FUNCIONAIS LINEARES: ESPAÇO DUAL E ANULADORES

Tamanho: px
Começar a partir da página:

Download "FUNCIONAIS LINEARES: ESPAÇO DUAL E ANULADORES"

Transcrição

1 FUNCIONAIS LINEARES: ESPAÇO DUAL E ANULADORES Eduardo de Souza Böer - eduardoboer04@gmail.com Universidade Federal de Santa Maria, Campus Camobi, Santa Maria, RS, Brasil Saradia Sturza Della Flora - saradia.flora@ufsm.br Universidade Federal de Santa Maria Campus Camobi, Santa Maria, RS, Brasil Resumo: Neste trabalho, estudamos uma classe especial de transformações lineares, que são os funcionais lineares. Após defini-los e exemplificá-los, tratamos a respeito da noção de espaço dual e provamos alguns resultados. Por fim, trabalhamos com a noção de anuladores e algumas aplicações deste conceito na solução de sistemas lineares homogêneos. Palavras-chave: Funcionais Lineares; Espaço Dual; Anuladores. 1 INTRODUÇÃO Os conceitos estudados e as ferramentas desenvolvidas na Álgebra Linear ocupam papéis de destaque nas diferentes áreas da matemática, dentre as quais podemos citar a Análise Real e as Equações Diferenciais, além de serem importantes em inúmeras aplicações em modelagem, desde o estudo da genética humana até a Teoria do Caos. O interesse no estudo dos funcionais lineares deve-se ao fato de, por exemplo, representarem uma importante ferramenta no estudo de espaços vetoriais de dimensão finita. Além disso, este conceito desempenha um papel importante nas discussões sobre subespaços vetoriais e sistemas de equações lineares homogêneos. Neste trabalho são apresentados alguns resultados estudados a partir de uma pesquisa científica desenvolvida pelos autores, baseada em Hoffman & Kunze (1971) e Ulhoa & Lourenço (2013). Inicialmente, definiremos e exemplificaremos funcionais lineares, pois estes são a base de todo o trabalho. Em seguida, será apresentada a noção de espaço dual e alguns resultados a cerca deste. Na parte final, faremos uso da noção de anuladores para a resolução de sistemas lineares homogêneos. 2 OBJETIVOS O presente trabalho tem por objetivo central apresentar os resultados iniciais estudados pelos autores durante o projeto de pesquisa que desenvolvem. Serão apresentados resultados a respeito de espaço dual e anuladores. Em contra ponto, alguns teoremas relativos a transformações lineares, que serão utilizados em algumas demonstrações, serão apenas mencionados e podem ser encontrados nos anexos. 3 RESULTADOS E DISCUSSÕES No que segue, F denotará um corpo e V um espaço vetorial sobre F. Iniciaremos definindo funcionais lineares que serão nosso principal objeto de estudo. Definição 1: Seja V um espaço vetorial sobre um corpo F. Uma aplicação f : V F, é chamada de funcional linear em V se f(cv 1 + v 2 ) = cf(v 1 ) + f(v 2 ),

2 para todo v 1, v 2 V e c F. Note que um funcional linear é uma transformação linear de V sobre F, ambos vistos como F -espaços vetoriais. Vejamos alguns exemplos. Exemplos: 1) Sejam F um corpo e a 1, a 2,..., a n F. Consideremos a função f : F n F dada por f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n. Note que f é um funcional linear em F n. Mais ainda, todo funcional linear em F n é dessa forma. De fato, considere {e 1, e 2,..., e n } a base canônica de F n. Definindo a j = f(e j ), para j = 1,..., n temos: ( ) n f(x 1, x 2,..., x n ) = f x j e j = n x j f(e j ) = n a j x j. 2) Seja [a, b] um intervalo real fechado e C([a, b]) o espaço de todas as funções reais contínuas em [a, b]. Considere L : C([a, b]) R dada por L(g) = b a g(t)dt, para toda g C([a, b]). Utilizando as propriedades da integral definida, temos que L define um funcional linear em C([a, b]). Agora, seja V um F -espaço vetorial e considere L(V, F ) o conjunto de todos os funcionais lineares em V. Observe que L(V, F ) é um F -espaço vetorial cuja estrutura é dada por: (f + g)(v) = f(v) + g(v) (cf)(v) = cf(v) para todo f, g L(V, F ), v V e c F. O F -espaço vetorial L(V, F ) é chamado de espaço dual de V e é denotado por V. É importante observar que, se V for um espaço vetorial de dimensão finita, então dimv = dimv. De fato, utilizando o Teorema II (anexo), obtemos dimv = dimv dimf = dimv 1 = dimv. O nosso próximo objetivo é encontrar uma base para o espaço V. Consideremos β = {v 1, v 2,..., v n } uma base de V. De acordo com o Teorema I (anexo), para cada i = 1,..., n temos que existe um único funcional linear f i em V, tal que f i (v j ) = δ ij. Dessa forma, a partir de β obtemos um conjunto de n funcionais lineares, em V, distintos {f 1,..., f n }. Mostremos que este conjunto é linearmente independente (L.I.). De fato, considere f = c 1 f c n f n Aplicando em v j, obtemos f(v j ) = c 1 f 1 (v j ) c n f n (v j ) = c 1 δ c i δ i c n δ n = c j Desta forma, se f for o funcional nulo, então f(v j ) = 0 para todo j = 1,..., n, donde segue que c j = 0 para todo j = 1,..., n. Como dimv = n segue, pelo Teorema III (anexo), que β = {f 1,..., f n } é uma base de V. Esta é chamada base dual de β. Teorema 1: Sejam V um F -espaço vetorial de dimensão finita e β = {v 1,..., v n } uma base de V. Então, existe uma única base dual β = {f 1,..., f n } de V tal que f i (v j ) = δ ij. Além disso, para cada vetor v V, temos

