Qualidade de serviço. Protocolo IPv6

Tamanho: px
Começar a partir da página:

Download "Qualidade de serviço. Protocolo IPv6"

Transcrição

1 Qualidade de serviço. Protocolo IPv6 Apresentar a nova forma de endereçamento lógico, o endereço IP versão 6 (IPv6). No começo da década de 1990, a IETF começou o estudo para desenvolver o sucessor do protocolo IPv4. O motivo básico foi a limitação crescente da capacidade de endereçamento do sistema atual, com novas sub-redes e nos IP sendo anexados à internet a uma alta velocidade. Embora os recursos da CIDR e a NAT possam ser utilizados por mais algum tempo, a mudança é uma necessidade. No IPv4, o campo do cabeçalho reservado para o endereçamento possui 32 bits. Este tamanho possibilita um máximo de (2 32 ) endereços distintos. A época de seu desenvolvimento, esta quantidade era considerada suficiente para identificar todos os computadores na rede e suportar o surgimento de novas sub-redes. No entanto, com o rápido crescimento da Internet, surgiu o problema da escassez dos endereços IPv4, motivando a a criação de uma nova geração do protocolo IP. O IPv6 possui um espaço para endereçamento de 128 bits, sendo possível obter endereços (2 128 ). Este valor representa aproximadamente 79 octilhões (7, ) de vezes a quantidade de endereços IPv4 e representa, também, mais de 56 octilhões (5, ) de endereços por ser humano na Terra, considerando-se a população estimada em 6 bilhões de habitantes. Os projetistas do protocolo IP, agora na versão 6, incluíram novos recursos a partir da versão 4. Alguns dos principais objetivos: Aumentar a capacidade de endereçamento. Diminuir o tamanho das tabelas de roteamento. Simplificar o protocolo. Oferecer mais segurança (autenticação e privacidade). Oferecer maior importância ao tipo de serviço. Suportar multidifusão.suportar a portabilidade do endereço. Permitir a coexistência entre os protocolos novos e antigos. Para obter um protocolo que atenda a todos esses requisitos, a IETF contou com a participação de interessados, resultando na elaboração da RFC O IETF atribui à revisão o número de versão 6, que inicialmente chamava-se IPng IP The next generation. O protocolo IPv6 proposto mantém muitas das características do IPv4. Apesar das semelhanças conceituais, o IPv6 muda a maior parte dos detalhes do protocolo, por exemplo, utiliza endereços maiores e

2 acrescenta novos recursos. Algumas das mudanças implementados no IPv6. Endereços maiores com 128 bits (16 Bytes). Hierarquia de endereço estendida utiliza espaço de endereço maior para criar níveis adicionais de hierarquia de endereçamento. Formato de cabeçalho flexível Utiliza um novo formato de datagrama. Provisão para extensão de protocolo protocolo adaptável a novos hardwares de rede e novas aplicações. Capacidade de endereçamento expandida o IPv6 utiliza 128 bits, em vez dos 32 bits do IPv4. Cabeçalho aprimorado de 40 Bytes o cabeçalho com 40 bytes permite um processamento mais veloz do datagrama IP. Rotulação de fluxo e prioridade já prevê a possível necessidade de poder diferenciar os fluxos. IPv6 não é compatível com o IPv4, mas é compatível com todos os outros protocolos auxiliares da internet, incluindo TCP, UDP, ICMP, IGMP, OSPF, BGP e DNS, apesar de algumas vezes serem necessárias pequenas modificações. O segundo aperfeiçoamento importante no IPv6 é a simplificação do cabeçalho. Ele contém apenas sete campos (contra os 13 do IPv4). Essa mudança permite aos roteadores processarem os pacotes com mais rapidez e, dessa forma, melhorar o throughput e o retardo. Também voltaremos a descrever o cabeçalho em breve. A terceira mudança importante foi o melhor suporte para as opções oferecidas. Esse recurso diminui o tempo de processamento de pacotes. Uma quarta área em que o IPv6 representa um grande avanço é a segurança. A autenticação e a privacidade são recursos importantes do novo IP. Por fim, foi dada maior atenção à qualidade de serviço. Cabeçalho IPv6 Versão (Version) Classe do Trafego (Traffic Class) Tamanho dos Dados (Payload Lenght) Tempo de Vida (TTL) Protocolo (Protocol) Identificador de Fluxo (Flow Label) Próximo Cabeçalho (Next Header) Limite de Encaminhamento Soma de Verificação do Cabeçalho (Checksum) Endereço de Origem (Source Address) Endereço de Destino (Destination Address) Versão esse campo de 4 bits identifica o número da versão do IP.

3 Classe de tráfego esse campo de 8 bits tem a função semelhante à do campo TOS. Rótulo de fluxo é usado para identificar um fluxo de datagramas. Comprimento da carga útil esse valor de 16 bits dá o numero de bytes no datagrama IPv6, que se segue ao pacote do cabeçalho, que tem tamanho fixo de 40 Bytes. Próximo cabeçalho esse campo identifica o protocolo ao qual o conteúdo (campo de dados) desse datagrama será entregue. Limite de encaminhamentos a cada passagem por um roteador é decrementado. Quando a contagem chegar a zero, o datagrama será descartado.endereços de fonte e de destino os vários formatos do endereço de 128 bits. Dados essa é a parte da carga útil do datagrama IPv6. Tipos de endereçamento no IPv6 Existem no IPv6 tipos especiais de endereços: Unicast este tipo de endereço identifica uma única interface, de modo que um pacote enviado a um endereço unicast é entregue a uma única interface; Multicast também identifica um conjunto de interfaces, entretanto, um pacote enviado a um endereço multicast é entregue a todas as interfaces associadas a esse endereço. Um endereço multicast é utilizado em comunicações de um-para-muitos. Anycast identifica um conjunto de interfaces. Um pacote encaminhado a um endereço anycast é entregue a interface pertencente a este conjunto mais próxima da origem (de acordo com distância medida pelos protocolos de roteamento). Um endereço anycast é utilizado em comunicações de um-para-umde-muitos. Representação do IPv6 A representação dos endereços IPv6, divide o endereço em oito grupos de 16 bits, separando-os por :, escritos com dígitos hexadecimais (0-F). Por exemplo: 2001:0DB8:AD1F:25E2:CADE:CAFE:F0CA:84C1 É permitido omitir os zeros a esquerda de cada bloco de 16 bits, além de substituir uma sequência longa de zeros por ::. Por exemplo, o endereço 2001:0DB8:0000:0000:130F:0000:0000:140B pode ser escrito como 2001:DB8:0:0:130F::140B ou 2001:DB8::130F:0:0:140B. A abreviação do grupo de zeros só pode ser realizada uma única vez. Esta abreviação pode ser feita também no fim ou no início do endereço, como ocorre em 2001:DB8:0:54:0:0:0:0 que pode ser escrito da forma 2001:DB8:0:54::. Outra representação importante é a dos prefixos de rede. Em endereços IPv6 ela continua sendo

