E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 TRIGONOMETRIA

Tamanho: px
Começar a partir da página:

Download "E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 TRIGONOMETRIA"

Transcrição

1 E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 TRIGONOMETRIA

2 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 SUMÁRIO APRESENTAÇÃO Trigonometria Conceitos Iniciais Ângulos e Arcos Unidades de Ângulos Tipos de Ângulos Triângulo Retângulo Círculo Trigonométrico Definição Relações Trigonométricas no Círculo Trigonométrico Seno e Cosseno Tangente Relações Trigonométricas Inversas Identidades Trigonométricas Funções Trigonométricas Função Seno: Função Cosseno: Função Tangente: Página 1

3 2 MATEMÁTICA ELEMENTAR CAPÍTULO Função Arco-Seno Função Arco-Cosseno Função Arco-Tangente Conversão de Coordenadas EXERCÍCIOS PROPOSTOS GABARITO Página 2

4 3 MATEMÁTICA ELEMENTAR CAPÍTULO 6 APRESENTAÇÃO Ao chegar à UFPA, você tem a possibilidade de cursar gratuitamente cursos de nivelamento em Ciências Básicas (Física, Química e Matemática). Assistindo às aulas no próprio ambiente em que cursará sua graduação, isso auxiliará você a adquirir o conhecimento necessário para enfrentar melhor o programa curricular do seu curso. Então seja Bem-vindo ao Curso de Nivelamento em Matemática Elementar do PCNA. Este é o sexto de uma série de cinco E-books que vão lhe acompanhar durante o curso, o professor utilizará este material como apoio às suas aulas e é fundamental que você o leia e acompanhe as atividades propostas. A série E-books PCNA-Matemática foi desenvolvida com o propósito de apresentar o conteúdo do curso de Matemática Elementar, fornecendo também ferramentas para facilitar o ensino e a aprendizagem do Cálculo Diferencial e Integral que você irá encontrar em breve na sua graduação. Neste fascículo você irá encontrar o conteúdo de Trigonometria. É bom lembrar que não se pode aprender Cálculo sem alguns pré-requisitos, que muitas das vezes não valorizamos por acharmos simples e descomplicados, todavia, atenção e compreensão se fazem necessária. Página 3

5 4 MATEMÁTICA ELEMENTAR CAPÍTULO 6 6. Trigonometria 6.1. Conceitos Iniciais A palavra trigonometria vem do grego [trigōnon = "triângulo", metron "medida"], ou seja, está relacionada com as medidas de um triângulo, sendo estas medidas de ângulo e comprimento. A partir da definição dos conceitos básicos de trigonometria, arcos e ângulos, podemos utilizar as propriedades do triângulo retângulo e diversas relações úteis para a resolução de problemas matemáticos poderão ser encontradas. Além disso, a partir dos conceitos compreendidos no triângulo retângulos, a trigonometria pode abordar conhecimentos para outras figuras e áreas da matemática, como no estudo da circunferência, da elipse e das funções periódicas Ângulos e Arcos Em trigonometria, é de fundamental importância a definição de ângulos e arcos. Um ângulo α é a abertura entre duas retas R1 e R2 que possuem um ponto P em comum (vértice do ângulo). Pode ser entendido também como a inclinação entre duas retas. Esta ideia está ilustrada na Fig Página 4

6 5 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Fig.6.1: Representação de um ângulo α. Adicionalmente, pode-se observar a magnitude de um ângulo α como sendo a quantidade de rotação que separa R1 da R2. Para se descrever a magnitude de um ângulo, deve-se primeiramente estabelecer uma unidade de medida, sendo as mais comuns o grau e o radiano. Mais adiante serão explicadas as diferenças entre estes 2 modelos de medição. Um ângulo α determina um arco (L) de uma circunferência, como se observa na Fig.6.2. Esse comprimento de arco está relacionado, juntamente com o ângulo (α), ao Raio (R); o que é explicitado na Eq.6.1: = L R Eq. (6.1) Página 5

7 6 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Fig.6.2: Circunferência de raio R e comprimento de arco L Unidades de Ângulos Grau Ao dividir uma circunferência em 360 arcos iguais o que é representado na Fig.6.3 ; sendo C o comprimento da circunferência, e L comprimento do arco formado, o ângulo que determina um destes arcos corresponde a 1. Fig.6.3: Representação do ângulo que mede 1. Onde, L = C 360 Página 6

8 7 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Existe ainda uma unidade de medida de ângulos chamada de grado (ou gradiano) onde a circunferência é dividida em 400 arcos iguais, ao invés de 360. No entanto esta unidade não é comumente usada no Brasil. Radiano O radiano é o ângulo que determina um arco com comprimento igual ao raio da circunferência, tal qual é explicitado na Fig.6.4. Fig.6.4: Representação do ângulo que mede 1 rad. Onde L = R Tipos de Ângulos Alguns tipos de ângulos são muito usados, entre eles, o ângulo reto (90 ), ângulo raso ou de meia-volta (180 ), ângulo agudo (maior que 0 e menor que 90 ), ângulo obtuso (maior que 90 e menor que 180 ) e ângulo de uma volta (360 ). Os quais estão representados na Fig.6.5: Página 7

9 8 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Fig.6.5: Ângulos de comum uso: (a) ângulo reto, (b) ângulo raso, (c) ângulo agudo, (d) ângulo obtuso e (e) ângulo de uma volta. (a) (b) (c) (d) Página 8

10 9 MATEMÁTICA ELEMENTAR CAPÍTULO 6 (e) Duas retas que formam um ângulo reto entre si são chamadas de perpendiculares ou ortogonais. Por exemplo, o plano cartesiano é formado por duas retas perpendiculares, como mostra a fig.6.6. Fig.6.6: Representação de um Plano Cartesiano Triângulo Retângulo Um triângulo que possui um ângulo reto (90 ) chamase triângulo retângulo. O maior lado a de um triângulo Página 9

11 10 MATEMÁTICA ELEMENTAR CAPÍTULO 6 retângulo é chamado de hipotenusa (lado oposto ao ângulo reto); e os outros dois lados b e c são chamados de catetos (Ver Fig.6.7). Fig.6.7: Triângulo Retângulo. Teorema de Pitágoras Para todo triângulo retângulo tem-se que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos, o que pode ser explicitado pela Eq.6.2: a 2 = b 2 + c 2 (Eq. 6.2) Página 10

12 11 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Observe no exemplo o triângulo pitagórico, onde a soma da quantidade de quadrados formados pelos catetos é igual ao número de quadrados formados pela hipotenusa. Relações Trigonométricas Pode-se obter relações trigonométricas (da Eq.6.3 à Eq.6.8) em um triângulo retângulo ABC: sen θ = CO HI = a h cos θ = CA HI = b h tan θ = CO CA = a b cotg θ = 1 tgθ = b a cossec θ = 1 senθ = h a sec θ = 1 cosθ = a b (6.1) (6.2) (6.3) (6.4) (6.5) (6.6) Página 11

13 12 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Onde, em relação ao ângulo θ: CO = Cateto oposto; CA = Cateto adjacente; HI = Hipotenusa Lei dos Cossenos Para um triângulo qualquer podemos escrever a Lei dos Cossenos como na Eq.6.9. a 2 = b 2 + c 2 2. b. c. cos(α) (6.7) Fig.6.8: Exemplos de Triângulos onde pode ser aplicada a Lei dos Cossenos. Lei dos Senos Considerando o triângulo ABC, CH será a altura relativa ao lado AB, como mostrado na Fig.5.9: Página 12

