente: A) 0,6 1 e e 1. Se 1 e 9 e 9 8 e 1, e o triplo de x =, então o vlor de x é: A) 6. (FUVEST) Rcionlizr o denomindor

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

a) -36 b) -18 c) 0 d)18 e) 36 a, na qual n IN- {0} e a 2, 2 aritmética, cujo décimo termo é: a) 94 b) 95 c) 101 d) 104 e) 105

a) -36 b) -18 c) 0 d)18 e) 36 a, na qual n IN- {0} e a 2, 2 aritmética, cujo décimo termo é: a) 94 b) 95 c) 101 d) 104 e) 105 Colégio Snt Mri Exercícios de P.A. e P.G. Professor: Flávio Verdugo Ferreir. (UFBA) A som dos 0 e 0 termos d seqüênci bixo é: 8 n n 8. n ) -6 b) -8 c) 0 d)8 e) 6. (Unifor CE) Considere seqüênci n, 8 Qul

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais

( 3. a) b) c) d) 10 5 e) 10 5

( 3. a) b) c) d) 10 5 e) 10 5 Pré-F 207 Simuldo # 26 de bril de 207 2 Q. (EsS) Em um progressão ritmétic cujo primeiro termo é, 87 e rzão é 0, 004, temos que som dos seus dez primeiros é igul : () 8, 99 () 9, 5674 () 8, 88 (D) 9, 5644

Leia mais

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

facebook/ruilima

facebook/ruilima MATEMÁTICA UFPE ( FASE/008) 01. Sej áre totl d superfície de um cubo, e y, o volume do mesmo cubo. Anlise s firmções seguir, considerndo esss informções. 0-0) Se = 5 então y = 7. 1-1) 6y = 3 -) O gráfico

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

CPV 82% de aprovação na ESPM em 2011

CPV 82% de aprovação na ESPM em 2011 CPV 8% de provção n ESPM em 0 Prov Resolvid ESPM Prov E 0/julho/0 MATEMÁTICA. Considerndo-se que x = 97, y = 907 e z =. xy, o vlor d expressão x + y z é: ) 679 b) 58 c) 7 d) 98 e) 77. Se três empds mis

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere n um número nturl.

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 2

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 2 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Colocm-se qutro cubos de

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere s funções f e

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 1

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 1 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo GABARITO MATEMÁTICA 0 Considere equção

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

"Bem-vindos ao melhor ano de suas vidas #2018"

Bem-vindos ao melhor ano de suas vidas #2018 COLÉGIO SHALOM Ensino Fundmentl 8ª no ( ) 65 Profº: Wesle d Silv Mot Disciplin: Mtemátic Aluno ():. No. Trblho de recuperção Dt: 17 /12/ 2018 "Bem-vindos o melhor no de sus vids #2018" 1) Sobre s proprieddes

Leia mais

15 aulas. Qual o número m ximo de faltas que ele ainda pode ter? (A) 9 (B) 10 (C) 12 (D) 16 (E) 24

15 aulas. Qual o número m ximo de faltas que ele ainda pode ter? (A) 9 (B) 10 (C) 12 (D) 16 (E) 24 Pré-AFA 2017 Simuldo A 28 de junho de 2017 Questão 1 (CFN) Qul é o número nturl que elevdo o qudrdo é igul o seu triplo somdo com 0? (A) 5 (B) 6 (C) 8 (D) 9 Questão 2 (CFN) Sbendo-se que tn(0 ) =, o vlor

Leia mais

Unidade 8 Geometria: circunferência

Unidade 8 Geometria: circunferência Sugestões de tividdes Unidde 8 Geometri: circunferênci 8 MTMÁTI Mtemátic. s dus circunferêncis n figur seguir são tngentes externmente. 3. N figur estão representdos um ângulo inscrito com vértice em P

Leia mais

02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB?