3 v = n f i (v)v i (1) e, para cada funcional linear f V, temos que n f = f(v j )f i (2) Demonstração: Vimos que existe uma única base dual β = {f 1, f 2,..., f n } de β. Resta mostrarmos as igualdades Eq.(1) e Eq.(2). Seja f V. Pelos cálculos anteriores temos que f(v j ) = c j. Assim, tomando v V, temos v = n a i v i. Aplicando f j, obtemos f j (v) = n a i f j (v i ) = n a i δ ij = a j. Logo, segue a Eq.(1). Agora tomando f V, podemos escrevê-lo f = n c i f i Aplicando em v j, temos f(v j ) = n c i f i (v j ) = n c i δ ij = c j, donde segue a Eq.(2). E, com isto, está demonstrado o teorema. Note que que f i atribui a cada v V sua i-ésima coordenada na base β. Por isso, f i é chamada de função coordenada. Vejamos um exemplo de como obtermos a base do espaço a partir da base dual. Exemplo: Seja V o espaço vetorial das funções polinomiais de R em R com grau menor ou igual a 2. Consideremos a 1, a 2 e a 3 números reais distintos e, definimos L i (p) = p(a i ), i = 1, 2, 3. Então, L 1, L 2 e L 3 V. Mostremos que {L 1, L 2, L 3 } é L.I. De fato, considere L = c 1 L 1 + c 2 L 2 + c 3 L 3. Se L(p) = 0 para todo p V, então, em particular, aplicando L nas funções polinomiais 1, x, x 2, obtemos c 1 + c 2 + c 3 = 0 a 1 c 1 + a 2 c 2 + a 3 c 3 = 0 a 2 1c 1 + a 2 2c 2 + a 2 3c 3 = 0 Como o determinante da matriz dos coeficiente é não-nulo, pois a 1, a 2, a 3 são distintos, segue que c 1 = c 2 = c 3 = 0. Portanto, β = {L 1, L 2, L 3 } é L.I. e, dessa forma, β é base de V. Agora, encontremos a base β da respectiva dual β. Tal base β = {p 1, p 2, p 3 } deve satisfazer L i (p j ) = p i (t j ) = δ ij. Portanto, basta tomarmos: p 1 (x) = (x a 2)(x a 3 ) (a 1 a 2 )(a 1 a 3 ) ; p 2(x) = (x a 1)(x a 3 ) (a 2 a 1 )(a 2 a 3 ) ; p 3(x) = (x a 1)(x a 2 ) (a 3 a 1 )(a 3 a 2 ). Esta base é interessante, pois de acordo com Eq.(1) temos que para cada p V, p = p(a 1 )p 1 + p(a 2 )p 2 + p(a 3 )p 3. Assim, se os escalares b 1, b 2, b 3 R, existe uma única função polinomial, sobre R, com grau máximo 2 e que satisfaz p(a i ) = b i, i = 1, 2, 3. Tal função polinomial é p = b 1 p 1 + b 2 p 2 + b 3 p 3. Note que esta é uma função polinomial bem conhecida, pois se estendermos de tal modo que i = 1, 2,..., n temos a fórmula de interpolação de Lagrange. Definição 2: Seja V um F -espaço vetorial e S um subconjunto de V. O anulador de S, S 0,é definido como sendo