14 13 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Fig.6.9: Distância entre CH em um Triângulo ABC. Relações obtidas no triângulo ABC: sen A = h b h = b sen A (6.8) sen B = h a h = a sen B (6.9) b sen A = a sen B (6.10) a sen A = b cos B Assim, pode-se concluir que: a sen A = b sen B = c sen C (6.11) (6.12) Página 13

15 14 MATEMÁTICA ELEMENTAR CAPÍTULO 6 A Eq.6.14 é conhecida como Lei dos Senos ou Teorema dos Senos Círculo Trigonométrico Definição O círculo trigonométrico (ou ciclo trigonométrico) é a circunferência que possui raio unitário e cujo centro coincide com a origem do plano cartesiano. Ele é dividido em quatro quadrantes, os quais são limitados por um intervalo de ângulos de 90º, ou π 2 rad. Além disso, ele também pode ser representado em graus ou radiano, assim como mostra a Fig I Quadrante [0, π 2 ] ; II Quadrante [ π 2, π]; III Quadrante [π, 3 π 2 ] ; IV Quadrante [ 3π 2, π]. Página 14

16 15 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Fig.6.10: Círculo trigonométrico: (a) em radianos e (b) em graus. (a) (b) Nota-se que o Sentido Positivo do Círculo Trigonométrico, ou seja, o sentido em que o ângulo aumenta a partir de 0, é dado a partir do Sentido Anti-horário, Página 15

17 16 MATEMÁTICA ELEMENTAR CAPÍTULO 6 enquanto que o Sentido Negativo é dado a partir do Sentido Horário. Além disso, é possível calcular o Comprimento da Circunferência C a partir da seguinte equação Eq C = 2. π. R (6.13) Relações Trigonométricas no Círculo Trigonométrico Conhecidas as razões trigonométricas básicas no triângulo retângulo, será possível expandir esse conhecimento para o círculo trigonométrico, a fim de se determinar o seno, o cosseno e a tangente de outros arcos importantes. Para todo ângulo α contido no primeiro quadrante, tem-se um ângulo correspondente nos demais quadrantes, de forma que os valores de seno, cosseno e tangente de α são iguais em módulo nos seus correspondentes, podendo alterar o sinal, positivo ou negativo, dependendo do quadrante. No II Quadrante: 180º α; No III Quadrante: 180º + α; No IV Quadrante: 360º α. Página 16

18 17 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Fig.6.11: Ângulos correspondentes de α em outros quadrantes: (a) em graus e (b) em radianos. (a) (b) Seno e Cosseno Para a determinação dos valores de seno e cosseno de um ângulo α, usam-se os mesmos princípios citados no Página 17

19 18 MATEMÁTICA ELEMENTAR CAPÍTULO 6 triângulo retângulo. Como é possível observar na Fig.6.12, raio do círculo trigonométrico é unitário (Hipotenusa). Portanto, o seno de α será igual ao próprio cateto oposto (C.O.) à α; e o cosseno de α será igual ao próprio cateto adjacente (C.A.) à α. As Eq.6.17, Eq.6.18 e Eq.6.19 exemplificam tais relações. sen α = y A (6.14) cos α = x A (6.15) tan α = sen α cos α (6.16) Fig.6.12: Determinando o Seno e o Cosseno de α Página 18

20 19 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Com isso, obtém-se a relação fundamental da trigonometria: sin²(α) + cos²(α) = 1 (6.17) Como o raio do círculo trigonométrico é unitário, o maior valor de seno e cosseno é igual a 1; e o menor valor será 1. Ou seja, as funções seno e cosseno estão limitadas ao intervalo [ 1; 1]. A partir da Fig.6.13 é possível notar que: o seno do ângulo correspondente de α no II quadrante é igual ao seno de α; o seno dos ângulos correspondentes de α no III e no IV quadrantes são iguais ao oposto do seno de α; o cosseno dos ângulos correspondentes de α no II e no III quadrantes são iguais ao oposto do cosseno de α; e o cosseno do ângulo correspondente de α no IV quadrante é igual ao cosseno de α. Fig Representação gráfica das funções seno e cosseno dos ângulos correspondentes de nos demais quadrantes: (a) sen (α) e sen (α); (b) cos (α) e cos (α). (a) Página 19

21 20 MATEMÁTICA ELEMENTAR CAPÍTULO 6 (b) Observa-se que a função sen(α) é uma função ímpar, pois tem-se que sen(α) = sen( α). E a função cos (α) é uma função par, pois cos(α) = cos( α), tal como é ilustrado na Fig Fig.6.14: Classificação das funções (a) sin(α) e (b) cos(α) como ímpar e par, respectivamente. (a) Página 20

22 21 MATEMÁTICA ELEMENTAR CAPÍTULO 6 (b) Tab.6.1: Tabela dos valores de seno e cosseno dos ângulos notáveis. Ângulo sen(α) cos (α) α =0 0 1 α = 30 α = 45 α = α = Página 21

23 22 MATEMÁTICA ELEMENTAR CAPÍTULO 6 α = α = α = Exemplos: 1) Determine sen ( π 3 ) Solução: O ângulo π rad está no IV quadrante e está relacionado ao 3 ângulo π rad, portanto: 3 sen ( π 3 ) = sen (π ), logo: sen ( π 3 3 ) = 3 2 2) Determine cos ( π 3 ) Solução: cos ( π 3 ) = cos (π π ), logo: cos ( 3 3 ) = 1 2 3) Determine sen ( 5π 4 ) Página 22

24 23 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Solução: O ângulo 5π rad está no III quadrante e está relacionado ao 4 ângulo π rad, portanto: 4 sen ( 5π 4 ) = sen (π 4 ), logo: sen (5π 4 ) = 2 2 4) Determine cos ( 5π 4 ) Solução: 5) sen ( 5π 6 ) Solução: cos ( 5π 4 ) = cos (π 4 ), logo: cos (5π 4 ) = 2 2. E o ângulo 5π rad está no II quadrante e, portanto, está 6 relacionado ao ângulo π rad, portanto: 6 5. π sen ( 6 ) = sen (π π ), logo: sen ( ) = 1 2 6) Determine cos ( 5π 6 ) Página 23

25 24 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Solução: cos ( 5π 6 ) = cos (π 6 ), logo: cos (5π 6 ) = Tangente Para a representação do valor da tangente de um ângulo α no círculo trigonométrico, acrescenta-se uma reta tangente t ao círculo trigonométrico, assim como é indicado na figura Fig A tangente de α será dada pelo comprimento do segmento AB. Observe que não existe tan(α) se α é igual a π/2 ou 3π/2, pois as reta r 3 e t não se interceptam para os ângulos α = π/2 e α = 3π/2. Fig.6.15: Definição gráfica da função tan(α). Eixo dos senos t π/2 α A r3 tg α O B Eixo dos cossenos 3π/2 Página 24