4 escrita do mesmo modo que no IPv4, utilizando a notação CIDR. O exemplo de prefixo de sub-rede a seguir indica que dos 128 bits do endereço, 64 bits são utilizados para identificar a sub-rede. Prefixo 2001:db8:3003:2::/64 Prefixo global 2001:db8::/32 ID da sub-rede 3003:2 Esta representação também possibilita a agregação dos endereços de forma hierárquica, identificando a topologia da rede através de parâmetros como posição geográfica, provedor de acesso, identificação da rede e divisão da sub-rede. Endereços Especiais Existem alguns endereços IPv6 especiais utilizados para fins específicos: Endereço Não-Especificado (Unspecified): é representado pelo endereço 0:0:0:0:0:0:0:0 ou ::0 (equivalente ao endereço IPv4 unspecified ). Ele nunca deve ser atribuído a nenhum nó, indicando apenas a ausência de um endereço. Ele pode, por exemplo, ser utilizado no campo Endereço de Origem de um pacote IPv6 enviado por um host durante o processo de inicialização, antes que este tenha seu endereço exclusivo determinado. O endereço unspecified não deve ser utilizado como endereço de destino de pacotes IPv6; Endereço Loopback: representado pelo endereço unicast 0:0:0:0:0:0:0:1 ou ::1 (equivalente ao endereço IPv4 loopback ). Este endereço é utilizado para referenciar a própria máquina, sendo muito utilizado para teste internos. Este tipo de endereço não deve ser atribuído a nenhuma interface física, nem usado como endereço de origem em pacotes IPv6 enviados para outros nós. Além disso, um pacote IPv6 com um endereço loopback como destino não pode ser enviado por um roteador IPv6, e caso um pacote recebido em uma interface possua um endereço loopback como destino, este deve ser descartado; Endereços IPv4-mapeado: representado por 0:0:0:0:0:FFFF:wxyz ou ::FFFF:wxyz, é usado para mapear um endereço IPv4 em um endereço IPv6 de 128-bit, onde wxyz representa os 32 bits do endereço IPv4, utilizando dígitos decimais. É aplicado em técnicas de transição para que nós IPv6 e IPv4 se comuniquem. Ex. ::FFFF: Algumas faixas de endereços também são reservadas para uso específicos: 2002::/16: prefixo utilizado no mecanismo de transição 6to4; 2001:0000::/32: prefixo utilizado no mecanismo de transição TEREDO; 2001:db8::/32: prefixo utilizado para representar endereços IPv6 em textos e documentações.

5 Funcionalidades Básicas NDP (Neighbor Discovery Protocol) O protocolo de descoberta de vizinhança foi desenvolvido sob a finalidade de resolver os problemas de interação entre nós vizinhos em uma rede. Para isso ele atua sobre dois aspectos primordiais na comunicação IPv6, a autoconfiguração de nós e a transmissão de pacotes.no caso da autoconfiguração de nós, o protocolo fornece suporte para a realização de três funcionalidades: Parameter Discovery: atua na descoberta por um nó de informações sobre o enlace e sobre a Internet. Address Autoconfiguration: trabalha com a autoconfiguração de endereços nas interfaces de um nó. Duplicate Address Detection: utilizado para descobrir se o endereço que se deseja atribuir a uma interface já está sendo utilizado por um outro nó na rede. Já no caso da transmissão de pacotes entre nós, o suporte é dado para a realização de seis funcionalidades: Router Discovery: trabalha com a descoberta de roteadores pertencentes ao enlace. Prefix Discovery: implementa a descoberta de prefixos de redes do enlace, cuja a finalidade é decidir para onde os pacotes serão direcionados numa comunicação. Address Resolution: descobre o endereço fisico através de um endereço lógico IPv6. Neighbor Unreachability Detection: permite que os nós descubram se um vizinho é ou se continua alcançavel, uma vez que problemas podem acontecer tanto nos nós como na rede. Redirect: permite ao roteador informar ao nó uma rota melhor ao ser utilizada para enviar pacotes a determinado destino. Next-Hop Determination: algoritmo para mapear um endereço IP de destino em um endereço IP de um vizinho para onde o trafego deve ser enviado. Mensagens Router Solicitation Os roteadores tem a necessidade, por um nó, de informações (como rotas, MTU, Hop Limit e outras) que estão dispostas no roteador. Regularmente o roteador envia a todos os nós do enlace esses dados, contudo, esse intervalo pode ser muito longo impedindo o nó de estabelecer alguma comunicação. Essa mensagem serve para solicitar ao roteador que responda rapidamente o pedido do dispositivo. Router Advertisement A mensagem Router Advertisement é enviada periodicamente ou em resposta à mensagem Router Solicitation por um roteador para anunciar sua presença no enlace. Neighbor Solicitation Message Esta mensagem é utilizada para suprir três necessidades basicas de comunicação em redes IPV6. A primeira consiste na descoberta de um endereço físico associado a um endereço lógico. A segunda consiste no teste de acessibilidade de nós vizinhos no enlace. A terceira é sobre a detecção de endereços IPv6 duplicados na vizinhança. Neighbor Advertisement A mensagem serve para anunciar a mudança de alguma caracteristica do dispositivo na rede de maneira rápida.

6 Redirect A mensagem Redirect é enviada por roteadores para informar ao nó solicitante de uma comunicação, uma melhor opção de caminho para ser utilizada. Transição IPv4 para IPv6 O IPv6 foi projetado para ser implantado gradualmente. Portanto e possível classificar as técnicas de transição em: Pilha dupla: consiste na convivência do IPv4 e do IPv6 nos mesmos equipamentos, de forma nativa, simultâneamente. Essa técnica é a técnica padrão escolhida para a transição para IPv6 na Internet e deve ser usada sempre que possível. Túneis: Permitem que diferentes redes IPv4 comuniquem-se através de uma rede IPv6, ou vice-versa. Tradução: Permitem que equipamentos usando IPv6 comuniquem-se com outros que usam IPv4, por meio da conversão dos pacotes. As técnicas de tradução podem ser statefulou stateless. Técnicas stateful são aquelas em que é necessário manter tabelas de estado com informações sobre os endereços ou pacotes para processá-los. Nas técnicas stateless não é necessário guardar informações, cada pacote é tratado de forma independente. De forma geral técnicas stateful são mais caras: gastam mais CPU e memória, por isso não escalam bem. Sempre que possível deve-se dar preferência a técnicas stateless.