4 S 0 = {f V ; f(v) = 0, para todo v V }. Note que S 0 é um subespaço de V, enquanto que S pode ser apenas um conjunto de V. Teorema 2: Sejam V um F -espaço vetorial de dimensão finita e W um subespaço de V. Então, dimw + dimw 0 = dimv Demonstração: Sejam n = dimw e α = {v 1,..., v n } uma base de W. Seja m = dimv e tome v n+1,..., v m,vetores em V, tais que β = {v 1,..., v n,..., v m } é base de V. Considere, ainda, β = {f 1,..., f m } a base de V que é a dual de β. Mostremos que γ = {f n+1,..., f m } é a base do anulador W 0. Observe que, f i W 0, pois f i (v j ) = δ ij = 0, se i n + 1 e j n, ou seja, f i (v) = 0, para todo v W. Os funcionais {f n+1,..., f m } são L.I., então resta mostrar que geram W 0. Seja f V. Daí, pelo Teorema 1, f = m f(v i )f i. Então, se f W 0 temos que f(v i ) = 0 para todo i n, e f = m f(v i )f i. Assim, mostramos que se dimw = n e dimv = m, então dimw 0 = m n. n+1 Observe que, pelo Teorema do Núcleo e da Imagem, dimn f = dimv 1, onde N f é o núcleo de um funcional linear f em V. Assim, se dimv = n, então dimn f = n 1. Definição 3: Em um espaço de dimensão finita, um subespaço de dimensão n 1 é chamado de hiperespaço, hiperplano ou subespaço de co-dimensão 1, deste espaço. Corolário 1: Se W é um subespaço de dimensão n de um espaço vetorial V, de dimensão m, então W é a intersecção dos (m n) hiperespaços em V. Demonstração: A demonstração deste corolário segue do Teorema 2. Pela demonstração acima, note que W é o conjunto de vetores v V, tais que f i (v) = 0, i = n+1,..., m, m ou seja, W = N fi. Como cada núcleo é um hiperespaço, segue o corolário. i=n+1 Vejamos, agora, um exemplo de aplicação da noção de anuladores na resolução de sistemas lineares homogêneos. Exemplo: Considere o seguinte sistema linear: x 1 + 2x 2 + 2x 3 + x 4 = 0 2x 2 + x 4 = 0 2x 1 4x 3 + 3x 4 = 0 Definindo os seguintes funcionais lineares em R 4 : f 1 (x 1, x 2, x 3, x 4 ) = x 1 + 2x 2 + 2x 3 + x 4 f 2 (x 1, x 2, x 3, x 4 ) = 2x 2 + x 4 f 3 (x 1, x 2, x 3, x 4 ) = 2x 1 4x 3 + 3x 4 temos que o espaço solução do sistema dado acima é o subespaço anulado por este espaço de funcionais lineares. Podemos encontrá-lo, explicitamente, escalonando a seguinte matriz:

5 donde, temos Portanto, os funcionais lineares , g 1 (x 1, x 2, x 3, x 4 ) = x 1 + 2x 3 g 2 (x 1, x 2, x 3, x 4 ) = x 2 g 3 (x 1, x 2, x 3, x 4 ) = x 4 geram o mesmo subespaço em (R 4 ) e anulam o mesmo subespaço de R 4 que f 1, f 2, f 3. O subespaço anulado por g 1, g 2, g 3 consiste dos vetores v, onde Logo, v = ( 2x 3, 0, x 3, 0). x 1 + 2x 3 = 0 x 2 = 0 x 4 = 0 { x1 = 2x 3 x 2 = x 4 = 0 4 CONSIDERAÇÕES FINAIS Ao término deste trabalho, foi possível constatar a relevância dos resultados apresentados. Por exemplo, as discussões a cerca de espaços vetoriais de dimensão finita tornam-se mais claras utilizando a noção de espaço dual. Além disso, no que diz respeito a solução de sistemas lineares homogêneos é interessante estuda-los sob o ponto de vista dos anuladores. ANEXOS Teorema I: Sejam V um F -espaço vetorial de dimensão finita e {v 1,..., v n } uma base ordenada de V. Sejam W um F -espaço vetorial e u 1,..., u n vetores em W. Então, existe exatamente uma transformação linear T de V em W tal que T (v j ) = u j, para todo j = 1, 2,...n. Teorema II: Sejam V um F -espaço vetorial de dimensão n e W um F -espaço vetorial de dimensão m. Então, o espaço L(V, W ) tem dimensão finita e sua dimensão é igual a dimv dimw = n m. Teorema III: Seja V um F -espaço vetorial de dimensão n. Então, qualquer conjunto com n vetores linearmente independentes gera V. REFERENCIAS HOFFMAN, K.; KUNZE, R. Linear Algebra. New Jersey: Prentice-Hall Inc., ULHOA,F.; LOURENÇO, M. L.Um Curso de Álgebra Linear. São Paulo: Editora da Universidade de São Paulo, 2013.

Parte 2 - Espaços Vetoriais

Parte 2 - Espaços Vetoriais Espaço Vetorial: Parte 2 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado

Leia mais

Aula 25 - Espaços Vetoriais

Aula 25 - Espaços Vetoriais Espaço Vetorial: Aula 25 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado

Leia mais

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita;

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita; META Introduzir os conceitos de base e dimensão de um espaço vetorial. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: distinguir entre espaços vetoriais de dimensão fnita e infinita; determinar

Leia mais

Unidade 7 - Bases e dimensão. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013

Unidade 7 - Bases e dimensão. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 7 - Bases e dimensão A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Nesta unidade introduziremos dois conceitos

Leia mais

No próximo exemplo, veremos um tipo de funcional linear bastante importante.