26 25 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Ao analisar a Fig.6.16, conclui-se que a tangente do ângulo correspondente de α no III Quadrante é igual à tangente de α; e a tangente dos ângulos correspondentes de α no II e no IV quadrantes são iguais ao oposto da tangente de α. Fig.6.16: Representação gráfica da função tangente dos ângulos correspondentes de α nos demais quadrantes. Exemplos: 1) Determine tan ( 7π 6 ) Solução: O ângulo 7π rad está no III quadrante e está relacionado ao 6 ângulo π rad, portanto: 6 Página 25

27 26 MATEMÁTICA ELEMENTAR CAPÍTULO 6 tan ( 7π 6 ) = tan (π 6 ), logo: tan (7π 6 ) = 3 3 2) Determine tan ( 3π 4 ) Solução: O ângulo 3π rad está no II quadrante e está relacionado ao 4 ângulo π rad, portanto: 4 tan ( 3π 4 ) = tan (π 4 ), logo: tan (3π 4 ) = 1. 3) Determine tan ( 5π 3 ) Solução: O ângulo 5π rad está no IV quadrante e está relacionado ao 3 ângulo π rad, portanto: 3 tan ( 5π 3 ) = tan (5π 3 ), logo: tan (5π 3 ) = 3. 4) Determine tan ( 5.π 2 ) Solução: O ângulo 5π rad é côngruo de π rad (o ângulo 5π rad está na mesma posição de π rad após uma volta completa no círculo 2 Página 26

28 27 MATEMÁTICA ELEMENTAR CAPÍTULO 6 trigonométrico). Portanto, a função tan ( 5π ) não existe tal 2 qual função tan ( π 2 ) Relações Trigonométricas Inversas Definem-se as seguintes razões inversas: a secante de um ângulo α (sec(α)) é dada pelo inverso do cosseno deste ângulo ; a cossecante de um ângulo α (cossec(α)) é dada pelo inverso do seno de α ; e a cotangente de um ângulo α (cotg(α)) é dada pelo inverso da tangente deste ângulo. Assim, têm-se as Eq.6.21, Eq.6.22 e Eq.6.23: sec(α) = cossec (α) = cotg (α) = 1 cos(α) 1 sen (α) cos (α) sen (α) = 1 tg(α) (6.18) (6.19) (6.20) Exemplos: 1) Se sen(α) = 1 2, com 0 < α < π 2 sec(α).. Determine o valor de Página 27

29 28 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Solução: sen 2 (α) + cos 2 (α) = 1, portanto: ( 1 2 ) 2 + cos 2 (α) = cos2 (α) = 1 cos 2 (α) = 1 1 4, então: cos 2 (α) = 3 4 cos (α) = ± ( 3 3 ) cos (α) = ± 4 2, e como 0 < α < π 2, tem se que α está no I quadrante, logo: Portanto: sec(α) = cos (α) = cos(α) sec(α) = 2 3 sec(α) = , logo: 2) Se sen(α) = 2 3 cotg(α). sec(α) =, com 3.π < α < 2π. Determine o valor de Página 28

30 29 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Solução: sen 2 (α) + cos²(α) = 1, portanto: ( 2 3 ) 2 + cos 2 (α) = cos2 (α) = 1 cos 2 (α) = 1 4 9, então: cos 2 (α) = 5 9 cos (α) = ± ( 5 9 ) cos (α) = ± 5 3, e como 3π 2 < α < 2. π, tem se que α está no IV quadrante, logo: Portanto: cotg (α) = cos (α) = 5 3. cos (α) cotg (α) = sen (α) ( 5 3 ) ( 2 3 ), logo: cotg (α) = ( 5 3 ) ( 2 3 ) = ( 5 3 ). ( 3 2 ) = 5 2 cotg (α) = 5 2. Página 29

31 30 MATEMÁTICA ELEMENTAR CAPÍTULO Identidades Trigonométricas Algumas identidades trigonométricas facilitam a resolução de alguns problemas., tal como as Eq.6.24, Eq.6.25 e Eq sen 2 (α) + cos 2 (α) = 1 (6.21) 1 + tg 2 (x) = sec 2 (x) (6.22) 1 + cotg 2 (x) = cossec 2 (x) (6.23) Dados dois ângulos a e b; os valores de seno, cosseno e tangente dos arcos obtidos pela soma ou pela subtração de a e b serão as equações de Eq.6.27 à Eq.6.34: sen(a + b) = sen(a). cos(b) + sen(b). cos(a) (6.24) sen(a b) = sen(a). cos(b) sen(b). cos(a) (6.25) cos(a + b) = cos(a). cos(b) sen(a). sen(b) (6.26) cos(a b) = cos(a). cos(b) + sen(a). sen(b) (6.27) sen(2x) = 2. sen(x). cos(x) (6.28) cos(2x) = cos²(x) sen²(x) (6.29) sen ( x (x) ) = 1 cos 2 2 cos ( x (x) ) = 1+cos 2 2 (6.30) (6.31) Página 30

32 31 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Dados dois ângulos p e q, os valores da soma e da subtração dos senos e dos cossenos destes ângulos serão obtidos a partir das seguintes relações de Eq.6.35 à Eq.6.38: sen(p) + sen(q) = 2. sen( p+q 2 ). cos(p q 2 ) (6.32) sen(p) sen(q) = 2. sen ( p q ). cos (p+q ) (6.33) 2 2 cos(p) + cos(q) = 2. cos ( p+q 2 ). cos(p q 2 ) (6.34) cos(p) cos(q) = 2. sen ( p+q ). sen (p q ) (6.35) 2 2 Exemplos: 1) Determine o valor de sen(105 ) e cos(15 ). Solução: Como 105º é igual a 60º + 45º, tem-se que: sen(105 ) = sen( ) sen(105 ) = sen(60 ). cos(45 ) + sen(45 ). cos(60 ) sen(105 ) = = sen(105 ) = E como 15º é igual a 60º 45º, tem-se que: cos(15 ) = cos(60 45 ). Página 31

33 32 MATEMÁTICA ELEMENTAR CAPÍTULO 6 cos(15 ) = cos(60 ). cos(45 ) + sen(60 ). sen(45 ) cos (15 ) = = , cos (15º) = Funções Trigonométricas Função Seno: Admitindo y como uma variável independente, é possível representar a função seno da Eq.6.39: y = f(x) = sin(x) (6.36) A partir dessa representação, devem-se constatar as seguintes definições: O domínio da função (D(f)) está compreendido sob todo o conjunto dos números reais, ou seja, a variável x pode assumir qualquer valor real. Para cada valor de x existe um valor correspondente de y que varia de -1 a 1, isto é, a imagem da função (Im(f)) compreende o intervalo[ 1, 1]. A cada volta que se completa no círculo trigonométrico, os valores de y repetem-se oscilando, o que significa dizer que a função apresenta caráter oscilatório e periódico, de período igual a 2π. Página 32

34 33 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Fig.6.17: Gráfico da senoide. Se a função se apresentar na forma da Eq.6.40: f(x) = sen(k. x) (6.37) O período T da função será igual a Eq T = 2π k (6.38) Se k > 1, ocorre uma compressão horizontal no gráfico de ordem a (Ver Fig.6.18). Fig.6.18: Gráfico da Função f(x) = sen(2x). Página 33