02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB? 0 Num prov de vinte questões, vlendo meio ponto cd um, três questões errds nulm um cert. Qul é not de um luno que errou nove questões em tod ess prov? (A) Qutro (B) Cinco (C) Qutro e meio (D) Cindo e meio

Leia mais

11

11 01 O vlor de 8 6 0,15 é : (A) 8 (B) (C) (E) 6 0 Os números x, y e z são diretmente proporcionis, 9 e 15respectivmente. Sendo que o produto desses números é xyz 960, som será : (A) 5 (B) 8 (C) 6 7 (E) 0

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 07 GABARITO COMENTADO 1) Se o resto d divisão de 47 por x é 7, então x divide 47 7 = 40 D mesm mneir, x divide

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO GABARITO NÍVEL 3 ) C 6) B ) C 6) D ) D ) C 7) B ) D 7) A ) D 3) C 8) B 3) A 8) D 3) D 4) A 9) B 4) C 9) D 4) E 5)

Leia mais

QUESTÃO 01 Seja f : R R uma função definida pela sentença f(x) = 3 0,5 x. A respeito desta função considere as seguintes afirmativas:

QUESTÃO 01 Seja f : R R uma função definida pela sentença f(x) = 3 0,5 x. A respeito desta função considere as seguintes afirmativas: PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JUNHO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO Sej f : R R um

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I 1. A função objetivo é o lucro e é dd por L(x, y) = 30x + 50y. Restrições: x 0

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 9// PROFESSORES: CARIBE E MANUEL O slário bruto mensl de um vendedor é constituído de um prte fi igul R$., mis um comissão de % sobre o

Leia mais

Exercícios. setor Aula 25

Exercícios. setor Aula 25 setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: gerl@pm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

3 : b.. ( ) é igual a: sen. Exponenciação e Logarítmos - PROF HELANO 15/06/15 < 4. 1) Para que valores reais se verifica a sentença

3 : b.. ( ) é igual a: sen. Exponenciação e Logarítmos - PROF HELANO 15/06/15 < 4. 1) Para que valores reais se verifica a sentença Exponencição e Logrítmos - PRO HELO /06/ ) Pr que vlores reis se verific sentenç x x x x x4 < 4 : ) { x / x } [, ] ) { x / x } ], [ ) Se, e c são reis positivos, então simplificndo ) ) 4 log c log c..

Leia mais

Nº de infrações de 1 a 3 de 4 a 6 de 7 a 9 de 10 a 12 de 13 a 15 maior ou igual a 16

Nº de infrações de 1 a 3 de 4 a 6 de 7 a 9 de 10 a 12 de 13 a 15 maior ou igual a 16 MATEMÁTICA 77 Num bolão, sete migos gnhrm vinte e um milhões, sessent e três mil e qurent e dois reis. O prêmio foi dividido em sete prtes iguis. Logo, o que cd um recebeu, em reis, foi: ) 3.009.006,00

Leia mais

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira:

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira: CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 29: Volume. Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo o método

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

QUESTÃO 01. QUESTÃO 02.

QUESTÃO 01. QUESTÃO 02. PROVA DE MATEMÁTICA DO O ANO _ EM DO COLÉGIO ANCHIETA BA. ANO 6 UNIDADE III PRIMEIRA AVALIAÇÃO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. PROFESSORA MARIA ANTÔNIA GOUVEIA. QUESTÃO. Quntos inteiros são soluções

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Uma situação muito comum de função exponencial é aquela em que uma determinada grandeza, que pra um instante t = 0 ela apresenta uma medida y y0

Uma situação muito comum de função exponencial é aquela em que uma determinada grandeza, que pra um instante t = 0 ela apresenta uma medida y y0 FUNÇÃO EXPONENCIAL REPRESENTAÇÃO Atenção y y x x y y : bse x Um situção muito comum de função exponencil é quel em que um determind grndez, que pr um instnte t = el present um medid y y, prtir deste instnte,

Leia mais

Revisão EXAMES FINAIS Data: 2015.

Revisão EXAMES FINAIS Data: 2015. Revisão EXAMES FINAIS Dt: 0. Componente Curriculr: Mtemátic Ano: 8º Turms : 8 A, 8 B e 8 C Professor (): Anelise Bruch DICAS Use s eplicções que form copids no cderno; Use e buse do livro didático, nele

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução: IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e

Leia mais

Prezados Estudantes, Professores de Matemática e Diretores de Escola,

Prezados Estudantes, Professores de Matemática e Diretores de Escola, Prezdos Estudntes, Professores de Mtemátic e Diretores de Escol, Os Problems Semnis são um incentivo mis pr que os estudntes possm se divertir estudndo Mtemátic, o mesmo tempo em que se preprm pr s Competições

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é GEOMETRIA ESPACIAL 1) O número de vértices de um dodecedro formdo por triângulos é () 6 (b) 8 (c) 10 (d) 15 (e) 0 ) O número de digonis de um prism octogonl regulr é () 0 (b) (c) 6 (d) 40 (e) 60 ) (UFRGS)