No próximo exemplo, veremos um tipo de funcional linear bastante importante. UFPR - Universidade Federal do Paraná Departamento de Matemática CM053 - Álgebra Linear II - Notas de aula Prof. José Carlos Eidam Funcionais lineares Nestas notas, estudaremos funcionais lineares sobre

Leia mais

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller ÁLGEBRA LINEAR Base e Dimensão de um Espaço Vetorial Prof. Susie C. Keller Base de um Espaço Vetorial Um conjunto B = {v 1,..., v n } V é uma base do espaço vetorial V se: I) B é LI II) B gera V Base de

Leia mais

Primeira Lista de Álgebra Linear

Primeira Lista de Álgebra Linear Serviço Público Federal Ministério da Educação Universidade Federal Rural do Semi-Árido UFERSA Departamento de Ciências Ambientais DCA Prof. D. Sc. Antonio Ronaldo Gomes Garcia a a Mossoró-RN 18 de agosto

Leia mais

Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática

Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática Capítulo 2 Ortogonalidade e Processo de Gram-Schmidt Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves de Melo Disciplina: Álgebra Linear II Unidade II Aula

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto

Leia mais

6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais):

6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais): a Lista. Sejam u = ( 4 ) v = ( 5) e w = (a b). Encontre a e b tais que (a)w = u + v (b)w = 5v (c)u + w = u v. Represente os vetores acima no plano cartesiano.. Sejam u = (4 ) v = ( 4) e w = (a b c). Encontre

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de (a) 3; (b) 2; (c) 0; (d) 1; (e) 2.

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de (a) 3; (b) 2; (c) 0; (d) 1; (e) 2. MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de 2018 Questão 1. Seja U = [(2, 1, 1), (1, 0, 2)], subespaço vetorial de R 3 e ax + by + z = 0 uma equação de U, isto é U = { (x, y, z)

Leia mais

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 5 - Subespaços vetoriais A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Às vezes, é necessário detectar, dentro

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

Polinômio Mínimo e Operadores Nilpotentes

Polinômio Mínimo e Operadores Nilpotentes Capítulo 9 Polinômio Mínimo e Operadores Nilpotentes Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula

Leia mais

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1

Leia mais

Capítulo 6. Operadores Ortogonais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 6. Operadores Ortogonais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 6 Operadores Ortogonais Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 6: Operadores Ortogonais

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Revisão Básica de Prof. Dr. José Carlos de Souza Junior Universidade Federal de Alfenas 26 de novembro de 2014 Revisão de Definição 1 (Espaço Vetorial) Um conjunto V é um espaço vetorial sobre R, se em

Leia mais

Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 5 Operadores Auto-adjuntos Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 5: Operadores Auto-adjuntos

Leia mais

Primeira prova de Álgebra Linear - 06/05/2011 Prof. - Juliana Coelho

Primeira prova de Álgebra Linear - 06/05/2011 Prof. - Juliana Coelho Primeira prova de Álgebra Linear - 6/5/211 Prof. - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1 (2, pts)

Leia mais

ÁLGEBRA LINEAR I - MAT Determinar se os seguintes conjuntos são linearmente dependente ou linearmente independente (R).

ÁLGEBRA LINEAR I - MAT Determinar se os seguintes conjuntos são linearmente dependente ou linearmente independente (R). UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 3 a Lista de

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO INRODUÇÃO AO ESUDO DA ÁLGEBRA LINERAR CAPÍULO 7 ISOMORFISMO A pergunta inicial que se faz neste capítulo e que o motiva é: dada uma transformação linear : V W é possível definir uma transformação linear

Leia mais

Lista de exercícios para entregar

Lista de exercícios para entregar Lista de exercícios para entregar Nos problemas abaixo apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para

Leia mais

Capítulo 7. Operadores Normais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 7. Operadores Normais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 7 Operadores Normais Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 7: Operadores Normais Meta

Leia mais

(x 1 + iy 1 ) + (x 2 + iy 2 ) = x 1 + x 2 + i(y 1 + y 2 ) a(x + iy) = ax + i(ay)

(x 1 + iy 1 ) + (x 2 + iy 2 ) = x 1 + x 2 + i(y 1 + y 2 ) a(x + iy) = ax + i(ay) Espaços Vetoriais Definição. Um espaço vetorial sobre R é um conjunto V no qual se tem definida uma adição e uma multiplicação de seus elementos por escalares (isto é, por números reais), ou seja, dados

Leia mais

G2 de Álgebra Linear I

G2 de Álgebra Linear I G de Álgebra Linear I 7. Gabarito ) Considere o conjunto de vetores W = {(,, ); (, 5, ); (,, ); (3,, ); (, 3, ); (,, )}. (a) Determine a equação cartesiana do sub-espaço vetorial V gerado pelos vetores

Leia mais

Notas de Aula Álgebra Linear II IFA Prof. Paulo Goldfeld Versão

Notas de Aula Álgebra Linear II IFA Prof. Paulo Goldfeld Versão Notas de Aula Álgebra Linear II IFA 2007.1 Prof. Paulo Goldfeld Versão 2007.03.29 1 2 Contents 2 Espaços Vetoriais 5 2.1 Espaços e Subespaços....................... 5 2.2 Independência Linear.......................