7

8 Transição de IPv4 para IPv6 Desempenho e qualidade de serviço A QoS (Qualidade de Serviço) é garantida na rede, através dos componentes e equipamentos utilizados. Estão definidos atualmente dois modelos que são: Serviços Integrados (IntServ): orientado para o fornecimento de QoS por fluxo (aplicações individuais), sendo normalmente associado ao protocolo RSVP (Resource ReSerVation Protocol); Serviços Diferenciados(DiffServ): orientado para o fornecimento de QoS em classes de serviço ou fluxos de tráfego agregado. Serviços Integrados Este modelo é orientado para o suporte de QoS a fluxos individuais de pacotes e baseia-se no pressuposto de que, para atingir este objetivo, é necessário que os roteadores possuam a capacidade de reservar recursos, requer também que os mesmos mantenham a informação do estado de cada fluxo. Neste modelosão propostos duas classes de serviço: Garanteed of Service aplicações que requerem que o atraso dos pacotes não exceda um valor prédefinido; Controlled-Load Service aplicações tolerantes e que se adaptam a perdas ocasionais de pacotes. O modelo requer um conjunto de funções para suportar QoS, controlar o congestionamento e partilhar largura de banda por várias classes de tráfego. Ele possui sérias limitações, devido ao facto da reserva de recursos ser orientada a fluxos individuais, o que implica: necessidade de manutenção e atualização periódica da informação de estado por fluxo em cada roteador; necessidade de classificar, policiar e escalonar pacotes por fluxo; necessidade de invocar o controle de admissão para cada pedido de reserva de recursos. Serviços Diferenciados O DiffServ (ouserviços diferenciados) é um mecanismo de QoS que possibilita o controle de agregados de fluxos. No DiffServ as reservas de recursos são realizadas para agregações denominadas de BA (Behavior Aggregate). As redes que implementam serviços diferenciadossão denominadas de Domínios de Serviços Diferenciados (DS). Um domínio é composto por um conjunto de nós que compartilham a mesma política de serviços. Os domínios DS negociam entre si contratos de serviço que visam o fornecimento de garantias mínimas de QoS para as aplicações. Todos os pacotes que circulam entre domínios são inspecionados nos roteadores periféricos para verificar a sua conformidade com os contratos. Assim, na fronteira do domínio DS, os pacotes poderão ser classificados e condicionados (marcados, policiados ou limitados). No centro da rede (DS), os roteadores simplesmente encaminham os pacotes para os seus destinos, oferecendo algumas garantias de qualidade de serviço a determinados pacotes. O formato dos pacotes IPv6

9 foi especialmente definido de forma a possibilitar uma manipulação eficiente pelos roteadores. Os fatores que permitem um aumento no desempenho são: Diminuição de campos no cabeçalho; O campo flow label encontra-se localizado antes do endereço (no caso da utilização deflow routing, a rota é calculada apenas uma vez); O processamento eficaz dos pacotes permite um encaminhamento mais rápido e redução dos atrasos nas filas. Os Campos de QoS no cabeçalho IPv6 Classe de Tráfico Consiste num campo de 8 bits que distingue pacotes de diferentes classes e prioridades; Fornece as mesmas funcionalidades que o campo do cabeçalho IPv4. Rótulo de Fluxo Consiste num campo que 20 bits que identifica os pacotes num fluxo (mesma origem e destino), de forma a que estes possam ser tratados da mesma maneira; Este campo é selecionado pela origem e nunca é alterado na rede; Os pacotes não necessitam de ser inspecionados e classificados constantemente; A fragmentação ou codificação deixa de ser um problema como no IPv4. Quiz 1 A principal razão para a criação de uma nova geração de endereços lógicos o IPv6 é: Necessidade de substituir notação decimal por notação hexadecimal. Necessidade de substituir o separador de pontos para dois pontos. Esgotamento dos endereços válidos em IPv4.

10 dvencimento da validade dos endereços IPv4. Referências TANENBAUM, A. S. Redes de Computadores. 4.ed. Rio de Janeiro: Campus, 2003.

18/05/2014. Problemas atuais com o IPv4

18/05/2014. Problemas atuais com o IPv4 Problemas atuais com o IPv4 Fundamentos de Redes de Computadores Prof. Marcel Santos Silva Falhas de segurança: A maioria dos ataques contra computadores hoje na Internet só é possível devido a falhas

Leia mais

A Internet e o TCP/IP

A Internet e o TCP/IP A Internet e o TCP/IP 1969 Início da ARPANET 1981 Definição do IPv4 na RFC 791 1983 ARPANET adota o TCP/IP 1990 Primeiros estudos sobre o esgotamento dos endereços 1993 Internet passa a ser explorada comercialmente

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores CAMADA DE REDE DHCP NAT IPv6 Slide 1 Protocolo DHCP Protocolo de Configuração Dinâmica de Hospedeiros (Dynamic Host Configuration Protocol DHCP), RFC 2131; Obtenção de endereço de

Leia mais

Projeto e Instalação de Servidores IPv6. Prof.: Roberto Franciscatto

Projeto e Instalação de Servidores IPv6. Prof.: Roberto Franciscatto Projeto e Instalação de Servidores IPv6 Prof.: Roberto Franciscatto Introdução Problema Escassez de endereços IPs disponíveis Algumas empresas são detentoras de faixas de endereços classe A inteiras Introdução

Leia mais

PROTOCOLO IP O esgotamento dos endereços IP.

PROTOCOLO IP O esgotamento dos endereços IP. 1 PROTOCOLO IP O IP é o protocolo mais importante na Internet. Ele é quem define as regras através das quais as informações fluem na rede mundial. Uma das principais regras diz que: Cada computador deve

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Prof. Marcelo Gonçalves Rubinstein Programa de Pós-Graduação em Engenharia Eletrônica Faculdade de Engenharia Universidade do Estado do Rio de Janeiro Ementa Introdução a Redes de

Leia mais

Capítulo 9 - Conjunto de Protocolos TCP/IP e Endereçamento. Associação dos Instrutores NetAcademy - Julho de 2007 - Página

Capítulo 9 - Conjunto de Protocolos TCP/IP e Endereçamento. Associação dos Instrutores NetAcademy - Julho de 2007 - Página Capítulo 9 - Conjunto de Protocolos TCP/IP e Endereçamento IP 1 História e Futuro do TCP/IP O modelo de referência TCP/IP foi desenvolvido pelo Departamento de Defesa dos Estados Unidos (DoD). O DoD exigia

Leia mais

Serviço de datagrama não confiável Endereçamento hierárquico. Facilidade de fragmentação e remontagem de pacotes

Serviço de datagrama não confiável Endereçamento hierárquico. Facilidade de fragmentação e remontagem de pacotes IP Os endereços IP são números com 32 bits, normalmente escritos como quatro octetos (em decimal), por exemplo 128.6.4.7. A primeira parte do endereço identifica uma rede especifica na interrede, a segunda

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Camada de Rede Slide 1 Endereçamento IPv4 Tem comprimento de 32bits (4 bytes); São escritos em notação decimal separados por ponto; Cada interface de um sistema conectado a internet

Leia mais

Visão geral da arquitetura do roteador

Visão geral da arquitetura do roteador Visão geral da arquitetura do roteador Duas funções-chave do roteador: Executar algoritmos/protocolos (RIP, OSPF, BGP) Comutar os datagramas do link de entrada para o link de saída 1 Funções da porta de

Leia mais

** Distance Vector - Trabalha com a métrica de Salto(HOP),. O protocolo que implementa o Distance Vector é o RIP.!

** Distance Vector - Trabalha com a métrica de Salto(HOP),. O protocolo que implementa o Distance Vector é o RIP.! Laboratório wireshark Número de sequencia: syn syn ack ack Cisco Packet Tracer Roteador trabalha em dois modos de operação: - Modo Normal - símbolo > - Modo Root - símbolo # ##################################################################