Leia mais

Simulado EFOMM - Matemática

Simulado EFOMM - Matemática Simuldo EFOMM - Mtemátic 1. Sejm X, Y, Z, W subconjuntos de N tis que: 1. (X Y ) Z = {1,,, },. Y = {5, 6}, Z Y =,. W (X Z) = {7, 8},. X W Z = {, }. Então o conjunto [X (Z W)] [W (Y Z)] é igul (A) {1,,,,

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível

a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível CONHECIMENTOS ESPECÍFICOS 6. A frção irredutível O vlor de A) 8 B) 7 66 8 9 = 6. + b = é solução d equção b 7. Sejm e ynúmeros reis, tis que + y A) 6 B) 7 78 8 88 = 9. O vlor de + y e 8. Sejm e b números

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff NOTA Tipo de Avlição: Mteril de Apoio Disciplin: Mtemátic Turm: Aulão + Professor (): Jefferson Cruz Dt: 24/05/2014 DICAS do Jeff Olhr s lterntivs ntes de resolver s questões, principlmente em questões

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: Nº: Turm: Professor: FÁBIO LUÍS Série: 1ª Dt: / / 01 LISTA DE EXERCÍCIOS TRIGONOMETRIA PARTE I 1 Os ctetos de um triângulo retângulo medem cm e 18cm

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mis Aprov n GV FGV ADM 04/dezembro/016 MATEMÁTICA APLICADA 01. ) Represente grficmente no plno crtesino função: P(t) = t 4t + 10 se t 4 1 t se t > 4 Se função P(t), em centens de reis,

Leia mais

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2 PROV ELBORD PR SER PLICD ÀS TURMS DO O NO DO ENSINO MÉDIO DO COLÉGIO NCHIET-B EM MIO DE. ELBORÇÃO: PROFESSORES OCTMR MRQUES E DRINO CRIBÉ. PROFESSOR MRI NTÔNI C. GOUVEI QUESTÃO. O ldo x do retângulo que

Leia mais

FGE Eletricidade I

FGE Eletricidade I FGE0270 Eletricidde I 2 List de exercícios 1. N figur bixo, s crgs estão loclizds nos vértices de um triângulo equilátero. Pr que vlor de Q (sinl e módulo) o cmpo elétrico resultnte se nul no ponto C,

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 3 SEMELHANÇA. Disciplina: Matemática Professor: Marcello Amadeo Série: 9º ano / EF

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 3 SEMELHANÇA. Disciplina: Matemática Professor: Marcello Amadeo Série: 9º ano / EF INSTITUTO E PLIÇÃO FERNNO RORIGUES SILVEIR isciplin: Mtemátic Professor: Mrcello mdeo Série: 9º no / EF lun(o): Turm: LIST 3 SEMELHNÇ FIGURS SEMELHNTES Em Mtemátic, qundo usmos medids proporcionis pr desenhr

Leia mais

AB AC BC. k PQ PR QR AULA 1 - GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR AULA 1 - GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles AULA - GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Rets prlels cortds por um trnsversl São queles que possuem dois ldos iguis. Ligndo o vértice A o ponto médio d bse BC, germos dois triângulos

Leia mais

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo 57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,

Leia mais

Calculando volumes. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA Acesse: http://fuvestibulr.com.br/ Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de

Leia mais

AULA DE VÉSPERA VESTIBULAR 2019 MATEMÁTICA

AULA DE VÉSPERA VESTIBULAR 2019 MATEMÁTICA AULA DE VÉSPERA VESTIBULAR 09 MATEMÁTICA Prof. Luiz Henrique 0) A figur indic um circunferênci de diâmetro AB 8 cm, um triângulo equilátero ABC, e os pontos D e E pertencentes à circunferênci, com D em

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental Mteril Teórico - Módulo de Rzões e Proporções Proporções e Conceitos Relciondos Sétimo Ano do Ensino Fundmentl Prof. Frncisco Bruno Holnd Prof. Antonio Cminh Muniz Neto Portl OBMEP 1 Introdução N ul nterior,

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

a, pois dois vértices desse triângulo são pontos

a, pois dois vértices desse triângulo são pontos UFJF MÓDULO DO PSM TRÊNO 0-0 REFERÊNC DE CORREÇÃO D PROV DE MTEMÁTC PR O DESENVOLVMENTO E RESPOST DS QUESTÕES, SÓ SERÁ DMTDO USR CNET ESFEROGRÁFC ZUL OU PRET Questão Um empres promoveu um concurso pr que

Leia mais

a n QUESTÃO 01 2 a 1 b Sejam a . Se P = a 4 b 4, então P é um número: e 1 bn 1

a n QUESTÃO 01 2 a 1 b Sejam a . Se P = a 4 b 4, então P é um número: e 1 bn 1 A AVALIAÇÃO ESPECIAL UNIDADE I -0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0 Sejm n n b e bn b n. Se P = b, então P é um número: 0) inteiro

Leia mais

PROGRESSÃO ARITMÉTICA (P.A.)