Leia mais

ÁLGEBRA LINEAR. Exame Final

ÁLGEBRA LINEAR. Exame Final UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR Exame Final 9/0/00 DURAÇÃO: 3 horas Nome: N o Aluno: Observação: Declaro que desisto: (Justifique sempre as suas respostas) Folha. (4,0

Leia mais

3 Espaços com Produto Interno

3 Espaços com Produto Interno 3 Espaços com Produto Interno 3.1 Produtos Internos em Espaços Vetoriais Seja V um espaço vetorial. Um produto interno em V é uma função, : V V R que satisfaz P1) = v, u para todos u, v V ; P2) u, v +

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Espaços Vetoriais 1 Definição; 2 Subespaços; 3 Combinação Linear, dependência

Leia mais

7. Sejam U, W subespaços vetoriais de um espaço vetorial V sobre um corpo K. Prove que U W é um subespaço vetorial de V se e somente se U W ou W U.

7. Sejam U, W subespaços vetoriais de um espaço vetorial V sobre um corpo K. Prove que U W é um subespaço vetorial de V se e somente se U W ou W U. Lista de Álgebra Linear - Prof. Edson Iwaki 1. Quais dos subconjuntos são R subespaços vetoriais? Ache uma base para os que forem. (a) S = {(x, y, z) R 3 x 0} R 3 (b) S = {(x, y, z) R 3 x = 0} R 3 (c)

Leia mais

Exercícios sobre Espaços Vetoriais II

Exercícios sobre Espaços Vetoriais II Exercícios sobre Espaços Vetoriais II Prof.: Alonso Sepúlveda Castellanos Sala 1F 104 1. Seja V um espaço vetorial não trivial sobre um corpo infinito. Mostre que V contém infinitos elementos. 2. Sejam

Leia mais

Notas de Aulas 3(Segunda Avaliação)-Produto Interno II Prof. Carlos Alberto S Soares

Notas de Aulas 3(Segunda Avaliação)-Produto Interno II Prof. Carlos Alberto S Soares Notas de Aulas 3(Segunda Avaliação)-Produto Interno II Prof. Carlos Alberto S Soares Neste capítulo, estaremos generalizando a noção de projeção ortogonal já desenvolvida em cursos anteriores. Definição

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 11 a Lista de

Leia mais

n. 33 Núcleo de uma transformação linear

n. 33 Núcleo de uma transformação linear n. 33 Núcleo de uma transformação linear Chama-se núcleo de uma transformação linear f: V W ao conjunto de todos os vetores v V que são transformados em 0 W. Indica-se esse conjunto por N(f) ou Ker (f).

Leia mais

MAT Resumo Teórico e Lista de

MAT Resumo Teórico e Lista de MAT 0132 - Resumo Teórico e Lista de Exercícios April 10, 2005 1 Vetores Geométricos Livres 1.1 Construção dos Vetores 1.2 Adição de Vetores 1.3 Multiplicação de um Vetor por um Número Real 2 Espaços Vetoriais

Leia mais

A forma canônica de Jordan

A forma canônica de Jordan A forma canônica de Jordan 1 Matrizes e espaços vetoriais Definição: Sejam A e B matrizes quadradas de orden n sobre um corpo arbitrário X. Dizemos que A é semelhante a B em X (A B) se existe uma matriz

Leia mais

Álgebra Linear I. Notas de Aula 1. Alex Farah Pereira de Junho de 2017

Álgebra Linear I. Notas de Aula 1. Alex Farah Pereira de Junho de 2017 Álgebra Linear I Notas de Aula 1 Alex Farah Pereira 2 3 11 de Junho de 2017 1 Turma de Matemática. 2 Departamento de Análise-IME-UFF 3 http://alexfarah.weebly.com ii Conteúdo 1 Espaços Vetoriais 1 1.1

Leia mais

Álgebra Linear 1 ō Teste - 16/ 11/ 02 Cursos: Eng. Ambiente, Eng. Biológica, Eng. Química, Lic. Química

Álgebra Linear 1 ō Teste - 16/ 11/ 02 Cursos: Eng. Ambiente, Eng. Biológica, Eng. Química, Lic. Química Código do Teste: 105 Álgebra Linear 1 ō Teste - 16/ 11/ 02 Cursos: Eng. Ambiente, Eng. Biológica, Eng. Química, Lic. Química 1. Para as matrizes A = ( 1 0 3 1 ) B = ( 5 4 1 0 2 1 3 1 ) C = 1 1 1 0 5 1

Leia mais

Unidade 4 - Matrizes elementares, resolução de sistemas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013

Unidade 4 - Matrizes elementares, resolução de sistemas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 4 - Matrizes elementares, resolução de sistemas A Hefez e C S Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Nesta unidade, veremos

Leia mais

GABRIEL BUJOKAS

GABRIEL BUJOKAS APLICAÇÕES DE ÁLGEBRA LINEAR À COMBINATÓRIA GABRIEL BUJOKAS (GBUJOKAS@MIT.EDU) A gente vai discutir algumas das aplicações clássicas de álgebra linear à combinatória. Vamos começar relembrando alguns conceitos

Leia mais

Dependência linear e bases

Dependência linear e bases Dependência linear e bases Sadao Massago 2014 Sumário 1 Dependência linear 1 2 ases e coordenadas 3 3 Matriz mudança de base 5 Neste texto, introduziremos o que é uma base do plano ou do espaço 1 Dependência