Leia mais

Arquitetura TCP/IP. Parte VI Entrega de pacotes sem conexão (IP) Fabrízzio Alphonsus A. M. N. Soares

Arquitetura TCP/IP. Parte VI Entrega de pacotes sem conexão (IP) Fabrízzio Alphonsus A. M. N. Soares Arquitetura TCP/IP Parte VI Entrega de pacotes sem conexão (IP) Fabrízzio Alphonsus A. M. N. Soares Tópicos Conceitos Pacote (ou datagrama) IP Formato Campos do cabeçalho Encapsulamento Fragmentação e

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Redes de Computadores Nível de Rede Redes de Computadores 2 1 Nível de Rede Internet Nível de Rede na Internet O ambiente inter-redes: hosts conectados a redes redes interligam-se

Leia mais

Endereçamento. Um endereço IPv4 é formado por 32 bits. 2 32 = 4.294.967.296. Um endereço IPv6 é formado por 128 bits.

Endereçamento. Um endereço IPv4 é formado por 32 bits. 2 32 = 4.294.967.296. Um endereço IPv6 é formado por 128 bits. Um endereço IPv4 é formado por 32 bits. 2 32 = 4.294.967.296 Um endereço IPv6 é formado por 128 bits. 2 128 = 340.282.366.920.938.463.463.374.607.431.768.211.456 ~ 48 octilhões (5,6x10 28 ) de endereços

Leia mais

Endereço IP Privado. Endereçamento IP. IP Protocolo da Internet. Protocolos da. Camada de Inter-Rede (Internet)

Endereço IP Privado. Endereçamento IP. IP Protocolo da Internet. Protocolos da. Camada de Inter-Rede (Internet) Protocolos da Camada de Inter- (Internet) IP Protocolo da Internet. Não Confiável; Não Orientado à conexão; Trabalha com Datagramas; Roteável; IPv 4 32 bits; IPv 6 128 bits; Divisão por Classes (A,B,C,D,E);

Leia mais

Protocolo IP (Internet Protocol) Características do

Protocolo IP (Internet Protocol) Características do Protocolo IP (Internet Protocol) Características do Protocolo IP Serviço de datagrama não confiável Endereçamento Hierárquico Facilidade de Fragmentação e Remontagem de pacotes Identificação da importância

Leia mais

Veja abaixo um exemplo de um endereço IP de 32 bits: 10000011 01101011 00010000 11001000

Veja abaixo um exemplo de um endereço IP de 32 bits: 10000011 01101011 00010000 11001000 4 Camada de Rede: O papel da camada de rede é transportar pacotes de um hospedeiro remetente a um hospedeiro destinatário. Para fazê-lo, duas importantes funções da camada de rede podem ser identificadas:

Leia mais

Protocolo TCP/IP. Protocolo TCP/IP. Protocolo TCP/IP. Protocolo TCP/IP. Conexão de Redes. Protocolo TCP/IP. Arquitetura Internet.

Protocolo TCP/IP. Protocolo TCP/IP. Protocolo TCP/IP. Protocolo TCP/IP. Conexão de Redes. Protocolo TCP/IP. Arquitetura Internet. Origem: Surgiu na década de 60 através da DARPA (para fins militares) - ARPANET. Em 1977 - Unix é projetado para ser o protocolo de comunicação da ARPANET. Em 1980 a ARPANET foi dividida em ARPANET e MILINET.

Leia mais

Endereçamento IP. Figura 1 Estrutura hierárquica do endereço IP

Endereçamento IP. Figura 1 Estrutura hierárquica do endereço IP Endereçamento IP 1. Introdução: A partir da segunda metade dos anos 90, a Internet se tornou uma rede muito diferente daquela existente em sua concepção no início dos anos 80. Hoje, a Internet tornou-se

Leia mais

Endereços Lógicos, Físicos e de Serviço

Endereços Lógicos, Físicos e de Serviço Endereçamento IP O IP é um protocolo da Camada de rede É um endereço lógico único em toda a rede, portanto, quando estamos navegando na Internet estamos utilizando um endereço IP único mundialmente, pois

Leia mais

IPv6. Problema do espaço de endereços do IPv4 Outros problemas abordados

IPv6. Problema do espaço de endereços do IPv4 Outros problemas abordados IPv6 Problema do espaço de endereços do IPv4 Outros problemas abordados IPv6 - formato do datagrama Mudanças mais importantes Capacidade de endereçamento expandida Cabeçalho fixo de 40 octetos Aumentar

Leia mais

A camada de rede. A camada de rede. A camada de rede. 4.1 Introdução. 4.2 O que há dentro de um roteador

A camada de rede. A camada de rede. A camada de rede. 4.1 Introdução. 4.2 O que há dentro de um roteador Redes de computadores e a Internet Capitulo Capítulo A camada de rede.1 Introdução.2 O que há dentro de um roteador.3 IP: Protocolo da Internet Endereçamento IPv. Roteamento.5 Roteamento na Internet (Algoritmos

Leia mais

Regras de funcionamento (Unreliable Delivery, etc.) Método de roteamento (Sem conexão) Formato dos dados em um datagrama

Regras de funcionamento (Unreliable Delivery, etc.) Método de roteamento (Sem conexão) Formato dos dados em um datagrama IP - Internet Protocol Histórico O protocolo internet (IP), definido e aprovado pelo DoD (Departamento de Defesa Americano), foi concebido para uso em sistemas de computação interconectados através de

Leia mais

Camada de Rede. Prof. Leonardo Barreto Campos 1

Camada de Rede. Prof. Leonardo Barreto Campos 1 Camada de Rede Prof. Leonardo Barreto Campos 1 Sumário Introdução; Internet Protocol IP; Fragmentação do Datagrama IP; Endereço IP; Sub-Redes; CIDR Classes Interdomain Routing NAT Network Address Translation

Leia mais

A Camada de Rede. A Camada de Rede

A Camada de Rede. A Camada de Rede Revisão Parte 5 2011 Modelo de Referência TCP/IP Camada de Aplicação Camada de Transporte Camada de Rede Camada de Enlace de Dados Camada de Física Funções Principais 1. Prestar serviços à Camada de Transporte.