35 34 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Podem haver casos nos quais a função é apresentada sob a forma y = A. sen x, o que provocará um alongamento (A > 1) ou um encurtamento vertical (A < 1). Fig.6.19: Gráfico da Função f(x) = 0.5 sen(x). Percebe-se também a existência de deslocamentos verticais ou horizontais sob as respectivas formas: y = B + sen(x) para os deslocamentos verticais e y = sen(x + C) para os deslocamentos horizontais. Sendo assim, é possível chegar a uma nova fórmula genérica (Eq.6.42) para a função seno levando-se em consideração os deslocamentos supracitados. f(x) = A + B. sen(kx + C) (6.39) Em que A, B, C e k são constantes reais. Página 34

36 35 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Fig.6.20:Gráfico da Função f(x) = sen(2x + π) Função Cosseno: Assumindo y como uma variável independente, é possível também representar a função cosseno na Eq.6.43: y = f(x) = cos x (6.40) A partir dessa representação, deve-se atentar às seguintes definições: O Domínio da função (D(f)) está compreendido sob todo o conjunto dos números reais, ou seja, a variável x pode assumir qualquer valor real. Para cada valor de x existe um valor correspondente de y que varia de -1 a 1, isto é, a imagem da função (Im(f)) compreende o intervalo [ 1, 1]. Página 35

37 36 MATEMÁTICA ELEMENTAR CAPÍTULO 6 A cada volta que se completa no Círculo Trigonométrico, os valores de y se repetem oscilando, o que significa dizer que a função apresenta caráter oscilatório e periódico, de período igual a 2π. Fig.6.21: Curva conhecida como cossenóide. Caso a função seja apresentada sob a forma f(x) = cos(kx),analogamente à função seno, o período T da função será igual a Eq.6.44 T = 2π k (6.41) Neste caso também ocorre uma compressão horizontal no gráfico de ordem a. A função cosseno também pode ser y = A cos(x),o que provocará um alongamento (A > 1) ou encurtamento (A < 1) vertical (variação da amplitude). Percebe-se igualmente a existência de deslocamentos verticais ou horizontais sob as respectivas formas: y = A + cos(x) para os deslocamentos verticais e y = cos(x + C) para os deslocamentos horizontais. Página 36

38 37 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Sendo assim, é possível obter a uma formulação genérica (Eq.6.45) para a função cosseno levando em consideração os deslocamentos mencionados: f(x) = A + B cos(kx + C) (6.42) Em que A, B, C e k são constantes reais Função Tangente: Tal qual as funções seno e cosseno, a função Tangente também pode ser presentada, de acordo com a Eq.6.46; tendo, igualmente, y como uma variável independente: y = f(x) = tan x (6.43) Com isso, constatam-se as seguintes definições: A variável x, ao contrário do que ocorre nas funções seno e cosseno, não pode assumir os valores π e 3π (e seus 2 2 respectivos correspondentes em N voltas no círculo trigonométrico). Desta forma, o domínio (D(f)) corresponde ao intervalo [0; π 2 [ U ] π 2 ; 3π 2 [ U ] 3π 2 ; 2π] + N. 2π. Para cada valor de x pertencente ao domínio, existe um valor de y que, ao se aproximar dos valores de indefinição da função, apresentarão assíntotas, as quais podem ser vistas no gráfico da Fig.6.22 na forma de linhas verticais tracejadas. Página 37

39 38 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Assim como nas funções seno e cosseno, a função tangente também apresenta caráter periódico, porém a descontinuidade dos valores, devido às assíntotas, torna a função não oscilatória. Fig.6.22: Gráfico da Função f(x) = tan(x). Assim como nas funções anteriormente comentadas, na função tangente também podem ocorrer deslocamentos no gráfico. Sendo estes generalizados pela Eq.5.47: f(x) = A + B tan(kx + C) (6.44) Sendo que o novo período T será dado ela Eq.6.48: T = π k (6.45) Função Arco-Seno O arco-seno (arcsen(x))é um ângulo definido pela variável a dependente de um valor x tal que para arcsen(x) = α isto é, sen(α) = x. Página 38

40 39 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Exemplo 6: Para um triângulo retângulo de hipotenusa 2 cm e cujo ângulo α é oposto a um cateto de 1cm, determine o valor de a: Solução: sen(α) = 1 2, logo: α = arcsen ( 1 2 ). Ou seja, sen(α) = 1 2 ; Como sen ( π 6 ) = 1 2, então: α = π rad = Função Arco-Cosseno O arco-cosseno (arccos(x)) é um ângulo a cujo valor de seu cosseno vale x, isto é, a depende de x tal que arccos(x) = α cos(α) = x. Pode-se dizer, portanto, que a função arco-cosseno é a função inversa da função cosseno. Exemplos: 1) Sabe-se que um triângulo retângulo possui um ângulo a tal que o cateto adjacente a este ângulo vale 2 cm e a hipotenusa do respectivo triângulo possui valor de 4 cm. Determine o ângulo a. Página 39

41 40 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Solução: cos(α) = 2 4 = 1 2, logo: Como: α = arccos( 1 2 ), ou seja, cos(α) = 1 2 cos ( π 3 ) = 1 2 : α = π rad = Função Arco-Tangente O arco-tangente (arctan(x)) de um valor x, é o ângulo α cuja a tangente é igual ao valor x. Ou seja, se tan(α) = x, tem-se que α = arctan(x). Exemplos: 1) Um triângulo retângulo possui um ângulo a o qual tem como cateto oposto b = 2. 2, e o cateto adjacente c =2. 2. Determine o ângulo a Solução: tan(α) = 2 2 = 1, logo: 2 2 α = arctan(1), ou seja, tg(α) = 1 Página 40

42 41 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Como: tan ( π ) = 1, então: 4 α = π rad = Sistema de Coordenadas Polares O sistema de coordenadas polares no plano tem como referenciais um ponto fixo O, denominado polo e uma semirreta orientada fixa com origem em O denominada eixo polar; e um raio r, como é representado na Fig Fig.6.23: Representação de um eixo polar O Eixo polar Considere P um ponto genérico no plano e seja o raio r a distância entre o polo O e o ponto P, assim r = OP. Se P O, então P pertence a uma única semirreta determinada com a origem em O. Tais descrições são representadas na Fig.6.23 Página 41

43 42 MATEMÁTICA ELEMENTAR CAPÍTULO 6 Fig.6.24: Semirreta formando um ângulo θ com o Eixo Polar. Seja θ o ângulo formado entre o eixo polar e esta semirreta, medido a partir do eixo polar. Como o ângulo θ tem vértice no pólo O e o seu lado inicial é o eixo polar, ele é dito estar na posição padrão ou fundamental. Assim, a semirreta constitui o lado terminal do ângulo θ na posição fundamental. Os ângulos são geralmente medidos em radiano e são considerados positivos quando medidos no sentido anti-horário. A cada ponto P do plano, pode-se associar um par de números reais r e θ denominados coordenadas polares de P. Denota-se P(r, θ), onde r é a coordenada radial (raio) de P, que é a distância de P em relação ao pólo, e θ é a coordenada angular ou ângulo polar de P. As coordenadas polares (r, θ) estabelecem a posição do ponto P em relação a uma grade formada por círculos concêntricos com centro em O e semirretas partindo de O. O valor de r localiza P num círculo de raio r, o valor de θ localiza P numa semirreta que é o lado terminal do ângulo na posição fundamental, e P é determinado pela interseção do círculo com a semirreta, como é mostrado na Fig Página 42