PROGRESSÃO ARITMÉTICA (P.A.) PROGRESSÃO ARITMÉTICA (P.A.) 0. DEFINIÇÃO: É tod sequênci n qul diferenç entre cd termo, prtir do segundo, e o seu nterior é constnte. Chmmos est constnte de rzão d progressão, e indicmos por r. Exemplos:

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

(B) (A) e o valor desta integral é 9. gabarito: Propriedades da integral Represente geometricamente as integrais para acompanhar o cálculo.

(B) (A) e o valor desta integral é 9. gabarito: Propriedades da integral Represente geometricamente as integrais para acompanhar o cálculo. Cálculo Univrido List numero integrl trcisio@sorlmtemtic.org T. Prcino-Pereir Sorl Mtemátic lun@: 7 de setemro de 7 Cálculo Produzido com L A TEX sis. op. Dein/GNU/Linux www.clculo.sorlmtemtic.org/ Os

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

cpv especializado na espm

cpv especializado na espm 0 espm 05/07/009 cpv especilizdo n espm Mtemátic. O vlor d epressão. + pr = 0 é igul : ), b) c) d) 0 e). + = + = +. ( + ) = =. = ( + ). + Substituindo = 0 = 0,, temos: + 0, +, = = = 0, 0, = +. Sobre o

Leia mais

Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. 8 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. 8 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometri Pln - Prte 3 Prlelogrmos Especiis 8 no E.F. Professores Cleer Assis e Tigo Mirnd Elementos Básicos de Geometri Pln - Prte 3 Prlelogrmos Especiis 1 Exercícios Introdutórios

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

PARTE I. LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (8º ano)

PARTE I. LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (8º ano) PARTE I 1) Em 1940 populção brsileir er de 41 milhões de hbitntes. Em 1950 pssou pr 5 milhões. Clcule o umento populcionl em porcentgem ness décd. 6) Considere o heágono composto por dois retângulos e

Leia mais

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016 Físic III - 4220 Escol Politécnic - 2016 Prov de Recuperção 21 de julho de 2016 Questão 1 A cmd esféric n figur bixo tem um distribuição volumétric de crg dd por b O P ρ(r) = 0 pr r < α/r 2 pr r b 0 pr

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Soluções Nível 3 Ensino Médio

Soluções Nível 3 Ensino Médio 1. (lterntiv D) Cinco volts n prç correspondem 5 = 0 ldos do qudrdo. Sueli ciu qundo fltvm 7 pr completr esse percurso, ou sej, depois de percorrer 5 5 100 98 1 = do trjeto totl. Isto equivle 0 = = + =

Leia mais

Solução da prova da 1 fase OBMEP 2013 Nível 1

Solução da prova da 1 fase OBMEP 2013 Nível 1 Solução d prov d fse OBMEP 0 Nível QUESTÃO Qundo brir fit métric, Don Céli verá o trecho d fit representdo n figur; mnch cinzent corresponde à porção d fit que estv em volt d cintur de Mrt. A medid d cintur

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

CURSO de FÍSICA - Gabarito

CURSO de FÍSICA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 010 e 1 o semestre letivo de 011 CURSO de FÍSICA - Gbrito Verifique se este cderno contém: PROVA DE REDAÇÃO com um propost; INSTRUÇÕES

Leia mais

QUESTÃO 1 ALTERNATIVA D. centímetros.