Leia mais

Redes de Computadores II INF-3A

Redes de Computadores II INF-3A Redes de Computadores II INF-3A 1 ROTEAMENTO 2 Papel do roteador em uma rede de computadores O Roteador é o responsável por encontrar um caminho entre a rede onde está o computador que enviou os dados

Leia mais

Na Figura a seguir apresento um exemplo de uma "mini-tabela" de roteamento:

Na Figura a seguir apresento um exemplo de uma mini-tabela de roteamento: Tutorial de TCP/IP - Parte 6 - Tabelas de Roteamento Por Júlio Cesar Fabris Battisti Introdução Esta é a sexta parte do Tutorial de TCP/IP. Na Parte 1 tratei dos aspectos básicos do protocolo TCP/IP. Na

Leia mais

A camada de rede do modelo OSI

A camada de rede do modelo OSI A camada de rede do modelo OSI 1 O que faz a camada de rede? (1/2) Esta camada tem como função principal fazer o endereçamento de mensagens. o Estabelece a relação entre um endereço lógico e um endereço

Leia mais

Redes TCP/IP. Prof. M.Sc. Alexandre Fraga de Araújo. alexandref@ifes.edu.br. INSTITUTO FEDERAL DO ESPÍRITO SANTO Campus Cachoeiro de Itapemirim

Redes TCP/IP. Prof. M.Sc. Alexandre Fraga de Araújo. alexandref@ifes.edu.br. INSTITUTO FEDERAL DO ESPÍRITO SANTO Campus Cachoeiro de Itapemirim Redes TCP/IP alexandref@ifes.edu.br Camada de Redes 2 O que acontece na camada de rede Transporta segmentos do hospedeiro transmissor para o receptor Roteador examina campos de cabeçalho em todos os datagramas

Leia mais

Capítulo 5. A camada de rede

Capítulo 5. A camada de rede Capítulo 5 A camada de rede slide slide 1 1 2011 Pearson Prentice Hall. Todos os direitos reservados. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, Pearson Education-Prentice

Leia mais

Aula 6 Modelo de Divisão em Camadas TCP/IP

Aula 6 Modelo de Divisão em Camadas TCP/IP Aula 6 Modelo de Divisão em Camadas TCP/IP Camada Conceitual APLICATIVO TRANSPORTE INTER-REDE INTERFACE DE REDE FÍSICA Unidade de Dados do Protocolo - PDU Mensagem Segmento Datagrama /Pacote Quadro 01010101010100000011110

Leia mais

Aula 4. Pilha de Protocolos TCP/IP:

Aula 4. Pilha de Protocolos TCP/IP: Aula 4 Pilha de Protocolos TCP/IP: Comutação: por circuito / por pacotes Pilha de Protocolos TCP/IP; Endereçamento lógico; Encapsulamento; Camada Internet; Roteamento; Protocolo IP; Classes de endereços

Leia mais

Arquitetura TCP/IP. Parte III Endereçamento IP e roteamento. Fabrízzio Alphonsus A. M. N. Soares

Arquitetura TCP/IP. Parte III Endereçamento IP e roteamento. Fabrízzio Alphonsus A. M. N. Soares Arquitetura TCP/IP Parte III Endereçamento IP e roteamento Fabrízzio Alphonsus A. M. N. Soares Tópicos Formato do endereço Classes de endereços Endereços especiais Sub-rede e máscara VLSM (Variable Length

Leia mais

Redes de Computadores

Redes de Computadores Introdução Inst tituto de Info ormátic ca - UF FRGS Redes de Computadores Internet Protocol version 6 (IPv6) Aula 21 Com crescimento da Internet IPv4 apresenta alguns problemas Esgotamento de endereços

Leia mais

IPv6. César Loureiro. V Workshop do PoP-RS/RNP e Reunião da Rede Tchê

IPv6. César Loureiro. V Workshop do PoP-RS/RNP e Reunião da Rede Tchê IPv6 César Loureiro V Workshop do PoP-RS/RNP e Reunião da Rede Tchê Outubro de 2014 Agenda Esgotamento IPv4 Endereçamento e Funcionalidades do IPv6 Implantação IPv6 IPv6 na Rede Tchê Dicas de Implantação

Leia mais

IP - endereçamento. Endereço IP. Ex.: Identificador de 32 bits para interfaces de roteadores e hospedeiros

IP - endereçamento. Endereço IP. Ex.: Identificador de 32 bits para interfaces de roteadores e hospedeiros Endereço IP Ex.: Identificador de 32 bits para interfaces de roteadores e hospedeiros 223.1.1.1 = 11011111 00000001 00000001 00000001 223 1 1 1 Endereços de interfaces e sub-redes (fonte: Kurose) No ex.,

Leia mais

Redes de Computadores

Redes de Computadores Departamento de Informática UFPE Redes de Computadores Nível de Redes - Exemplos jamel@cin.ufpe.br Nível de Rede na Internet - Datagramas IP Não orientado a conexão, roteamento melhor esforço Não confiável,

Leia mais

Introdução Introduç ão Rede Rede TCP/IP Roteame Rotea nto nto CIDR

Introdução Introduç ão Rede Rede TCP/IP Roteame Rotea nto nto CIDR Introdução as Redes TCP/IP Roteamento com CIDR LAN = Redes de Alcance Local Exemplo: Ethernet II não Comutada Barramento = Broadcast Físico Transmitindo ESCUTANDO ESCUTANDO A quadro B C B A. DADOS CRC

Leia mais

Prof. Rafael Gross. rafael.gross@fatec.sp.gov.br

Prof. Rafael Gross. rafael.gross@fatec.sp.gov.br Prof. Rafael Gross rafael.gross@fatec.sp.gov.br Todo protocolo define um tipo de endereçamento para identificar o computador e a rede. O IP tem um endereço de 32 bits, este endereço traz o ID (identificador)

Leia mais

ICORLI. INSTALAÇÃO, CONFIGURAÇÃO e OPERAÇÃO EM REDES LOCAIS e INTERNET

ICORLI. INSTALAÇÃO, CONFIGURAÇÃO e OPERAÇÃO EM REDES LOCAIS e INTERNET INSTALAÇÃO, CONFIGURAÇÃO e OPERAÇÃO EM REDES LOCAIS e INTERNET 2010/2011 1 Protocolo TCP/IP É um padrão de comunicação entre diferentes computadores e diferentes sistemas operativos. Cada computador deve

Leia mais

PROJETO DE REDES www.projetoderedes.com.br

PROJETO DE REDES www.projetoderedes.com.br PROJETO DE REDES www.projetoderedes.com.br CENTRO UNIVERSITÁRIO DE VOLTA REDONDA UniFOA Curso Tecnológico de Redes de Computadores Disciplina: Redes Convergentes II Professor: José Maurício S. Pinheiro

Leia mais

Redes de Computadores Aula 3. Aleardo Manacero Jr.