44 43 MATEMÁTICA ELEMENTAR CAPÍTULO 6 P (3, π 6 ) ; Q (2, 2π 3 ) ; R (1, 7π 6 ) Fig.6.25: Grade formada por círculos concêntricos e semirretas partindo de Conversão de Coordenadas Para converter coordenadas polares (r, θ) em cartesianas (x, y), ou vice-versa, é usual considerar que o polo do sistema polar coincidente com a origem do sistema cartesiano e o eixo polar do sistema polar coincidente com o eixo x, tais como as Eq.6.49 e Eq Assim, o eixo positivo y é a semirreta θ = π/2. x = r cosθ { y = r sen θ (6.46) Página 43

45 44 MATEMÁTICA ELEMENTAR CAPÍTULO 6 ou r = ± x { 2 + y 2 tan θ = y x para x 0 (6.47) Se θ está na posição fundamental então r = + x 2 + y 2 Se θ = arctan(y x)então tan(θ + n π) = y x para x 0 e n I (r, θ ) polar P { (x, y) cartesiano Fig Representação Gráfica do Eixo Polar P coincidindo com o eixo x do Sistema Cartesiano. Exemplos: Converta as coordenadas polares dadas para coordenadas cartesianas: Página 44

46 45 MATEMÁTICA ELEMENTAR CAPÍTULO 6 (r, θ) (x, y) = (r cosθ, r sen θ) 1) (r, θ) = (2, 3π 2 ) Solução: x = 2 cos ( 3π 2 ) = 2.0 = 0 y = 2 sen ( 3π ) = 2. ( 1) 2 (x, y) = (0, 2) 2) (r, θ) = ( 4, π 3 ) Solução: x = ( 4 ). cos ( π 3 ) = ( 4). (1 2 ) = 2 y = ( 4). sen ( π ) = ( 4). ( ) = 2 3 (x, y) = ( 2, 2 3) 3) (r, θ) = (1, 2π 3 ) Solução: x = (1). cos ( 2π 3 ) = (1). ( 1 2 ) = 1 2 Página 45

47 46 MATEMÁTICA ELEMENTAR CAPÍTULO 6 y = (1). sen ( 2π 3 ). ( 3 2 ) = 3 2 (x, y) = ( 1 2, 3 2 ) Converta as coordenadas cartesianas dadas para coordenadas polares. r = ± x 2 + y 2 (x, y) (r, θ) { tan θ = y para x 0 x 4) (x, y) = (4, 4) Solução: r = = 2 5 = 4 2 π tan θ = 4 4 = 1 θ = arc tan(1) { 4 5π 4 Como o ponto está no primeiro quadrante 0 θ π 2, logo θ = π 4 5) (x, y) = ( 1, 3) Solução: (r, θ) = (4 2, π 4 ) r = + ( 1) 2 + ( 3) 2 = 4 = 2 Página 46

48 47 MATEMÁTICA ELEMENTAR CAPÍTULO 6 tan θ = 3 1 = 3 π 3 θ = arc tan( 3) = 4π { 3 Como o ponto está no terceiro quadrante π θ 3π 2, logo θ = 4π 3 6) (x, y) = (3 3, 3) Solução: (r, θ) = (2, 4π 3 ) r = + (3 3) 2 + ( 3) 2 = 36 = 6 tan θ = = 1 3 θ = arc tan ( 1 3 ) = { π 6 = 11π 6 5π 6 Como o ponto está no quarto quadrante π 2 logo θ = π 6 (r, θ) = (6, π 6 ) θ 0, Página 47

49 48 MATEMÁTICA ELEMENTAR CAPÍTULO 6 7) (x, y) = (0, 4) Solução: r = + (0) 2 + ( 4) 2 = 4 π tan θ = = θ = 3π { 2 Como y < 0 o ponto pertence ao eixo negativo y logo θ = 3π 2 = π 2 (r, θ) = (4, π 2 ) Página 48

50 49 MATEMÁTICA ELEMENTAR CAPÍTULO 6 EXERCÍCIOS PROPOSTOS Aqui estão questões relacionadas ao capítulo estudado. É importante o esforço para resolver todas as questões. Em caso de dúvidas os monitores do programa estão prontos para lhe ajudar. Bons estudos! 1) Na figura, AB = 5dm, AD = 5 7 dm, DBC = 60º e DCA = 90º. Determine a medida de CD em decímetros. 2) Calcule o comprimento L do arco AB definido numa circunferência de raio r=10 cm, por um ângulo central de 60. 3) Calcule m de modo a obter sen(x) = 2m + 1 e cos(x) = 4m + 1 Página 49

51 50 MATEMÁTICA ELEMENTAR CAPÍTULO 6 4) Dado quesin(x). cos(x) = m, calcule o valor de y = sen 4 (x) + cos 4 (x) e z = sen 6 (x) + cos 6 (x) 5) Dois lados de um triângulo que medem 8m e 12m e formam entre si um ângulo de 120.Calcule o terceiro lado. 6) Um triângulo tem lados a = 10m, b = 13m e c= 15m.Calcule o ângulo o menor, A, do triângulo. 7) Determine o período e a imagem e faça o gráfico de um período completo das funções abaixo: a) f : dada por f(x) = sen x. b) f : dada por f(x) = sen x c) f : dada por f(x) = sen(x + π ) 3 d) f : dada por f(x) = 3. cos x e) f : dada por f(x) = cos(x π ) 4 8) Simplifique: 1. 1 sec x 1 cosx 1 cosx 9) Calcule o valor da expressão sen105 - cos 75 10) Sabendo que sen a = 3 e cos a = 4, calcule sen(2a) cos(2a) Página 50

52 51 MATEMÁTICA ELEMENTAR CAPÍTULO 6 11) Calcule o valor numérico da expressão: y = sen ( 13π ). 12 cos(11π) 12 12) Transforme em produto: a) y = 1 + sen(2x) b) y = 1 + cos(x) c) y = sen(5x) + sen(3x) d) y = cos(3x) + cos(x) 13) Ache os valores de 2 cos 2 (x) + 5 sen(x) ) Demarcar os seguintes pontos no sistema de coordenadas polares e encontrar suas coordenadas cartesianas: a) P1= (3, π 3 ) c) P4= ( 3, π 3 ) b) P2= (3, π 3 ) d) P3= ( 3, π 3 ) 15) Encontrar as coordenadas cartesianas dos seguintes pontos dados em coordenadas polares. a) ( 2, 2π 3 ) d) ( 10, π 2 ) c) (4, 5π ) e) ( 10, 3π ) 8 2 d) (3, 13π 4 ) Página 51

53 52 MATEMÁTICA ELEMENTAR CAPÍTULO 6 16) Encontrar um par de coordenadas polares dos seguintes pontos: a) (1, 1) b) (-1, 1) c) (-1, -1) d) (1, -1) 17) Identificar e transformar as seguintes equações para coordenadas polares. a) x 2 + y 2 = 4 b) x = 4 c) y = 2 d) x 2 + y 2 + 2x = 0 e) x 2 + y 2 6y = 0 Página 52