Leia mais

ÁLGEBRA LINEAR. Combinação Linear, Subespaços Gerados, Dependência e Independência Linear. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Combinação Linear, Subespaços Gerados, Dependência e Independência Linear. Prof. Susie C. Keller ÁLGEBRA LINEAR Combinação Linear, Subespaços Gerados, Dependência e Prof. Susie C. Keller Combinação Linear Sejam os vetores v 1, v 2,..., v n do espaço vetorial V e os escalares a 1, a 2,..., a n. Qualquer

Leia mais

Álgebra Linear

Álgebra Linear Álgebra Linear - 0191 Lista 3 - Dependência e Independência Linear Bases e Soma Direta 1) Exiba três vetores u v w R 3 com as seguintes propriedades: nenhum deles é múltiplo do outro nenhuma das coordenadas

Leia mais

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios MAT 2458 - Álgebra Linear para Engenharia II - Poli 2 ō semestre de 2014 1 ā Lista de Exercícios 1. Verifique se V = {(x, y) x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2017/II 1. Sejam u = ( 4 3) v = (2 5) e w = (a b).

Leia mais

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R. INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas

Leia mais

Notas de Aula - Espaços Vetoriais I

Notas de Aula - Espaços Vetoriais I Notas de Aula - Espaços Vetoriais I 1 O espaço vetorial R 2 A definição de espaço vetorial que veremos adiante faz uso da ideia de operações definidas sobre um conjunto. Iniciaremos nosso estudo explorando

Leia mais

ESPAÇOS VETORIAIS EUCLIDIANOS

ESPAÇOS VETORIAIS EUCLIDIANOS ESPAÇOS VETORIAIS EUCLIDIANOS Produto interno em espaços vetoriais Estamos interessados em formalizar os conceitos de comprimento de um vetor e ângulos entre dois vetores. Esses conceitos permitirão uma

Leia mais

Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l

Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 2006 Segunda Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Questão 1. A matriz de mudança da base ordenada

Leia mais

Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes.

Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V

Leia mais

UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO

UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA a LISTA DE EXERCÍCIOS PERÍODO 0 Os exercícios 0 8 trazem um espaço vetorial V e um seu subconjunto W Sempre que W for um subespaço

Leia mais

Álgebra Linear Semana 05

Álgebra Linear Semana 05 Álgebra Linear Semana 5 Diego Marcon 4 de Abril de 7 Conteúdo Interpretações de sistemas lineares e de matrizes invertíveis Caracterizações de matrizes invertíveis 4 Espaços vetoriais 5 Subespaços vetoriais

Leia mais

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru 1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais

Leia mais

i : V W V W é o produto tensorial de V e W se, ao considerarmos um outro espaço vetorial U sobre o mesmo corpo K e B também uma aplicação bilinear:

i : V W V W é o produto tensorial de V e W se, ao considerarmos um outro espaço vetorial U sobre o mesmo corpo K e B também uma aplicação bilinear: 3 Produto Tensorial Sistemas quânticos individuais podem interagir para formarem sistemas quânticos compostos. Existe um postulado em Mecânica Quântica que descreve como o espaço de estados do sistema

Leia mais

Método de Gauss-Jordan e Sistemas Homogêneos

Método de Gauss-Jordan e Sistemas Homogêneos Método de Gauss-Jordan e Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 14 de agosto

Leia mais

n. 32 Regras para achar a transformação linear correspondente

n. 32 Regras para achar a transformação linear correspondente n. 3 Regras para achar a transformação linear correspondente Lembrete: matriz da transformação linear [T] B A F(u 1 ) = a v 1 + b v F(u ) = c v 1 + d v [T] A B = [ a c b d ] Dadas às bases e a matriz da

Leia mais

Espaços Vetoriais II

Espaços Vetoriais II Espaços Vetoriais II Juliana Pimentel juliana.pimentel@ufabc.edu.br http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 Espaço Vetorial C[a, b] Denotamos por C[a, b] o conjunto de

Leia mais

Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais

Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Exercício 1. Determine se os seguintes conjuntos são

Leia mais

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa. Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum

Leia mais

Curso de Álgebra Linear

Curso de Álgebra Linear Curso de Álgebra Linear Fundamentos e Aplicações Terceira Edição 25 de Outubro de 2012 Marco Cabral PhD Indiana University, EUA Paulo Goldfeld PhD Courant Institute, EUA Departamento de Matemática Aplicada

Leia mais

Capítulo 8. Formas Bilineares. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 8. Formas Bilineares. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 8 Formas Bilineares Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 8: Formas Bilineares Meta

Leia mais

ALGA I. Representação matricial das aplicações lineares

ALGA I. Representação matricial das aplicações lineares Módulo 6 ALGA I Representação matricial das aplicações lineares Contents 61 Matriz de uma aplicação linear 76 62 Cálculo do núcleo e imagem 77 63 Matriz da composta 78 64 GL(n Pontos de vista passivo e