Redes de Computadores Aula 3. Aleardo Manacero Jr. Redes de Computadores Aula 3 Aleardo Manacero Jr. O protocolo RM OSI 1 Camada de Rede Forma de ligação Endereçamento de máquinas Controle de rotas Controle de tráfego Forma de ligação Circuito Virtual

Leia mais

Redes de Computadores

Redes de Computadores Introdução Inst tituto de Info ormátic ca - UF FRGS Redes de Computadores Internet Protocol version 6 (IPv6) Aula 19 Com crescimento da Internet IPv4 apresenta alguns problemas Esgotamento de endereços

Leia mais

Exercícios de Revisão Edgard Jamhour. Quarto Bimestre: IPv6 e Mecanismos de Transiçao

Exercícios de Revisão Edgard Jamhour. Quarto Bimestre: IPv6 e Mecanismos de Transiçao Exercícios de Revisão Edgard Jamhour Quarto Bimestre: IPv6 e Mecanismos de Transiçao Questão 1: Indique a qual versão do IP pertence cada uma das características abaixo: ( ) Verifica erros no cabeçalho

Leia mais

Redes de Computadores

Redes de Computadores 1 Elmano R. Cavalcanti Redes de Computadores Camada de Rede elmano@gmail.com facisa-redes@googlegroups.com http://sites.google.com/site/elmano Esta apresentação contém slides fornecidos pela Editora Pearson

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Prof. Macêdo Firmino Camada de Redes Macêdo Firmino (IFRN) Redes de Computadores Junho 2012 1 / 68 Pilha TCP/IP A B M 1 Aplicação Aplicação M 1 Cab M T 1 Transporte Transporte Cab

Leia mais

Fundamentos de Redes de Computadores. IPv6. Prof. Claudemir

Fundamentos de Redes de Computadores. IPv6. Prof. Claudemir Fundamentos de Redes de Computadores IPv6 Prof. Claudemir Implantação do IPv6 Implantação do IPv6 Implantação do IPv6 Implantação do IPv6 RIR Regional Internet Registries (Registrador Regional de Internet)

Leia mais

OS endereços IP v.4 consistem em 4 octetos separados por pontos. Estes endereços foram separados

OS endereços IP v.4 consistem em 4 octetos separados por pontos. Estes endereços foram separados Endereçamento IP V.4 e Roteamento Estático Pedroso 4 de março de 2009 1 Introdução OS endereços IP v.4 consistem em 4 octetos separados por pontos. Estes endereços foram separados em 5 classes, de acordo

Leia mais

Redes de Computadores. Mauro Henrique Mulati

Redes de Computadores. Mauro Henrique Mulati Redes de Computadores Mauro Henrique Mulati Roteiro Roteamento na Internet OSPF BGP IPv6 Revisão MPLS Roteamento na Internet IGP: Interior Gateway Protocol (Protocolo de Gateway Interior) Algoritmo de

Leia mais

Curso: Redes II (Heterogênea e Convergente) Tema da Aula: Características Roteamento

Curso: Redes II (Heterogênea e Convergente) Tema da Aula: Características Roteamento Curso: Redes II (Heterogênea e Convergente) Tema da Aula: Características Roteamento Professor Rene - UNIP 1 Roteamento Dinâmico Perspectiva e histórico Os protocolos de roteamento dinâmico são usados

Leia mais

ADDRESS RESOLUTION PROTOCOL. Thiago de Almeida Correia

ADDRESS RESOLUTION PROTOCOL. Thiago de Almeida Correia ADDRESS RESOLUTION PROTOCOL Thiago de Almeida Correia São Paulo 2011 1. Visão Geral Em uma rede de computadores local, os hosts se enxergam através de dois endereços, sendo um deles o endereço Internet

Leia mais

Endereçamento IP, Sub-redes e Roteamento

Endereçamento IP, Sub-redes e Roteamento Segurança em Redes Prof. Rafael R. Obelheiro Semestre: 2009.1 Endereçamento IP, Sub-redes e Roteamento Endereçamento IP Endereços IP possuem 32 bits, o que possibilita 2 32 = 4.294.967.296 endereços Na

Leia mais

Máscaras de sub-rede. Fórmula

Máscaras de sub-rede. Fórmula Máscaras de sub-rede As identificações de rede e de host em um endereço IP são diferenciadas pelo uso de uma máscara de sub-rede. Cada máscara de sub-rede é um número de 32 bits que usa grupos de bits

Leia mais

Prof. Samuel Henrique Bucke Brito

Prof. Samuel Henrique Bucke Brito - QoS e Engenharia de Tráfego www.labcisco.com.br ::: shbbrito@labcisco.com.br Prof. Samuel Henrique Bucke Brito Introdução Em oposição ao paradigma best-effort (melhor esforço) da Internet, está crescendo

Leia mais

Prefixo a ser comparado Interface 1 0 10 1 111 2 Senão 3

Prefixo a ser comparado Interface 1 0 10 1 111 2 Senão 3 PEL/FEN Redes de Computadores 015/1 Segunda Lista de Exercícios Prof. Marcelo Gonçalves Rubinstein 1) Descreva os principais serviços providos pela camada rede. ) Cite as diferenças entre datagrama e circuito

Leia mais

Foi inicialmente desenvolvido como parte de um

Foi inicialmente desenvolvido como parte de um PROTOCOLO TCP/IP 1 INTRODUCÃO Foi inicialmente desenvolvido como parte de um projeto incentivado pela DARPA; Tinha como objetivo desenvolver tecnologias para que as máquinas interligadas em rede continuassem

Leia mais

Há dois tipos de configurações bidirecionais usados na comunicação em uma rede Ethernet:

Há dois tipos de configurações bidirecionais usados na comunicação em uma rede Ethernet: Comunicação em uma rede Ethernet A comunicação em uma rede local comutada ocorre de três formas: unicast, broadcast e multicast: -Unicast: Comunicação na qual um quadro é enviado de um host e endereçado

Leia mais

Capítulo 10 - Conceitos Básicos de Roteamento e de Sub-redes. Associação dos Instrutores NetAcademy - Julho de 2007 - Página

Capítulo 10 - Conceitos Básicos de Roteamento e de Sub-redes. Associação dos Instrutores NetAcademy - Julho de 2007 - Página Capítulo 10 - Conceitos Básicos de Roteamento e de Sub-redes 1 Protocolos Roteáveis e Roteados Protocolo roteado: permite que o roteador encaminhe dados entre nós de diferentes redes. Endereço de rede:

Leia mais

3) Na configuração de rede, além do endereço IP, é necessário fornecer também uma máscara de subrede válida, conforme o exemplo:

3) Na configuração de rede, além do endereço IP, é necessário fornecer também uma máscara de subrede válida, conforme o exemplo: DIRETORIA ACADÊMICA DE EDUCAÇÃO E TECNOLOGIA COORDENAÇÃO DOS CURSOS DA ÁREA DE INFORMÁTICA! Atividade em sala de aula. 1) A respeito de redes de computadores, protocolos TCP/IP e considerando uma rede

Leia mais

Um sistema de comunicação necessita de um método de identificação de seus computadores. Numa rede TCP/IP, cada computador recebe um

Um sistema de comunicação necessita de um método de identificação de seus computadores. Numa rede TCP/IP, cada computador recebe um Endereçamento IP Um sistema de comunicação necessita de um método de identificação de seus computadores. Numa rede TCP/IP, cada computador recebe um endereço inteiro de 32 bits (endereço IP). Precisa ser

Leia mais

Alan Menk Santos. Redes de Computadores e Telecomunicações. Camada de Rede 21/05/2013. alanmenk@hotmail.com www.sistemasul.com.