QUESTÃO 1 ALTERNATIVA D. centímetros. Solução d prov d fse OBMEP 03 Nível 3 QUESTÃO O comprimento d mes é centímetros. 8 7 centímetros; logo, o plmo de Crolin mede 7 QUESTÃO ALTERNATIVA B Observemos que + 0+ + 3, ou sej, som dos lgrismos do

Leia mais

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2 MATRIZES ) (CEFET) Se A, B e C são mtrizes do tipo, e 4, respectivmente, então o produto A.B.C () é mtriz do tipo 4 () é mtriz do tipo 4 (c) é mtriz do tipo 4 (d) é mtriz do tipo 4 (e) não é definido )

Leia mais

Índice TEMA TEMA TEMA TEMA TEMA

Índice TEMA TEMA TEMA TEMA TEMA Índice Resolução de roblems envolvendo triângulos retângulos Teori. Rzões trigonométrics de um ângulo gudo 8 Teori. A clculdor gráfic e s rzões trigonométrics 0 Teori. Resolução de roblems usndo rzões

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

19/12/2017 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 8º ANO TURMAS: A/B 01. RELAÇÃO DO CONTEÚDO 02. ORIENTAÇÕES

19/12/2017 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 8º ANO TURMAS: A/B 01. RELAÇÃO DO CONTEÚDO 02. ORIENTAÇÕES DISCIPLINA: MATEMÁTICA PROFESSORA: PATRICIA MEIRELES 9//07 VALOR: 0,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 8º ANO TURMAS: A/B ALUNO (A): 0. RELAÇÃO DO CONTEÚDO Nº:. Operções com polinômios.. Produtos

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B Integris de Linh âmpus Frncisco Beltrão Disciplin: álculo Diferencil e Integrl 3 Prof. Dr. Jons Jocir Rdtke Integris de Linh O conceito de um integrl de linh é um generlizção simples e nturl de um integrl

Leia mais

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido.

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido. CÁLCULO I Aul n o 3: Comprimento de Arco. Trblho. Pressão e Forç Hidrostátic. Objetivos d Aul Denir comprimento de rco; Denir o trblho relizdo por um forç vriável; Denir pressão e forç exercids por um

Leia mais

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017 Físic - 4323203 Escol Politécnic - 2017 GABARTO DA P2 25 de mio de 2017 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio. A esfer e csc esféric são concêntrics

Leia mais

Prof. Ranildo LOPES https://ueedgartito.wordpress.com 1

Prof. Ranildo LOPES https://ueedgartito.wordpress.com 1 Prof. Rnildo LOPES https://ueedgrtito.wordpress.com REVISÃO DE MATEMÁTICA ENEM / PROVA BRASIL ALUNO (A: Nº.PROF. RANILDO LOPES 9ª List de Eercícios Equção e Função do º e º gru Equção do º Gru Resolv s

Leia mais

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P1 DE EETROMAGNETISMO 11.4.11 segund-feir Nome : Assintur: Mtrícul: Turm: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁCUOS EXPÍCITOS. Não é permitido destcr folhs d prov Questão Vlor

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

PROFESSOR: EQUIPE DE MATEMÁTICA

PROFESSOR: EQUIPE DE MATEMÁTICA PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES MATEMÁTICA ª SÉRIE ENSINO MÉDIO ============================================================================================= Questões de Vestibulr: Polinômios

Leia mais

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2.

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2. Mtemátic Aotno-se os vlores log = 0,30 e log 3 = 0,48, riz equção x = 60 vle proximmente: ), b),8 c) 4 ),4 e),67 x = 60 log x = log 60 x. log = log (. 3. ) x = x = log + log 3 + log log 0 log + log 3 +

Leia mais

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale Colegio Nvl 005 01) O lgoritmo cim foi utilizdo pr o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vle (A) 400 (B) 300 (C) 00 (D) 180 (E) 160 Resolvendo: Temos que E 40 C E C 40

Leia mais

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág.

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág. António: c ; Diogo: ( ) i e ; Rit: e c Pág Se s firmções dos três migos são verddeirs, firmção do António é verddeir, pelo que proposição c é verddeir e, consequentemente, proposição c é fls Por outro

Leia mais

Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone:   PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa Nome: N.º: endereço: dt: Telefone: E-mil: Colégio PARA QUEM CURSA A SÉRIE DO ENSINO MÉDIO EM 05 Disciplin: MTeMÁTiC Prov: desfio not: QUESTÃO 6 O Dr. Mni Aco not os números trvés de um código especil.

Leia mais

Universidade Federal de Rio de Janeiro

Universidade Federal de Rio de Janeiro Universidde Federl de Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Prof. Jime E. Muñoz River river@im.ufrj.r ttp//www.im.ufrj.r/ river Grito d Primeir Prov de Cálculo I Rio de Jneiro

Leia mais