Leia mais

1 Espaços vetoriais. Bibliografia básica do curso: [3, 2, 1, 4] Autor: Leandro Fiorini Aurichi - Versão: 2008

1 Espaços vetoriais. Bibliografia básica do curso: [3, 2, 1, 4] Autor: Leandro Fiorini Aurichi - Versão: 2008 Bibliografia básica do curso: [3, 2, 1, 4] Autor: Leandro Fiorini Aurichi - laurichi@ime.usp.br Versão: 2008 1 Espaços vetoriais Comecemos com a definição de espaço vetorial. Definição 1.1. (V,, ) é dito

Leia mais

2 a. Lista de Exercícios

2 a. Lista de Exercícios Última atualização 16/09/007 FACULDADE Engenharia: Disciplina: Álgebra Linear Professor(a): Data / / Aluno(a): Turma a Lista de Exercícios A álgebra de vetores e a álgebra de matrizes são similares em

Leia mais

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino 1 3 4 3 1 0 4 0 1 = Q 4 1 6 Qt Q t Q = 1 1 1 PULINUS Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino Departamento de Matemática

Leia mais

Matriz de uma transformação linear

Matriz de uma transformação linear Matriz de uma transformação linear Laura Goulart UESB 9 de Outubro de 2018 Laura Goulart (UESB) Matriz de uma transformação linear 9 de Outubro de 2018 1 / 8 21 - Matriz de uma transformação linear Sejam

Leia mais

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R ESPAÇO VETORIAL REAL Seja um conjunto V, não vazio, sobre o qual estão definidas as operações de adição e multiplicação por escalar, isto é: u, v V, u + v V a R, u V, au V O conjunto V com estas duas operações

Leia mais

1 Espaços Vetoriais. 1.1 Base e Dimensão. 1.2 Mudança de Base. 1 ESPAÇOS VETORIAIS Álgebra Linear. Álgebra Linear Prof.

1 Espaços Vetoriais. 1.1 Base e Dimensão. 1.2 Mudança de Base. 1 ESPAÇOS VETORIAIS Álgebra Linear. Álgebra Linear Prof. ESPAÇOS VETORIAIS Álgebra Linear Espaços Vetoriais Base e Dimensão Álgebra Linear Prof Ânderson Vieira Definição Um conjunto S = {u,,u n } V é uma base do espaço vetorial V se (I) S é LI; (II) S gera V

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Álgebra Linear e Geometria Analítica Curso: Engenharia Electrotécnica Ano: 1 o Semestre: 1 o Ano Lectivo: 007/008 Ficha

Leia mais

Um Estudo Sobre Espaços Vetoriais Simpléticos

Um Estudo Sobre Espaços Vetoriais Simpléticos Um Estudo Sobre Espaços Vetoriais Simpléticos Fabiano Borges da Silva Lívia T. Minami Borges 28 de novembro de 2015 Resumo O presente artigo estuda de maneira detalhada espaços vetoriais que possuem uma

Leia mais

Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais

Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Reginaldo J Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 16 de novembro

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios

Leia mais

Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa

Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa MA33 - Introdução à Álgebra Linear Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto

Leia mais

Álgebra Linear I - Lista 10. Matrizes e Transformações lineares. Respostas

Álgebra Linear I - Lista 10. Matrizes e Transformações lineares. Respostas Álgebra Linear I - Lista 1 Matrizes e Transformações lineares Respostas 1 Sejam A e B matrizes quadradas do mesmo tamanho Dê um exemplo onde (A + B 2 A 2 + 2A B + B 2 Complete: (A + B 2 = A 2 + B 2 +?

Leia mais

Álgebra Linear I. Resumo e Exercícios P3

Álgebra Linear I. Resumo e Exercícios P3 Álgebra Linear I Resumo e Exercícios P3 Fórmulas e Resuminho Teórico Espaço Vetorial Qualquer conjunto V com 2 operações: Soma e Produto escalar, tal que 1. u + v + w = u + v + w u, v, w V 2. u + v = v

Leia mais

Álgebra linear A Primeira lista de exercícios

Álgebra linear A Primeira lista de exercícios Álgebra linear A Primeira lista de exercícios Prof. Edivaldo L. dos Santos (1) Verifique, em cada um dos itens abaixo, se o conjunto V com as operações indicadas é um espaço vetorial sobre R. {[ ] a b

Leia mais

CM005 Algebra Linear Lista 1

CM005 Algebra Linear Lista 1 CM005 Algebra Linear Lista Alberto Ramos. Para cada um dos sistemas de equações lineares, use o método de Gauss para obter um sistema equivalente cuja matriz de coeficientes esteja na forma escada. Indique

Leia mais

5. Considere os seguintes subconjuntos do espaço vetorial F(R) das funções de R em R:

5. Considere os seguintes subconjuntos do espaço vetorial F(R) das funções de R em R: MAT3457 ÁLGEBRA LINEAR I 3 a Lista de Exercícios 1 o semestre de 2018 1. Verique se V = {(x, y) : x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação por escalar dadas por:

Leia mais

Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores

Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores Álgebra Linear I - Aula 11 1. Dependência e independência linear. 2. Bases. 3. Coordenadas. 4. Bases de R 3 e produto misto. Roteiro 1 Dependência e independência linear de vetores Definição 1 (Dependência

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Álgebra Linear Contra-Ataca

Álgebra Linear Contra-Ataca Contra-Ataca Prof Afonso Paiva Departamento de Matemática Aplicada e Estatística Instituto de Ciências Matemáticas e de Computação USP São Carlos Cálculo Numérico SME0104 Operações elementares Operações

Leia mais

Introdução à Álgebra de Lie

Introdução à Álgebra de Lie Introdução à Álgebra de Lie Wilian Francisco de Araujo Universidade Tecnológica Federal do Paraná e-mail: wilianfrancisco@gmail.com Estou certo, absolutamente certo de que... essas teorias será reconhecido

Leia mais

ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS

ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 11 1 Produto Interno 2 Módulo de um Vetor 3 Ângulo Entre Dois Vetores - Vetores

Leia mais

2 Espaços Vetoriais. 2.1 Espaços Vetoriais Euclidianos

2 Espaços Vetoriais. 2.1 Espaços Vetoriais Euclidianos 2 Espaços Vetoriais 2.1 Espaços Vetoriais Euclidianos Definição: Dado n N, considere-se o conjunto de todos os n-uplos ordenados de elementos reais, isto é o conjunto de elementos da forma x = (x 1,, x

Leia mais

1 Subespaços Associados a uma Matriz

1 Subespaços Associados a uma Matriz 1 Subespaços Associados a uma Matriz Seja V = R n e para quaisquer u, v, e w em V e quaisquer escalares r,s em R 1, 1. u + v é um elemento de V sempre que u e v são elementos de V a adição é fechada, 2.

Leia mais

OBJETIVO. Prova1-Trivial,porinduçãoeusaoteoremafundamentaldaálgebra...3

OBJETIVO. Prova1-Trivial,porinduçãoeusaoteoremafundamentaldaálgebra...3 O TEOREMA DE CAYLEY-HAMILTON Carlos Alexandre Gomes (UFRN) e Oswaldo Rio Branco de Oliveira (IMEUSP) http://www.ime.usp.br/~oliveira oliveira@ime.usp.br Ano 2015 e Ano 2017 OBJETIVO Nesta notas apresentamos

Leia mais

G2 de Álgebra Linear I

G2 de Álgebra Linear I G2 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Suponha

Leia mais

Algebra Linear S ergio Lu ıs Zani

Algebra Linear S ergio Lu ıs Zani Álgebra Linear Sérgio Luís Zani 2 Sumário 1 Espaços Vetoriais 7 1.1 Introdução e Exemplos.......................... 7 1.2 Propriedades............................... 12 1.3 Exercícios.................................

Leia mais

Um Curso de Nivelamento. Instituto de Matemática UFF

Um Curso de Nivelamento. Instituto de Matemática UFF Introdução à Álgebra Linear Um Curso de Nivelamento Jorge Delgado Depto. de Matemática Aplicada Katia Frensel Depto. de Geometria Instituto de Matemática UFF Março de 2005 J. Delgado - K. Frensel ii Instituto

Leia mais

Espaços Vectoriais. Espaços Vectoriais

Espaços Vectoriais. Espaços Vectoriais Espaços Vectoriais Espaço vectorial sobre um corpo V - conjunto não vazio de objectos, chamados vectores F - conjunto de escalares, com estrutura de corpo Em V definimos duas operações: - adição de elementos

Leia mais

MAT Álgebra Linear para Engenharia II

MAT Álgebra Linear para Engenharia II MAT2458 - Álgebra Linear para Engenharia II Prova de Recuperação - 05/02/2014 Nome: Professor: NUSP: Turma: INSTRUÇÕES (1) A prova tem início às 7:30 e duração de 2 horas. (2) Não é permitido deixar a

Leia mais

ALGA I. Bases, coordenadas e dimensão

ALGA I. Bases, coordenadas e dimensão Módulo 5 ALGA I. Bases, coordenadas e dimensão Contents 5.1 Bases, coordenadas e dimensão............. 58 5.2 Cálculos com coordenadas. Problemas......... 65 5.3 Mudanças de base e de coordenadas..........

Leia mais

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016 1 a Lista de Exercícios de MAT3458 Escola Politécnica o semestre de 16 1 Para que valores de t R a função definida por (x 1, x ), (y 1, y ) = x 1 y 1 + tx y é um produto interno em R? Para cada par de

Leia mais

0.1 Matrizes, determinantes e sistemas lineares

0.1 Matrizes, determinantes e sistemas lineares SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ PARFOR MATEMÁTICA Lista de Exercícios para a Prova Substituta de Álgebra Linear 0.1 Matrizes, determinantes e sistemas lineares 1. Descreva explicitamente

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2009

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2009 5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 29 Soluções dos exercícios Devido ao fato de A ser simétrica, existe uma base ortonormal {u,, u n } formada por autovetores de A, então

Leia mais

Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2

Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2 Q1. Seja V um espaço vetorial e considere as seguintes afirmações: (I) se A 1 é um conjunto de geradores de um subespaço S 1 de V e A 2 é um conjunto de geradores de um subespaço S 2 de V, então A 1 A

Leia mais

Transformações Lineares

Transformações Lineares Transformações Lineares Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra

Leia mais