Alan Menk Santos. Redes de Computadores e Telecomunicações. Camada de Rede 21/05/2013. alanmenk@hotmail.com www.sistemasul.com. Alan Menk Santos alanmenk@hotmail.com www.sistemasul.com.br/menk Redes de Computadores e Telecomunicações. Camada de Rede Modelo de Referência OSI 1 Camada de Rede: O que veremos. Entender os princípios

Leia mais

1. PRINCIPAIS PROTOCOLOS TCP/IP

1. PRINCIPAIS PROTOCOLOS TCP/IP 1. PRINCIPAIS PROTOCOLOS TCP/IP 1.1 IP - Internet Protocol RFC 791 Esse protocolo foi introduzido na ARPANET no início dos anos 80, e tem sido utilizado juntamente com o TCP desde então. A principal característica

Leia mais

Configuração de Roteadores e Switches CISCO

Configuração de Roteadores e Switches CISCO Configuração de Roteadores e Switches CISCO Introdução ao CISCO IOS Endereçamento IPv6 Módulo - III Professor do Curso de CISCO Prof. Robson Vaamonde, consultor de Infraestrutura de Redes de Computadores

Leia mais

Unidade 2.4 Endereçamento IP

Unidade 2.4 Endereçamento IP Faculdade INED Curso Superior de Tecnologia: Banco de Dados Redes de Computadores Disciplina: Redes de Computadores Prof.: Fernando Hadad Zaidan 1 Unidade 2.4 Endereçamento IP 2 Bibliografia da disciplina

Leia mais

9.5.2. Preparando um esquema de endereçamento de sua rede

9.5.2. Preparando um esquema de endereçamento de sua rede Guia Internet de Conectividade - Cyclades - Endereçamento IP - página 1 9.5. Identificação dos Hosts em uma rede Todo sistema ou host que você quiser conectar em sua rede deve ter uma única identificação

Leia mais

Tecnologia de Redes de Computadores - aula 5

Tecnologia de Redes de Computadores - aula 5 Tecnologia de Redes de Computadores - aula 5 Prof. Celso Rabelo Centro Universitário da Cidade 1 Objetivo 2 3 4 IGPxEGP Vetor de Distância Estado de Enlace Objetivo Objetivo Apresentar o conceito de. Conceito

Leia mais

MÓDULO 7 Modelo OSI. 7.1 Serviços Versus Protocolos

MÓDULO 7 Modelo OSI. 7.1 Serviços Versus Protocolos MÓDULO 7 Modelo OSI A maioria das redes são organizadas como pilhas ou níveis de camadas, umas sobre as outras, sendo feito com o intuito de reduzir a complexidade do projeto da rede. O objetivo de cada

Leia mais

Arquitetura de Rede de Computadores

Arquitetura de Rede de Computadores TCP/IP Roteamento Arquitetura de Rede de Prof. Pedro Neto Aracaju Sergipe - 2011 Ementa da Disciplina 4. Roteamento i. Máscara de Rede ii. Sub-Redes iii. Números Binários e Máscara de Sub-Rede iv. O Roteador

Leia mais

identificar e localizar um ao outro computador pode estar conectado a mais de uma rede mais de um endereço

identificar e localizar um ao outro computador pode estar conectado a mais de uma rede mais de um endereço Endereçamento Endereçamento IP Para que dois sistemas quaisquer comuniquem-se, eles precisam ser capazes de se identificar e localizar um ao outro. Um computador pode estar conectado a mais de uma rede.

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Prof. Marcelo Gonçalves Rubinstein Programa de Pós-Graduação em Engenharia Eletrônica Faculdade de Engenharia Universidade do Estado do Rio de Janeiro Ementa Introdução a Redes de

Leia mais

Redes WAN MPLS. Redes de Longa Distância Prof. Walter Cunha

Redes WAN MPLS. Redes de Longa Distância Prof. Walter Cunha Redes WAN MPLS Redes de Longa Distância Prof. Walter Cunha Vantagens do Multiprotocol Label Switching (MPLS) em relação às redes IP puras: Possibilitar a utilização de switches no roteamento Principalmente

Leia mais

Fundamentos à Redes de Computadores. Prof. Victor Guimarães Pinheiro/victor.tecnologo@gmail.com

Fundamentos à Redes de Computadores. Prof. Victor Guimarães Pinheiro/victor.tecnologo@gmail.com Fundamentos à Redes de Computadores Prof. Victor Guimarães Pinheiro/victor.tecnologo@gmail.com www.victorpinheiro.jimdo.com www.victorpinheiro.jimdo.com CAMADA DE REDE Responsável por: Dividir os pacotes

Leia mais

Capítulo 7 CAMADA DE TRANSPORTE

Capítulo 7 CAMADA DE TRANSPORTE Capítulo 7 CAMADA DE TRANSPORTE SERVIÇO SEM CONEXÃO E SERVIÇO ORIENTADO À CONEXÃO Serviço sem conexão Os pacotes são enviados de uma parte para outra sem necessidade de estabelecimento de conexão Os pacotes

Leia mais

Tabela de roteamento

Tabela de roteamento Existem duas atividades que são básicas a um roteador. São elas: A determinação das melhores rotas Determinar a melhor rota é definir por qual enlace uma determinada mensagem deve ser enviada para chegar

Leia mais

MÓDULO 8 Modelo de Referência TCP/IP

MÓDULO 8 Modelo de Referência TCP/IP MÓDULO 8 Modelo de Referência TCP/IP A internet é conhecida como uma rede pública de comunicação de dados com o controle totalmente descentralizado, utiliza para isso um conjunto de protocolos TCP e IP,

Leia mais

Redes de computadores e a Internet. A camada de rede

Redes de computadores e a Internet. A camada de rede Redes de computadores e a Internet Capitulo Capítulo 4 A camada de rede A camada de rede Objetivos do capítulo: Entender os princípios dos serviços da camada de rede: Roteamento (seleção de caminho) Escalabilidade

Leia mais

Redes Locais. Prof. Luiz Carlos B. Caixeta Ferreira

Redes Locais. Prof. Luiz Carlos B. Caixeta Ferreira Redes Locais. Prof. Luiz Carlos B. Caixeta Ferreira 5. Ethernet 5.1 Introdução 5.2 LLC (Logical Link Control) 5.3 MAC (Media Access Control) 5.4 Sistemas de Endereçamento 5.5 Quadros Ethernet 5.6 Codificação

Leia mais

Capítulo 6 - Protocolos e Roteamento

Capítulo 6 - Protocolos e Roteamento Capítulo 6 - Protocolos e Roteamento Prof. Othon Marcelo Nunes Batista Mestre em Informática 1 de 53 Roteiro (1 / 2) O Que São Protocolos? O TCP/IP Protocolos de Aplicação Protocolos de Transporte Protocolos

Leia mais

Aula-19 NAT, IP Móvel e MPLS. Prof. Dr. S. Motoyama

Aula-19 NAT, IP Móvel e MPLS. Prof. Dr. S. Motoyama Aula-19 NAT, IP Móvel e MPLS Prof. Dr. S. Motoyama 1 NAT Network address translation Resto da Internet 138.76.29.7 10.0.0.4 Rede local (ex.: rede doméstica) 10.0.0/24 10.0.0.1 10.0.0.2 10.0.0.3 Todos os

Leia mais

APOSTILA DE REDES DE COMPUTADORES PARTE - I I

APOSTILA DE REDES DE COMPUTADORES PARTE - I I APOSTILA DE REDES DE COMPUTADORES PARTE - I I 1 Índice 1. INTRODUÇÃO... ERRO! INDICADOR NÃO DEFINIDO. 2. ENDEREÇOS IP... 3 3. ANALISANDO ENDEREÇOS IPV4... 4 4. MÁSCARA DE SUB-REDE... 5 5. IP ESTÁTICO E

Leia mais

Prof. Luís Rodolfo. Unidade III REDES DE COMPUTADORES E TELECOMUNICAÇÃO

Prof. Luís Rodolfo. Unidade III REDES DE COMPUTADORES E TELECOMUNICAÇÃO Prof. Luís Rodolfo Unidade III REDES DE COMPUTADORES E TELECOMUNICAÇÃO Redes de computadores e telecomunicação Objetivos da Unidade III Apresentar as camadas de Transporte (Nível 4) e Rede (Nível 3) do

Leia mais

Arquitetura TCP/IP. Parte V Inicialização e auto-configuração (RARP, BOOTP e DHCP) Fabrízzio Alphonsus A. M. N. Soares

Arquitetura TCP/IP. Parte V Inicialização e auto-configuração (RARP, BOOTP e DHCP) Fabrízzio Alphonsus A. M. N. Soares Arquitetura TCP/IP Parte V Inicialização e auto-configuração (RARP, BOOTP e DHCP) Fabrízzio Alphonsus A. M. N. Soares Tópicos Atribuição de endereço IP RARP (Reverse ARP) BOOTP (BOOTstrap Protocol) DHCP

Leia mais

Fundamentos de Redes de Computadores. Elementos de Redes Locais

Fundamentos de Redes de Computadores. Elementos de Redes Locais Fundamentos de Redes de Computadores Elementos de Redes Locais Contexto Implementação física de uma rede de computadores é feita com o auxílio de equipamentos de interconexão (repetidores, hubs, pontos

Leia mais

Redes de Computadores

Redes de Computadores s de Computadores s de Computadores s de Computadores 2 1 Roteamento como visto cada gateway / host roteia mensagens não há coordenação com outras máquinas Funciona bem para sistemas estáveis e sem erros

Leia mais

Teleprocessamento e Redes (MAB-510) Gabarito da Segunda Lista de Exercícios 01/2010

Teleprocessamento e Redes (MAB-510) Gabarito da Segunda Lista de Exercícios 01/2010 Teleprocessamento e Redes (MAB-510) Gabarito da Segunda Lista de Exercícios 01/2010 Prof. Silvana Rossetto (DCC/IM/UFRJ) 1 13 de julho de 2010 Questões 1. Qual é a diferença fundamental entre um roteador

Leia mais

Qualidade de serviço. Determina o grau de satisfação do usuário em relação a um serviço específico Capacidade da rede de atender a requisitos de

Qualidade de serviço. Determina o grau de satisfação do usuário em relação a um serviço específico Capacidade da rede de atender a requisitos de Qualidade de serviço Determina o grau de satisfação do usuário em relação a um serviço específico Capacidade da rede de atender a requisitos de Vazão Atraso Variação do atraso Erros Outros Qualidade de

Leia mais

Arquitectura de Redes

Arquitectura de Redes Arquitectura de Redes Routing Dinâmico BGP Arq. de Redes - Pedro Brandão - 2004 1 BGP (Border Gateway Protocol) Os protocolos de encaminhamento exteriores foram criados para controlar o crescimento das

Leia mais

Endereçamento IP. Rede 2 Roteador 2 1

Endereçamento IP. Rede 2 Roteador 2 1 O protocolo TCP/IP é roteável, isto é, ele foi criado pensando-se na interligação de diversas redes onde podemos ter diversos caminhos interligando o transmissor e o receptor -, culminando na rede mundial

Leia mais

ESTUDOS REALIZADOS. Camada Física. Redes de Computadores AULA 13 CAMADA DE REDE. Camada Física Camada de Enlace Subcamada de Acesso ao Meio AGORA:

ESTUDOS REALIZADOS. Camada Física. Redes de Computadores AULA 13 CAMADA DE REDE. Camada Física Camada de Enlace Subcamada de Acesso ao Meio AGORA: Redes de Computadores AULA 13 CAMADA DE REDE Profº Alexsandro M. Carneiro Outubro - 2005 ESTUDOS REALIZADOS Camada Física Camada de Enlace Subcamada de Acesso ao Meio AGORA: Camada de Rede Camada Física

Leia mais

Conteúdo. Endereçamento IP Sub-redes VLSM Variable Length Subnetwork Mask CIDR Classless Inter-Domain Routing

Conteúdo. Endereçamento IP Sub-redes VLSM Variable Length Subnetwork Mask CIDR Classless Inter-Domain Routing EndereçamentoIP Conteúdo Endereçamento IP Sub-redes VLSM Variable Length Subnetwork Mask CIDR Classless Inter-Domain Routing Endereçamento IP Serviço de Comunicação Universal Um sistema de comunicação

Leia mais

Redes de Computadores. Protocolo IP

Redes de Computadores. Protocolo IP Redes de Computadores Protocolo IP Sumário! Endereços IP Classes de endereços Tipos de endereços Endereços especiais Máscaras Redes privadas Endereçamento IP dinâmico 2 Esquema de endereçamento IPv4! Endereços

Leia mais

MPLS. Redes de Longa Distância Prof. Walter Cunha

MPLS. Redes de Longa Distância Prof. Walter Cunha Redes de Longa Distância Prof. Walter Cunha Vantagens do Multiprotocol Label Switching (MPLS) em relação às redes IP puras: Possibilitar a utilização de switches no roteamento principalmente em backbones

Leia mais

Centro Tecnológico de Eletroeletrônica César Rodrigues. Atividade Avaliativa

Centro Tecnológico de Eletroeletrônica César Rodrigues. Atividade Avaliativa 1ª Exercícios - REDES LAN/WAN INSTRUTOR: MODALIDADE: TÉCNICO APRENDIZAGEM DATA: Turma: VALOR (em pontos): NOTA: ALUNO (A): 1. Utilize 1 para assinalar os protocolos que são da CAMADA DE REDE e 2 para os

Leia mais

GRUPO 01: Ricardo Melo a9805043@alunos.isec.pt Emanuel Pimentel a9905056@alunos.isec.pt

GRUPO 01: Ricardo Melo a9805043@alunos.isec.pt Emanuel Pimentel a9905056@alunos.isec.pt Licenciatura em Engenharia Informática e de Sistemas CCNA1 Traballho Prátiico IIPv6 Reso ll ução de E n de rr eços GRUPO 01: Ricardo Melo a9805043@alunos.isec.pt Emanuel Pimentel a9905056@alunos.isec.pt

Leia mais