54 53 MATEMÁTICA ELEMENTAR CAPÍTULO 6 1) DC = 5 3 2) L = 10π/3cm 3) m 1 = 1/10ou m 2 = 1/2 4) y = 1 2m 2 e z = 1 3m² 5) lado 3 x = ) A = arccos ) GABARITO a) Im f = {y R 1 y 1}; P = 2π b) Im f = {y R 0 y 1}; P = π c) Im f = {y R 1 y 1}; P = 2π d) Im f = {y R 3 y 3}; P = 2π e) Im f = {y R 1 y 1}; P = 2π 8) cotgx 9) 2/2 10)31/25 11)Y = 1/4 12) a) y = 2sen (x + π 4 ) cos (π 4 x) b) y = 2cos 2 ( x 2 ) Página 53

55 54 MATEMÁTICA ELEMENTAR CAPÍTULO 6 c) y = 2sen4x. cosx d) y = 2cos2xcosx 13) 1 2 senx 1 14) a) ( 3, 3 3 ) 2 2 b)( 3, 3 3 ) 2 2 c)( 3, 3 3 ) 2 2 d) ( 3, 3 3 ) ) a) (1, - 3) b) (-1.507, ) c) ( 3 2, 3 2 ) 2 2 d) (0, -10) e) (0, 10) 16 a) ( 2, π/4) b) ( 2, 3π/4) c) ( 2, 5π/4) d) ( 2, 7π/4) 17) a) r = ±2 b) r cos θ = 4 c) r sin θ = 2 d) r = 2 cos θ e) r = 6 sin θ Página 54

Fig.6.1: Representação de um ângulo α.

Fig.6.1: Representação de um ângulo α. 6. Trigonometria 6.1. Conceitos Iniciais A palavra trigonometria vem do grego [trigōnon = "triângulo", metron "medida"], ou seja, está relacionada com as medidas de um triângulo, sendo estas medidas de

Leia mais

Ciclo trigonométrico

Ciclo trigonométrico COLÉGIO PEDRO II CAMPUS REALENGO II 1ª SÉRIE MATEMÁTICA II Ciclo trigonométrico Ciclo trigonométrico Chamamos de ciclo ou circunferência trigonométrica uma circunferência de raio unitário orientada. Na

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian CAMPUS CAÇAPAVA DO SUL CURSO DE LICENCIATURA EM CIÊNCIAS EXATAS PIBID MATEMÁTICA Plano de Ensino Escola Disciplina Bolsista Dados de Identificação Matemática Clarice Fonseca Vivian Conteúdos Funções trigonométricas:

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

CICLO TRIGONOMÉTRICO

CICLO TRIGONOMÉTRICO TRIGONOMETRIA CICLO TRIGONOMÉTRICO DEFINIÇÃO O Círculo Trigonométrico ou ciclo Trigonométrico é um recurso criado para facilitar a visualização das proporções entre os lados dos triângulos retângulos.

Leia mais

1. Trigonometria no triângulo retângulo

1. Trigonometria no triângulo retângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria I Prof.: Rogério

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções trigonométricas, eponenciais e logarítmicas Aula 0 Projeto GAMA

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018.1 Trigonometria 1 Danielly Guabiraba- Engenharia Civil Definição A palavra trigonometria é de origem grega, onde: Trigonos = Triangulo e Metrein = Mensuração

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018. Trigonometria Iris Lima - Engenharia da produção Definição Relação entre ângulos e distâncias; Origem na resolução de problemas práticos relacionados

Leia mais

Aula 5 - Soluções dos Exercícios Propostos

Aula 5 - Soluções dos Exercícios Propostos Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que:

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Trigonometria no triângulo

Leia mais

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma

Leia mais

Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio.

Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Trigonometria Matemática, 1º Ano, Função: conceito Circunferência É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Matemática, 1º Ano,

Leia mais

Apostila de Matemática 06 Trigonometria

Apostila de Matemática 06 Trigonometria Apostila de Matemática 06 Trigonometria.0 Triângulo Retângulo. Introdução Quanto mais o ângulo ou o índice, mais íngreme o triângulo retângulo é. ÍNDICE Altura Afastamento Área do Triângulo Retângulo:

Leia mais

LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas

LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas LISTA DE EXERCÍCIOS Pré-Cálculo UFF GMA 09 Trigonometria no Triângulo Retângulo e Funções Trigonométricas [0] (* Em sala de aula vimos como usar um quadrado e um triângulo equilátero para obter os valores

Leia mais

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos

Leia mais

Proposta de correcção

Proposta de correcção Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do

Leia mais

Esta é só uma amostra do livro do Prof César Ribeiro.

Esta é só uma amostra do livro do Prof César Ribeiro. Esta é só uma amostra do livro do Prof César Ribeiro Para adquirir este (e outros livros do autor) vá ao site: http://wwwescolademestrescom/dicasemacetes Conheça também nosso Blog: http://blogescolademestrescom

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

Trigonometria e relações trigonométricas

Trigonometria e relações trigonométricas Trigonometria e relações trigonométricas Em trigonometria, os lados dos triângulos retângulos assumem nomes particulares, apresentados na figura ao lado. O lado mais comprido, oposto ao ângulo de 90º (ângulo

Leia mais

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades:

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades: Trigonometria Trigonometria Introdução A trigonometria é um importante ramo da Matemática. Derivada da Geometria (o termo trigonometria significa medida dos triângulos) é uma importante ferramenta para

Leia mais

Funções Trigonométricas

Funções Trigonométricas Funções Trigonométricas 1) Na figura abaixo, a área do triângulo ABC é 5 A 120 3 C B (a) (15 3) / 4 (b) (15 3) / 2 (c) 15/2 (d) (15 2) / 4 (e) 15 / 4 2) Sabendo-se que tan(x) = - 4/3 e que x é um arco

Leia mais

Extensão da tangente, secante, cotangente e cossecante, à reta.

Extensão da tangente, secante, cotangente e cossecante, à reta. UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 05- Trigonometria - Parte - Tan-Cot_Sec-Csc PARTE II TANGENTE COTANGENTE SECANTE COSSECANTE Agora estudaremos as funções tangente, cotangente, secante

Leia mais

Prof André Costa de Oliveira. 1 Ano do Ensino médio; Trigonometria: Introdução: ângulos e arcos na circunferência;

Prof André Costa de Oliveira. 1 Ano do Ensino médio; Trigonometria: Introdução: ângulos e arcos na circunferência; Prof André Costa de Oliveira. 1 Ano do Ensino médio; Trigonometria: Introdução: ângulos e arcos na circunferência; Ângulo central: É todo ângulo que possui o seu vértice no centro da circunferência, o

Leia mais

Manual de Matemática. Trigonometria na Circunferência. A área de um triângulo qualquer pode ser definida por:

Manual de Matemática. Trigonometria na Circunferência. A área de um triângulo qualquer pode ser definida por: A área de um triângulo qualquer pode ser definida por: a b sen C a c sen B b c sen A A = ou A = ou A = Eemplo: Determine a área do triângulo ABC. B c = cm 60º A a = 6 cm C a csenb A = 6 A = A = 6 cm Trigonometria

Leia mais

REVISÃO DE CONCEITOS BÁSICOS

REVISÃO DE CONCEITOS BÁSICOS Carlos Aurélio Nadal Doutor em Ciências Geodésicas Professor Titular do Departamento de Geomática - Setor de Ciências da Terra Unidades de medidas que utilizavam o corpo humano 2,54cm 30,48cm 0,9144m 66cm

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

Extensão da tangente, cossecante, cotangente e secante

Extensão da tangente, cossecante, cotangente e secante Extensão da tangente, cossecante, cotangente e secante Definimos as funções trigonométricas tgθ = senθ cosθ para θ (k+1)π, onde k é inteiro. Note que os ângulos do tipo θ = (k+1)π secθ = 1 cosθ, são os

Leia mais

Aula Trigonometria

Aula Trigonometria Aula 4 4. Trigonometria A trigonometria estabelece relações precisas entre os ângulos e os lados de um triângulo. Definiremos as três funções (mesmo se a própria noção de função será estudada no próximo

Leia mais

Funções Trigonométricas8

Funções Trigonométricas8 Licenciatura em Ciências USP/Univesp FUNÇÕES TRIGONOMÉTRICAS 8 137 TÓPICO Gil da Costa Marques 8.1 Trigonometria nos Primórdios 8. Relações Trigonométricas num Triângulo Retângulo 8..1 Propriedades dos

Leia mais

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo MAT111 - Cálculo I - IF - 010 TRIGONOMETRIA As Funçoes trigonométricas no triângulo retângulo Analisando a figura a seguir, temos que os triângulos retângulos OA 1 B 1 e OA B, são semelhantes, pois possuem

Leia mais

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

Medir um arco ou ângulo é compará-lo com outro, unitário.

Medir um arco ou ângulo é compará-lo com outro, unitário. Trigonometria A palavra trigonometria vem do grego (tri+gonos+metron, que significa três+ângulos+medida) e nos remete ao estudo das medidas dos lados, ângulos e outros elementos dos triângulos. Historicamente,

Leia mais

8-Funções trigonométricas

8-Funções trigonométricas 8-Funções trigonométricas Laura Goulart UESB 25 de Março de 2019 Laura Goulart (UESB) 8-Funções trigonométricas 25 de Março de 2019 1 / 45 Vale mais ter um bom nome do que muitas riquezas; e o ser estimado

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO MATEMÁTICA 11º ANO FICHA DE TRABALHO Nº 2 (Trigonometria)

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO MATEMÁTICA 11º ANO FICHA DE TRABALHO Nº 2 (Trigonometria) ESCOL SECUNDÁRI DE LBERTO SMPIO MTEMÁTIC º NO FICH DE TRBLHO Nº (Trigonometria) ESCOLH MÚLTIPL. De um ângulo α sabe-se que sen( α) é positivo e que cosα é negativo. Então α pertence a: º quadrante B º

Leia mais

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y. LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente

Leia mais

Trigonometria - Segunda Parte

Trigonometria - Segunda Parte Capítulo 8 Trigonometria - Segunda Parte 81 Conceitos Preliminares número Dada uma circunferência de raio r, diâmetro d = r, o número é denido como a razão do comprimento C da circunfeência pelo seu diâmetro

Leia mais

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME 2012.2 Parte II Kerolaynh Santos e Tássio Magassy Engenharia Civil Identidades Trigonométricas Definição:

Leia mais

PET-FÍSICA TRIGONOMETRIA NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ

PET-FÍSICA TRIGONOMETRIA NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ PET-FÍSICA TRIGONOMETRIA Aula 5 NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido com apoio do Fundo Nacional de Desenvolvimento

Leia mais

Matemática Ensino Médio Anotações de aula Trigonometira

Matemática Ensino Médio Anotações de aula Trigonometira Matemática Ensino Médio Anotações de aula Trigonometira Prof. José Carlos Ferreira da Silva 2016 1 ÍNDICE Trigonometria Introdução... 04 Ângulos na circunferência...04 Relações trigonométricas no triângulo

Leia mais

Funções Trigonométricas

Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Trigonométricas

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

Matemática. Relações Trigonométricas. Professor Dudan.

Matemática. Relações Trigonométricas. Professor Dudan. Matemática Relações Trigonométricas Professor Dudan www.acasadoconcurseiro.com.br Matemática RELAÇÕES TRIGONOMÉTRICAS Definição A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática

Leia mais

Matemática Régis Cortes TRIGONOMETRIA

Matemática Régis Cortes TRIGONOMETRIA TRIGONOMETRIA 1 TRIGONOMETRIA A palavra TRIGONOMETRIA é formada por 3 radicais gregos : TRI (três), GONO (ângulos) e METRIA (medida). Atualmente a trigonometria não se limita apenas a estudar triângulos

Leia mais

unções Trigonométricas? ...

unções Trigonométricas? ... III TRIGONOMETRIA Por que aprender Funçõe unções Trigonométricas?... É importante saber sobre Funções Trigonométricas, pois estes conhecimentos vão além da matemática. Você encontra a utilidade das funções

Leia mais

Professor Dacar Lista de Exercícios - Revisão Trigonometria

Professor Dacar Lista de Exercícios - Revisão Trigonometria 1. Obtenha a medida, em graus, de um arco AB de comprimento π metros, sabendo que ele está contido em uma circunferência de diâmetro igual a metros. Resposta:. (UFPR) Em uma circunferência de 1 dm de comprimento,

Leia mais

Introdução à Trigonometria 1

Introdução à Trigonometria 1 Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Introdução à Trigonometria

Leia mais

Aula 10 Trigonometria

Aula 10 Trigonometria Aula 10 Trigonometria Metas Nesta aula vamos relembrar o teorema de Pitágoras, introduzir e aplicar as importantes razões trigonométricas, obtidas a partir dos lados de um triângulo retângulo. Objetivos

Leia mais

Círculo Trigonométrico centro na origem raio 1 Ângulo central Unidades de medidas de ângulos; grau Grau: Grado: Radiano:

Círculo Trigonométrico centro na origem raio 1 Ângulo central Unidades de medidas de ângulos; grau Grau: Grado: Radiano: Círculo Trigonométrico A circunferência trigonométrica é de extrema importância para o nosso estudo da Trigonometria, pois é baseado nela que todos os teoremas serão deduzidos. Trata-se de uma circunferência

Leia mais

REVISÃO MATEMÁTICA. 1. Unidades de medida Medida de comprimento - metro (m)

REVISÃO MATEMÁTICA. 1. Unidades de medida Medida de comprimento - metro (m) REVISÃO MATEMÁTICA 1. Unidades de medida 1.1. Medida de comprimento - metro (m) O metro é uma unidade básica para a representação de medidas de comprimento no sistema internacional de unidades (SI). Sheila

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 2º ANO

LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 2º ANO LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA º ANO. (Udesc) Assinale a alternativa que corresponde ao valor da expressão: 7 cos cos sen tg A) B) 5 C) 9 D) E). (Aman) Os pontos P e Q representados no círculo

Leia mais

Olá! Brunna e Fernanda. Matemática. Somos do PET Engenharia Ambiental

Olá! Brunna e Fernanda. Matemática. Somos do PET Engenharia Ambiental Trigonometria Olá! Brunna e Fernanda Somos do PET Engenharia Ambiental Matemática Vamos pensar + Considere cinco circunferências concêntricas de raios diferentes e um mesmo ângulo central subtendendo arcos

Leia mais

Trigonometria no Círculo - Funções Trigonométricas

Trigonometria no Círculo - Funções Trigonométricas Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em

Leia mais

Revisão de Matemática

Revisão de Matemática UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA AGRÍCOLA DENA TOPOGRAFIA BÁSICA Revisão de Matemática Facilitador: Fabrício M. Gonçalves Unidades de medidas Unidade de comprimento (METRO)

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

Notas de Aula de Matemática Básica I

Notas de Aula de Matemática Básica I UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 015-1 IME Instituto de Matemática e Estatística GMA Departamento de Matemática Aplicada Notas de Aula de Matemática Básica I Maria Lúcia Tavares de Campos

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 INTERVALOS, INEQUAÇÕES E MÓDULO

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 INTERVALOS, INEQUAÇÕES E MÓDULO E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 INTERVALOS, INEQUAÇÕES E MÓDULO 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 SUMÁRIO Apresentação ------------------------------------------------- 2 Capítulo 2

Leia mais

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 7 Parte 7 Pré-Cálculo 1 Parte 7 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria

Leia mais

Trigonometria I. Círculo Trigonométrico. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria I. Círculo Trigonométrico. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Círculo Trigonométrico ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Círculo Trigonométrico b) 6 1 Exercícios Introdutórios Exercício 1. Qual dos arcos abaixo é côngruo

Leia mais

Proposta de Resolução. Grupo I. θ = 1. x. Daqui resulta que ( ) ( )< π π π 4 2. π 5π. 1. Se. (x pertence ao 1.º Q e 2x pertence ao 2.º Q).

Proposta de Resolução. Grupo I. θ = 1. x. Daqui resulta que ( ) ( )< π π π 4 2. π 5π. 1. Se. (x pertence ao 1.º Q e 2x pertence ao 2.º Q). Grupo I 1. Se π π π π π x, 4, então < x < < x < π. 4 (x pertence ao 1.º Q e x pertence ao.º Q. Assim, tan( x < 0 e cos > 0 Opção: (A tan( x cos( x x. Daqui resulta que ( ( < tan x cos x 0.. sinx = 0 sinx

Leia mais

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas 1 Exercícios Introdutórios Exercício 1. Quais são os quadrantes

Leia mais

Estudo da Trigonometria (I)

Estudo da Trigonometria (I) Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da

Leia mais

Trigonometria no Círculo - Funções Trigonométricas

Trigonometria no Círculo - Funções Trigonométricas Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em

Leia mais

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática a Lista de Exercícios - Matemática Básica II - 015.1 Professor Márcio Nascimento 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

3. (Ufscar) O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade.

3. (Ufscar) O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade. LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO º TRIMESTRE. (G - ifce) Considere um relógio analógico de doze horas. O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o relógio marca

Leia mais

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução MTEMÁTI - o no Geometria -Trigonometria ropostas de resolução Eercícios de eames e testes intermédios. bservando que os ângulos e RQ têm a mesma amplitude porque são ângulos de lados paralelos), relativamente

Leia mais

Arco Duplo. Se a área do triângulo T 1 é o triplo da área do triângulo T 2, então o valor de cosθ é igual a. a) 1. b) 1. d) 1.

Arco Duplo. Se a área do triângulo T 1 é o triplo da área do triângulo T 2, então o valor de cosθ é igual a. a) 1. b) 1. d) 1. Arco Duplo. (Insper 0) Movendo as hastes de um compasso, ambas de comprimento, é possível determinar diferentes triângulos, como os dois representados a seguir, fora de escala. Se a área do triângulo T

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II ESCOLA SECUNDÁRIA COM º CICLO D DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 4 1 Resolva o exercício 11 da página 80 do seu manual Considere

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 018 / 019 Teste N.º 1 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA

REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB340 TOPOGRAFIA E GEOPROCESSAMENTO I PROF. DR. CARLOS ALBERTO VETTORAZZI REVISÃO DE

Leia mais

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,

Leia mais

Autores: Anderson L.G.Quilles, Cláudio H.Bitto, Sônia F.L.Toffoli e Ulysses Sodré Adaptado pelo Prof. Ardemirio de Barros

Autores: Anderson L.G.Quilles, Cláudio H.Bitto, Sônia F.L.Toffoli e Ulysses Sodré Adaptado pelo Prof. Ardemirio de Barros Autores: Anderson L.G.Quilles, Cláudio H.Bitto, Sônia F.L.Toffoli e Ulysses Sodré Adaptado pelo Prof. Ardemirio de Barros Seno: No plano cartesiano, consideremos uma circunferência trigonométrica, de centro

Leia mais

SEGUNDO ANO - PARTE UM

SEGUNDO ANO - PARTE UM MATEMÁTICA SEGUNDO ANO - PARTE UM NOME COMPLETO: Nº TURMA: TURNO: ANO: 1 Revisão pitágoras: Teorema de Pitágoras (hipotenusa) 2 = (cateto) 2 + (cateto) 2. (a) 2 = (b) 2 + (c) 2. Exemplos: 1. Encontre o

Leia mais

Medida de Ângulos em Radianos

Medida de Ângulos em Radianos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Medida de Ângulos

Leia mais

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS 0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)

Leia mais

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas

Leia mais

CONCEITOS BÁSICOS - REVISÃO

CONCEITOS BÁSICOS - REVISÃO CONCEITOS BÁSICOS - REVISÃO GA116 Sistemas de Referência e Tempo Profª. Érica S. Matos Departamento de Geomática Setor de Ciências da Terra Universidade Federal do Paraná -UFPR Sempre houve a necessidade

Leia mais

1. As funções tangente e secante As expressões para as funções tangente e secante são

1. As funções tangente e secante As expressões para as funções tangente e secante são CÁLCULO L1 NOTAS DA SETA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula definiremos as demais funções trigonométricas, que são obtidas a partir das funções seno e cosseno, e determinaremos

Leia mais

As funções Trigonométricas

As funções Trigonométricas Funções Periódicas Uma função diz-se periódica se se repete ao longo da variável independente com um determinado período constante. Quando se observam fenômenos que se repetem periodicamente, como temperatura

Leia mais

PCNA - Matemática AULA 1

PCNA - Matemática AULA 1 PCNA - Matemática AULA 1 PCNA - Matemática Aritmética: Operações básicas com frações Potenciação Radiciação Módulo Necessário para o Cálculo 1: Polinômios Operações com expressões algébricas Intervalos,

Leia mais

FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA

FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA Vamos lembrar um pouco o ciclo trigonométrico? O eixo y é chamado de eixo das ordenadas e também conhecido como seno, a função seno é positiva no 1º e 2º quadrantes

Leia mais

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 13 de Março de 2014

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 13 de Março de 2014 Funções - Aula 07 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 13 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Funções Inversas Definição

Leia mais

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E FUNÇÕES TRIGONOMÉTRICAS 1. Calcule sen x, tg x e cotg x sendo dado: a)

Leia mais

Plano de trabalho : Trigonometria na Circunferência

Plano de trabalho : Trigonometria na Circunferência FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: Escola Estadual Marques Rebelo MATRÍCULA: 0912761-4 SÉRIE: 1 a Série do Ensino médio. TUTOR (A): ANTôNIO DE ALMEIDA

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 GEOMETRIA ANALÍTICA

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 GEOMETRIA ANALÍTICA E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 GEOMETRIA ANALÍTICA 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 SUMÁRIO Apresentação ---------------------------------------------- 3 Capítulo 5 ---------------------------------------------------4

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais