Existemcorposdeordemq se, e somente se, q éumapotência de primo.

Tamanho: px
Começar a partir da página:

Download "Existemcorposdeordemq se, e somente se, q éumapotência de primo."

Transcrição

1 Corpos Finitos U corpo é, grosso odo, u conjunto no qual podeos soar, subtrair, ultiplicar e dividir por não nulo, no qual vale todas as propriedades usuais de tais operações, incluindo a coutativa da adição e da ultiplicação. Exeplos de corpos são os racionais Q, osreaisr, os coplexos C e o conjunto dos inteiros vistos ódulo p prio Z/pZ. Exeplos de conjuntos que não são corpos são os inteiros Z, os polinôios co coeficientes e R, as atrizes quadradas de orde n e o conjunto dos inteiros vistos ódulo n coposto, Z/nZ estes exeplos são anéis. Aqui, discutios a existência de corpos finitos de orde q. Aorde de u corpo finito éoseunúero de eleentos. 1. O teorea Teorea 1.1. Existecorposdeordeq se, e soente se, q éuapotência de prio. Alé disso, todos os corpos finitos de esa orde são isoorfos, isto é, para cada par de corpos K 1, K 2 de esa orde existe ua bijeção φ: K 1 K 2, chaada isoorfiso, queanté a estrutura algébrica dos corpos, ou seja, φxy = φxφy e φx y = φx φy. Mas não deonstrareos isso aqui, a não ser para Z/pZ. Deonstração Deonstrareos esse fato co o auxílio de alguns leas. 2. Os corpos finitos deve ter p n eleentos: ua pequena incursão algébrica Definição 2.1. U espaço vetorial sobre u corpo K é u conjunto V tal que para todos u, v V etodo λ K, então u v V e λv V. Lea 2.1. Seja K L corpos. Então L é u espaço vetorial sobre K. Deonstração Fica para você, leitor. Ésó verificar que vale as propriedades da definição. Lea 2.2. Seja F u corpo finito de q eleentos e F K, sendo K outro corpo finito. Então K te q n eleentos, onde n é a diensão do espaço vetorial de K sobre F. Deonstração Sendo K e F finitos, a diensão de K sobre F é claraente finita. Seja {u 1,u 2,...,u n } ua base de K. Há q n eleentos e K: as expressões do tipo α 1 u 1 α 2 u 2 α n u n cada α i pode ser escolhido de q aneiras. Antes de continuar, ais ua definição. Definição 2.2. A característica de u corpo K éoenornúero inteiro positivo tal que, sendo a K, a = a a a =0. Setal não existir, a característica do corpo é definida coo zero. } {{ } vezes Por exeplo, Z/pZ é u corpo de característica p. Agora, vereos porque corpos tê orde potência de prio e não potência perfeita. Lea 2.3. A característica de u corpo é prio ou zero.

2 Deonstração Seja 0 a característica de u corpo. Seja 1 a unidade desse corpo e suponha que = pq, p, q inteiros aiores que 1 observe que se trocaros a unidade 1 por outro eleento a do corpo, teos a =0 a a 1 =0 1 = 0, ou seja, não perdeos generalidade. Ao desenvolveros o produto p1 q1 = } {{ } } {{ } p vezes q vezes obteos = pq uns. Logo 1 =p1 q1 =0 p1 =0ouq1 = 0, absurdo, já que éínio. Lea 2.4. Seja p prio.todososcorposdeordep são isoorfos a Z/pZ. Deonstração Seja K u corpo de orde p e 1 a sua unidade. Observe que, sendo K finito, adite característica finita, que só podeserp. Defina o isoorfiso φ: Z/pZ K, φ =1 soaos vezes a unidade e K. Se 1 =n1 então n1 = 0 p n = n, pois p < n<p. Logo os p núeros 0 1=0, 1, 2 1,...,p 11 são distintos e são os eleentos de K. Logo φ é ua bijeção. Iitando a deonstração do lea anterior, podeos provar que φ anté a estrutura algébrica de Z/pZ. Logo os corpos K e Z/pZ são isoorfos. Lea 2.5. Seja F u corpo finito. Então F te orde potência de prio. Deonstração Sendo o corpo finito, então adite característica finita: não épossível que se soaros a unidade vezes sepre resulte u núero diferente; assi 1 =t1 para<t. Daí, t1 = 0, ou seja, F te ua característica que é u divisor prio de t. Seja p a característica de F. Usando a definição de φ do lea anterior, construíos u subcorpo F 0 F isoorfo a Z/pZ. Dolea2.2,F te p n eleentos, sendo n adiensão de F sobre F 0. Pois be, provaos a ida. Mas que garante a existência de corpos finitos de orde igual a qualquer potência de prio? Vaos construir u corpo de orde p n, p prio. 3. Funções geratrizes garante a existência! Ua aneira de construir u corpo de orde p n que é utilizada para construir os corpos utilizados e códigos é toaros u polinôio px irredutível de grau n co coeficientes e Z/pZ e toaros coo eleentos desse corpo os polinôios visto ód px. A soa é a soa de polinôios e é claro que vale todas as propriedades usuais de adição e ultiplicação. E a divisão? Pelo teorea de Bezóut, para qx 0 ód. px existe polinôios ax ebx taisqueax qx bx px. Vendo ód px nota-se que ax = qx 1, de odo que qualquer eleento não nulo adite inverso. Perceba agora que a existência do corpo depende unicaente da existência de polinôios irredutíveis de grau arbitrário e Z/pZ. Para isso usaos o Teorea 3.1. Existe polinôios irredutíveis de grau arbitrário e Z/pZ. Deonstração A prova que dareos aqui é cobinatória! Contareos o núero a n de polinôios irredutíveis e Z/pZ de grau n, utilizando alguas técnicas de contage. Depois ésóprovarquea n > 0 sepre. E [3], foi deonstrado que certos anéis são doínios de fatoração única a partir do fato de sere euclidianos. Co u pouco ais de facilidade já que é trivial que a divisão de polinôios sobre corpos é

3 euclidiana, podeos deonstrar que os anéis de polinôios e Z/pZ tabé são doínios de fatoração única. Considere todos os polinôios ônicos x n c n 1 x n 1 c 0 de grau n, c i Z/pZ, i =0, 1,...,n 1. Há p escolhas para cada a i, logo há p n polinôios desse tipo. Cada polinôio P x fatora unicaente e irredutíveis. Suponha que i desses polinôios tê grau i, i =1, 2,...,n. Soando os graus dos fatores irredutíveis, obteos n n = n. Observando do lado dos polinôios irredutíveis, podeos escolher de a k polinôios irredutíveis, peritindo repetições. O núero de tais escolhas é igual ao núero de soluçõesinteirasdex 1 x 2 x ak =,queé a k 1. Assi, todos os possíveis produtos de 1 fatores irredutíveis de grau 1, 2 fatores irredutíveis de grau 2, etc, são e total de 1 k n Assi, considerando todas as soluções possíveis de n n = n, teos todas as fatorações de todos os p n polinôios, ou seja, = p n 12 2 n n=n 1 k n Isso já define ua recorrência para a n, as uito coplicada. Calculeos valores pequenos para p =2: de a 1 =2 a1 1 a 2 =4 2 a1 2 a 3 a 1 a 2 =8 3 a2 1 a1 3 a 4 a 1 a 3 = obteos a 1 =2,a 2 =1,a 3 =2ea 4 =3. Vaos siplificar significativaente essa recorrência, encontrando, eventualente, ua fórula fechada para a n. Para isso, utilizareos u pouco de funções geratrizes. Você pode encontrar ais sobre elas e [4]. Multiplique abos os ebros de port n e soe para todo n natural. No segundo ebro obteos 1 ua série geoétrica de soa foral 1 pt.assi, n 0 n 0 t n n n n=n 1 k n t 122 nn 12 2 n n=n 1 k n 12 2 n n=n 1 k n t k Teos dois soatórios: u sobre todos os naturais e outro sobre seqüências 1, 2,..., n de naturais tais que n n = n. Considerando os dois soatórios, veos que essa soa já não nos traz ais restrições. Qualquer soa finita do tipo n n é igual a u natural e portanto vai

4 aparecer na soa. O único cuidado que deveos toar é o de considerar seqüências de naturais co u núero finito de eleentos não nulos. Assi, t k 1, 2,... Colocaos u apóstrofo para indicar que a soa ésobreseqüências co u núero finito de teros não nulos. Agora, o ponto crucial de nossos cálculos. Vaos classificar os teros da fora a k 1 t k. Note que a soa acia ésobretodas as seqüências 1, 2,...counúero finito de teros não nulos. Seqüências desse tipo e produtórios coo o que aparece acia caracteriza u desenvolviento de u produto de soas. Por exeplo, vaos voltar nosso foco ao prieiro tero 1 da seqüência. Estaos ultiplicando teros da fora a 1 1 t aqui trocaos 1 por. Logo 1, 2,... 0a1 1 = 0 1a a1 1 2 t 0 t 1 t 2 0a1 1 = 0 = a ,... 2,... 2,... t 0 t k t k t k 1a1 1 1 t 1 2,... Indutivaente, podeos concluir que 1, 2,... t k t 1 2a1 1 1 t k t 2 t k 2,... t k = ak 1 t k 0 Utilizando o conceito de binoial generalizado, ou seja, a aa 1 a n 1 = para a real e n natural, n n! teos a 1 = e, pelo binôio de Newton generalizado, ak 1 0 a 1 a 2 a 3 a! a a 1 a 1 a = 1 = 1! t k = 1 ak 0 t k =1 t k a k

5 Logo 1 t k a k Poderíaos ter chegado nessa identidade u pouco ais rápido, na verdade. O estudante Huberto Silva Naves e eu estávaos discutindo para ver se conseguíaos provar essa identidade se fazer tanta conta e chegaos nesse atalho valeu Huberto!: considere a soa i 0 pi t i.oteroet i indica a quantidade de polinôios ônicos de grau i, quesão fatorados de fora única e irredutíveis ônicos. Assi, t i éu arcador do grau dos polinôios. Agora, considere 1 t k t 2k a k. Ao desenvolveros esse produto, toaos o tero t k do i-ésio fator quando toaos o i-ésio irredutível de grau k que são e total de a k. Logo, considerando todos os graus, t 1 k t 2k ak = p i t i 1 t k a k i 0 Mas, de qualquer fora, é iportante saber anipular algebricaente essas expressões, logo resolvi deixar os cálculos anteriores. Ua aneira de transforar produtórios e soatórios é tirar logaritos dos dois lados. Aqui, log indica logarito natural. Obteos então a k log1 t k = log O desenvolviento de log1 x e série de potências é log1 x =x x2 2 x3 3 = x i i i 1 Portanto a k i 1 t ik i = i 1 pt i i Basta, agora, coparar os teros e t n. No segundo ebro é p n /n. No prieiro, aparece sepre que ik = n i = n/k, ou seja, quando k divide n. Logo k n a k n/k = pn n k n ka k = p n, que é ua recorrência be ais tratável. Vaos rever os casos pequenos que estudaos antes, co p =2: a 1 =2 a 1 2a 2 =4 a 1 3a 3 =8 a 1 2a 2 4a 4 =16 Agora, proveos que a n > 0. Considere a soa k n ka k.forana n, todos os outros no áxio n 1 teros são enores que q n/2,poisjá aparecera e soas anteriores. Deste odo, ka k < n 1q n/2 na n q n < n 1q n/2 na n na n >q n/2 q n/2 n 1> 0 k n

6 Podeos encontrar ua fórula fechada para a n apartirdafórula de inversão de Möbius cuja deonstração pode ser encontrada e [5]: fn = gd, para todo n Z gn = µdf d n d n n d,paratodon Z, onde éafunção de Möbius. Teos { 1 se n =1 µn = 1 r se n é o produto de r prios distintos 0 caso contrário a n = µnp n/d d n 4. Referências bibliográficas [1] I. N. Herstein. Topics in Algebra, Wiley. U livro de Álgebra Abstrata para que quer aprender o básico e ais u pouco dessa fascinante e iportantíssia área da Mateática. Parte da deonstração do teorea sobre corpos finitos a ida foi retirada do Capítulo 7 cujo título é Selected Topics! deste livro. [2] Peter J. Caeron. Cobinatorics: Topics, Techniques, Algoriths, Cabridge Press. U livro de Cobinatória. Não o li o suficiente, as a volta do teorea sobre corpos finitos foi retirada deste livro, do Capítulo 4, sobre recorrências e funções geratrizes. [3] Guilhere Fujiwara. Inteiros de Gauss e Inteiros de Eisenstein, in: Revista Eureka! 14. Acho que éo prieiro artigo que fala de aplicações da Álgebra Abstrata fora dos tradicionais núeros ódulo. A referência [1] tabé fala de inteiros de Gauss, as essa referência é claraente ais acessível e ais didática, alé de conter fatos be ais interessante para o público olípico. [4] Eduardo Tengan. Séries Forais, in: Revista Eureka! 11. U ótio artigo para que quer coeçar a estudar funções geratrizes. Lá te u resultado iportante sobre partições e u étodo para encontrar teros gerais de recorrências coo, por exeplo, Fibonacci. Recoendo tabé o fantástico livro Concrete Matheatics, do grande Donald E. Knuth e, para calcular certos soatórios, o livro A = B, demarkopetkovšek, Herbert S. Wilf e Doron Zeilberger. Aliás, este livro pode ser baixado e ou [5] José Plínio de Oliveira Santos. Introdução à Teoria dos Núeros, IMPA. U bo livro introdutório para teoria dos núeros. Vai u pouco alé de congruências, Euler-Ferat e raízes priitivas, falando sobre funções aritéticas e partições.

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

TEORIA ELETRÔNICA DA MAGNETIZAÇÃO

TEORIA ELETRÔNICA DA MAGNETIZAÇÃO 113 17 TEORA ELETRÔNCA DA MANETZAÇÃO Sabeos que ua corrente elétrica passando por u condutor dá orige a u capo agnético e torno deste. A este capo daos o noe de capo eletro-agnético, para denotar a sua

Leia mais

Aplicações de Combinatória e Geometria na Teoria dos Números

Aplicações de Combinatória e Geometria na Teoria dos Números Aplicações de Combinatória e Geometria na Teoria dos Números Nesse artigo vamos discutir algumas abordagens diferentes na Teoria dos Números, no sentido de envolverem também outras grandes áreas, como

Leia mais

Teorema Chinês dos Restos

Teorema Chinês dos Restos Teorea Chinês dos Restos Sauel Barbosa 22 de arço de 2006 Teorea 1. (Bézout) Seja a e b inteiros não nulos e d seu dc. Então existe inteiros x e y tais que d = ax + by. Se a e b são positivos podeos escolher

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Nuérico Faculdade de ngenhari Arquiteturas e Urbaniso FAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronoia) VI Integração Nuérica Objetivos: O objetivo desta aula é apresentar o étodo de integração

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução

Leia mais

Revisões de análise modal e análise sísmica por espectros de resposta

Revisões de análise modal e análise sísmica por espectros de resposta Revisões de análise odal e análise sísica por espectros de resposta Apontaentos da Disciplina de Dinâica e Engenharia Sísica Mestrado e Engenharia de Estruturas Instituto Superior Técnico Luís Guerreiro

Leia mais

Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio de Fatoração Única.

Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio de Fatoração Única. Universidade Estadual de Campinas Instituto de Matemática, Estatística e Computação Científica Departamento de Matemática Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio

Leia mais

CIRCUITOS ELÉTRICOS REGIME PERMANENTE SENOIDAL, REPRESENTAÇÃO FASORIAL E POTÊNCIAS ELÉTRICAS

CIRCUITOS ELÉTRICOS REGIME PERMANENTE SENOIDAL, REPRESENTAÇÃO FASORIAL E POTÊNCIAS ELÉTRICAS CICUIOS EÉICOS EGIME PEMANENE SENOIDA, EPESENAÇÃO FASOIA E As análises de circuitos até o presente, levou e consideração a aplicação de fontes de energia elétrica a u circuito e conseqüente resposta por

Leia mais

Objetivo: converter um comando de posição de entrada em uma resposta de posição de saída.

Objetivo: converter um comando de posição de entrada em uma resposta de posição de saída. Prof. Celso Módulo 0 83 SISTEMAS DE CONTOLE DE POSIÇÃO Objetivo: converter u coando de posição de entrada e ua resposta de posição de saída. Aplicações: - antenas - braços robóticos - acionadores de disco

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

APLICAÇÃO DO MÉTODO DOS MÍNIMOS QUADRADOS: PROBLEMA DO PARAQUEDISTA EM QUEDA LIVRE

APLICAÇÃO DO MÉTODO DOS MÍNIMOS QUADRADOS: PROBLEMA DO PARAQUEDISTA EM QUEDA LIVRE APLICAÇÃO DO MÉTODO DOS MÍNIMOS QUADRADOS: PROBLEMA DO PARAQUEDISTA EM QUEDA LIVRE Tatiana Turina Kozaa 1 Graziela Marchi Tiago E diversas áreas coo engenharia, física, entre outras, uitas de suas aplicações

Leia mais

Método Simbólico. Versus. Método Diagramas de Euler. Diagramas de Venn

Método Simbólico. Versus. Método Diagramas de Euler. Diagramas de Venn IV Método Sibólico Versus Método Diagraas de Euler E Diagraas de Venn - 124 - Método Sibólico Versus Método Diagraas de Euler e Diagraas de Venn Para eplicar o que é o Método Sibólico e e que aspecto difere

Leia mais

1 Base de um Espaço Vetorial

1 Base de um Espaço Vetorial Disciplina: Anéis e Corpos Professor: Fernando Torres Membros do grupo: Blas Melendez Caraballo (ra143857), Leonardo Soriani Alves (ra115465), Osmar Rogério Reis Severiano (ra134333) Ramon Códamo Braga

Leia mais

MÉTODOS DISCRETOS EM TELEMÁTICA

MÉTODOS DISCRETOS EM TELEMÁTICA 1 MÉTODOS DISCRETOS EM TELEMÁTICA MATEMÁTICA DISCRETA Profa. Marcia Mahon Grupo de Pesquisas em Comunicações - CODEC Departamento de Eletrônica e Sistemas - UFPE Outubro 2003 2 CONTEÚDO 1 - Introdução

Leia mais

Aula 6 Primeira Lei da Termodinâmica

Aula 6 Primeira Lei da Termodinâmica Aula 6 Prieira Lei da Terodinâica 1. Introdução Coo vios na aula anterior, o calor e o trabalho são foras equivalentes de transferência de energia para dentro ou para fora do sistea. 2. A Energia interna

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Fórmula versus Algoritmo

Fórmula versus Algoritmo 1 Introdução Fórmula versus Algoritmo na resolução de um problema 1 Roberto Ribeiro Paterlini 2 Departamento de Matemática da UFSCar No estudo das soluções do problema abaixo deparamos com uma situação

Leia mais

Polos Olímpicos de Treinamento. Aula 2. Curso de Teoria dos Números - Nível 2. Divisibilidade II. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 2. Curso de Teoria dos Números - Nível 2. Divisibilidade II. Prof. Samuel Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula Divisibilidade II Definição 1. Dados dois inteiros a e b, com a 0, dizemos que a divide b ou que a é um divisor

Leia mais

Aula 4. Inferência para duas populações.

Aula 4. Inferência para duas populações. Aula 4. Inferência para duas populações. Teos duas aostras independentes de duas populações P e P : população P aostra x, x,..., x n população P aostra y, y,..., y Observação: taanho de aostras pode ser

Leia mais

A equação do 2º grau

A equação do 2º grau A UA UL LA A equação do 2º grau Introdução Freqüentemente, ao equacionarmos um problema, obtemos uma equação na qual a incógnita aparece elevada ao quadrado. Estas são as chamadas equações do 2º grau.

Leia mais

2 Podemos representar graficamente o comportamento de (1) para alguns ângulos φ, que são mostrado nas figuras que se seguem.

2 Podemos representar graficamente o comportamento de (1) para alguns ângulos φ, que são mostrado nas figuras que se seguem. POTÊNCIA EM CARGAS GENÉRICAS Prof. Antonio Sergio C. de Menezes. Depto de Engenharia Elétrica Muitas cargas nua instalação elétrica se coporta de fora resistiva ou uito aproxiadaente coo tal. Exeplo: lâpadas

Leia mais

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17.

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17. Prova Teoria de Números 23/04/203 Nome: RA: Escolha 5 questões.. Mostre que 2 67 + 3 34 é múltiplo de 7. Solução: Pelo teorema de Fermat 2 6 (mod 7 e 3 7 3 (mod 7. Portanto, 2 67 = 2 64+3 = ( 2 6 4 8 8

Leia mais

Sobre Domínios Euclidianos

Sobre Domínios Euclidianos Sobre Domínios Euclidianos Clarissa Bergo Bianca Fujita Lino Ramada João Schwarz Felipe Yukihide Setembro de 2011 Resumo Neste texto, apresentaremos formalmente o que vem a ser domínio euclidiano, alguns

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA 1 DOCÊNCIA UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA Fabio da Costa Rosa Fernanda Machado Greicy Kelly Rockenbach da Silva

Leia mais

F. Jorge Lino Módulo de Weibull MÓDULO DE WEIBULL. F. Jorge Lino

F. Jorge Lino Módulo de Weibull MÓDULO DE WEIBULL. F. Jorge Lino MÓDULO DE WEIBULL F. Jorge Lino Departaento de Engenharia Mecânica e Gestão Industrial da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal, Telf. 22508704/42,

Leia mais

:: Física :: é percorrida antes do acionamento dos freios, a velocidade do automóvel (54 km/h ou 15 m/s) permanece constante.

:: Física :: é percorrida antes do acionamento dos freios, a velocidade do automóvel (54 km/h ou 15 m/s) permanece constante. Questão 01 - Alternativa B :: Física :: Coo a distância d R é percorrida antes do acionaento dos freios, a velocidade do autoóvel (54 k/h ou 15 /s) peranece constante. Então: v = 15 /s t = 4/5 s v = x

Leia mais

5 Equacionando os problemas

5 Equacionando os problemas A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar

Leia mais

= C. (1) dt. A Equação da Membrana

= C. (1) dt. A Equação da Membrana A Equação da Mebrana Vaos considerar aqui ua aproxiação e que a célula nervosa é isopotencial, ou seja, e que o seu potencial de ebrana não varia ao longo da ebrana. Neste caso, podeos desprezar a estrutura

Leia mais

Equações do segundo grau

Equações do segundo grau Módulo 1 Unidade 4 Equações do segundo grau Para início de conversa... Nesta unidade, vamos avançar um pouco mais nas resoluções de equações. Na unidade anterior, você estudou sobre as equações de primeiro

Leia mais

R domínio de fatoração única implica R[x] também

R domínio de fatoração única implica R[x] também R domínio de fatoração única implica R[x] também Pedro Manfrim Magalhães de Paula 4 de Dezembro de 2013 Denição 1. Um domínio integral R com unidade é um domínio de fatoração única se 1. Todo elemento

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum

Leia mais

Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima.

Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. 1 /2013 Para calcular Hom(G 1,G 2 ) ou Aut(G) vocês vão precisar ter em

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros . Conjuntos numéricos Objetivo: aprender sobre conjuntos numéricos, suas operações e propriedades..1 Conjunto dos números naturais (IN) O conjunto dos números naturais é representado por IN e IΝ{0;1;;;...}.

Leia mais

Estruturas de Betão Armado II 10 Lajes Fungiformes Análise Estrutural

Estruturas de Betão Armado II 10 Lajes Fungiformes Análise Estrutural Estruturas de Betão Arado II 10 Lajes Fungifores Análise Estrutural A. P. Raos Out. 006 1 10 Lajes Fungifores Análise Estrutural Breve Introdução Histórica pbl 1907 Turner & Eddy M (???) 50 1914 Nichols

Leia mais

(a) u D sse u d para todo o d D. (b) Qualquer associado de uma unidade é uma unidade. (c) Qualquer associado de um elemento irredutível é irredutível.

(a) u D sse u d para todo o d D. (b) Qualquer associado de uma unidade é uma unidade. (c) Qualquer associado de um elemento irredutível é irredutível. Exercícios 29 Exercícios 1.1. Mostre que num domínio de integridade D: (a) a b sse b a. (b) a = b sse a b. (c) a = D sse a D. (d) D[x] = D. 1.2. Mostre que num domínio de integridade D: (a) u D sse u d

Leia mais

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Teoria dos Números 1 Noções Básicas A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Z = {..., 4, 3, 2, 1, 0, 1, 2, 3, 4...}. Ela permite resolver de

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

Sistema de Numeração e Aritmética Básica

Sistema de Numeração e Aritmética Básica 1 Sistema de Numeração e Aritmética Básica O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional. Na base 10, dispomos de 10 algarismos para

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I.

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I. Diagonalização ortogonal de matrizes simétricas Detalhes sobre a Secção.3 dos Apontamentos das Aulas teóricas de Álgebra Linear Cursos: LMAC, MEBiom e MEFT (semestre, 0/0, Prof. Paulo Pinto) Recordamos

Leia mais

Aula: Equações polinomiais

Aula: Equações polinomiais Aula: Equações polinomiais Turma 1 e 2 Data: 05/09/2012-12/09/2012 Tópicos Equações polinomiais. Teorema fundamental da álgebra. Raízes reais e complexas. Fatoração e multiplicação de raízes. Relações

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

2 O Preço Spot de Energia Elétrica do Brasil

2 O Preço Spot de Energia Elétrica do Brasil 2 O Preço Spot de Energia Elétrica do Brasil Inicialente, vai se expor de ua fora uita sucinta coo é criado o preço spot de energia elétrica do Brasil, ais especificaente, o CMO (Custo Marginal de Operação).

Leia mais

Curso Profissional de Técnico de Energias Renováveis 1º ano. Módulo Q 2 Soluções.

Curso Profissional de Técnico de Energias Renováveis 1º ano. Módulo Q 2 Soluções. Curso Profissional de Técnico de Energias Renováveis 1º ano Docuento de apoio Módulo Q 2 Soluções. 1. Dispersões 1.1. Disperso e dispersante Dispersão Ua dispersão é ua istura de duas ou ais substâncias,

Leia mais

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio Material Teórico - Aplicações das Técnicas Desenvolvidas Exercícios e Tópicos Relacionados a Combinatória Segundo Ano do Ensino Médio Prof Cícero Thiago Bernardino Magalhães Prof Antonio Caminha Muniz

Leia mais

Revisão para a Bimestral 8º ano

Revisão para a Bimestral 8º ano Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações

Leia mais

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2013-7-31 1/15 Como o Conhecimento Matemático é Organizado Definições Definição: um enunciado que descreve o significado de um termo.

Leia mais

Resumo com exercícios resolvidos do assunto: Sistemas de Partículas

Resumo com exercícios resolvidos do assunto: Sistemas de Partículas www.engenhariafacil.weebly.co Resuo co exercícios resolvidos do assunto: Sisteas de Partículas (I) (II) (III) Conservação do Moento Centro de Massa Colisões (I) Conservação do Moento Na ecânica clássica,

Leia mais

ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE

ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE MAT30 200/ O objetivo destas notas é ilustrar como a ideia de fazer aproximações permite uma compreensão melhor de diversos problemas de combinatória e probabilidade..

Leia mais

Disciplina: Introdução à Álgebra Linear

Disciplina: Introdução à Álgebra Linear Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus: Mossoró Curso: Licenciatura Plena em Matemática Disciplina: Introdução à Álgebra Linear Prof.: Robson Pereira de Sousa

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

RESOLUÇÃO DAS QUESTÔES DE MATEMÁTICA DO VESTIBULAR DA UNICAMP 2006. 1 POR PROFESSORA MARIA ANTÔNIA C. GOUVEIA.

RESOLUÇÃO DAS QUESTÔES DE MATEMÁTICA DO VESTIBULAR DA UNICAMP 2006. 1 POR PROFESSORA MARIA ANTÔNIA C. GOUVEIA. RESOLUÇÃO DAS QUESTÔES DE MATEMÁTICA DO VESTIBULAR DA UNICAMP 006. POR PROFESSORA MARIA ANTÔNIA C. GOUVEIA. 5. O gráfico ao lado ostra o total de acidentes de trânsito na cidade de Capinas e o total de

Leia mais

Afinação e Temperamento

Afinação e Temperamento Hidetoshi Arakawa Afinação e Teperaento Teoria e rática Hidetoshi Arakawa 00 Edição do Autor Capinas, Brasil upleento Hidetoshi Arakawa Caixa ostal 0 Capinas, 08-90 arakawah@correionet.co.br 00 refácio

Leia mais

SUMÁRIO 1. AULA 6 ENDEREÇAMENTO IP:... 2

SUMÁRIO 1. AULA 6 ENDEREÇAMENTO IP:... 2 SUMÁRIO 1. AULA 6 ENDEREÇAMENTO IP:... 2 1.1 Introdução... 2 1.2 Estrutura do IP... 3 1.3 Tipos de IP... 3 1.4 Classes de IP... 4 1.5 Máscara de Sub-Rede... 6 1.6 Atribuindo um IP ao computador... 7 2

Leia mais

Conceitos e fórmulas

Conceitos e fórmulas 1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que

Leia mais

Calculando probabilidades

Calculando probabilidades A UA UL LA Calculando probabilidades Introdução evento E é: P(E) = Você já aprendeu que a probabilidade de um nº deresultadosfavoráveis nº total de resultados possíveis Nesta aula você aprenderá a calcular

Leia mais

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Breve referência à Teoria de Anéis Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Anéis Há muitos conjuntos, como é o caso dos inteiros, dos inteiros módulo n ou dos números reais, que consideramos

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD)

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD) Domínios de conteúdos: Números e Operações (NO) Geometria e Medida (GM) Funções, Sequências e Sucessões (FSS) Álgebra (ALG) Organização e Tratamento de Dados (OTD) Domínio NO7 9 GM7 33 Números racionais

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

3.3. O Ensaio de Tração

3.3. O Ensaio de Tração Capítulo 3 - Resistência dos Materiais 3.1. Definição Resistência dos Materiais é u rao da Mecânica plicada que estuda o coportaento dos sólidos quando estão sujeitos a diferentes tipos de carregaento.

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

A Teoria dos Jogos é devida principalmente aos trabalhos desenvolvidos por von Neumann e John Nash.

A Teoria dos Jogos é devida principalmente aos trabalhos desenvolvidos por von Neumann e John Nash. Teoria dos Jogos. Introdução A Teoria dos Jogos é devida principalente aos trabalhos desenvolvidos por von Neuann e John Nash. John von Neuann (*90, Budapeste, Hungria; 957, Washington, Estados Unidos).

Leia mais

Álgebra Linear I - Aula 1. Roteiro

Álgebra Linear I - Aula 1. Roteiro Álgebra Linear I - Aula 1 1. Resolução de Sisteas Lineares. 2. Métodos de substituição e escalonaento. 3. Coordenadas e R 2 e R 3. Roteiro 1 Resolução de Sisteas Lineares Ua equação linear é ua equação

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão preliinar 7 de setebro de 00 Notas de Aula de ísica 05. LEIS DE NEWON... ONDE ESÃO AS ORÇAS?... PRIMEIRA LEI DE NEWON... SEGUNDA LEI DE NEWON... ERCEIRA LEI DE NEWON... 4 APLICAÇÕES DAS LEIS DE

Leia mais

ANÁLISE DO LUGAR DAS RAÍZES

ANÁLISE DO LUGAR DAS RAÍZES VII- &$3Ì78/ 9,, ANÁLISE DO LUGAR DAS RAÍZES 7.- INTRODUÇÃO O étodo de localização e análise do lugar das raízes é ua fora de se representar graficaente os pólos da função de transferência de u sistea

Leia mais

TEORIA DOS CONJUNTOS Símbolos

TEORIA DOS CONJUNTOS Símbolos 1 MATERIAL DE APOIO MATEMÁTICA Turmas 1º AS e 1º PD Profº Carlos Roberto da Silva A Matemática apresenta invenções tão sutis que poderão servir não só para satisfazer os curiosos como, também para auxiliar

Leia mais

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ. Questão Sistemas de Numeração No sistema de numeração de base 2, o numeral mais simples de

Leia mais

UMA HEURÍSTICA PARA RESOLUÇÃO DO PROBLEMA DE CARREGAMENTO DE CONTAINER

UMA HEURÍSTICA PARA RESOLUÇÃO DO PROBLEMA DE CARREGAMENTO DE CONTAINER Pesquisa Operacional na Sociedade: Educação, Meio Aente e Desenvolviento 2 a 5/09/06 Goiânia, GO UMA HEURÍSTICA PARA RESOLUÇÃO DO PROBLEMA DE CARREGAMENTO DE CONTAINER E. Vendraini Universidade Estadual

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

Contagem. Prof. Dr. Leandro Balby Marinho. Matemática Discreta. Fundamentos Inclusão/Exclusão Princípio da Casa dos Pombos Permutações Combinações

Contagem. Prof. Dr. Leandro Balby Marinho. Matemática Discreta. Fundamentos Inclusão/Exclusão Princípio da Casa dos Pombos Permutações Combinações Contagem Prof. Dr. Leandro Balby Marinho Matemática Discreta Prof. Dr. Leandro Balby Marinho 1 / 39 UFCG CEEI Motivação Contagem e combinatória são partes importantes da matemática discreta. Se resumem

Leia mais

Neste pequeno artigo resolveremos o problema 2 da USAMO (USA Mathematical Olympiad) 2005: (x 3 + 1)(x 3 + y) = 147 157 (x 3 + y)(1 + y) = 157 147 z 9

Neste pequeno artigo resolveremos o problema 2 da USAMO (USA Mathematical Olympiad) 2005: (x 3 + 1)(x 3 + y) = 147 157 (x 3 + y)(1 + y) = 157 147 z 9 Ésófatorar... Serámesmo? Neste equeno artigo resolveremos o roblema 2 da USAMO (USA Mathematical Olymiad) 2005: Problema. Prove que o sistema x 6 + x + x y + y = 147 157 x + x y + y 2 + y + z 9 = 157 147

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

Medidas de Desempenho em Computação Paralela

Medidas de Desempenho em Computação Paralela Universidade Tecnológica Federal do Paraná (UTFPR) Capus Curitiba Prograa de Pós-graduação e Engenharia e Inforática (CPGEI) Laboratório de Bioinforática Medidas de Desepenho e Coputação Paralela Heitor

Leia mais

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48 Conteúdo 1 Princípios de Contagem e Enumeração Computacional Permutações com Repetições Combinações com Repetições O Problema do Troco Principio da Casa dos Pombos > Princípios de Contagem e Enumeração

Leia mais

Expansão linear e geradores

Expansão linear e geradores Espaços Vectoriais - ALGA - 004/05 4 Expansão linear e geradores Se u ; u ; :::; u n são vectores de um espaço vectorial V; como foi visto atrás, alguns vectores de V são combinação linear de u ; u ; :::;

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

MATERIAL MATEMÁTICA I

MATERIAL MATEMÁTICA I MATERIAL DE MATEMÁTICA I CAPÍTULO I REVISÃO Curso: Administração 1 1. Revisão 1.1 Potência de Epoente Inteiro Seja a um número real e m e n números inteiros positivos. Podemos observar as seguintes propriedades

Leia mais

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio Material Teórico - Módulo de Métodos sofisticados de contagem Princípio das Casas dos Pombos Segundo Ano do Ensino Médio Prof. Cícero Thiago Bernardino Magalhães Prof. Antonio Caminha Muniz Neto Em Combinatória,

Leia mais

Ex 4.3 O anel é construído pelos polinômios S 1 1 S 2. x S 3. x 1 S 4. x 2 S 5. x 2 1 S 6. x 2 x S 7. x 2 x 1 S 8. x 3 S 9

Ex 4.3 O anel é construído pelos polinômios S 1 1 S 2. x S 3. x 1 S 4. x 2 S 5. x 2 1 S 6. x 2 x S 7. x 2 x 1 S 8. x 3 S 9 Ex. 4.1 As palavras código são c 0 = [0 0 0 0 0 0 0], c 1 = [0 0 0 1 1 0 1], c 2 = [0 0 1 1 0 1 0], c 3 = [0 0 1 0 1 1 1], c 4 = [0 1 1 0 1 0 0], c 5 = [0 1 1 1 0 0 1], c 6 = [0 1 0 1 1 1 0], c 7 = [0

Leia mais

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade Corpos Definição Um corpo é um anel comutativo com elemento identidade em que todo o elemento não nulo é invertível. Muitas vezes é conveniente pensar em ab 1 como sendo a b, quando a e b são elementos

Leia mais

5 Controle de Tensão através de Transformador com Tap Variável no Problema de Fluxo de Potência

5 Controle de Tensão através de Transformador com Tap Variável no Problema de Fluxo de Potência 5 Controle de Tensão através de Transforador co Tap Variável no Problea de Fluxo de Potência 5.1 Introdução E sisteas elétricos de potência, os ódulos das tensões sofre grande influência das variações

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

¹CPTL/UFMS, Três Lagoas, MS,Brasil, oliveiralimarafael@hotmail.com. ²CPTL/UFMS, Três Lagoas, MS, Brasil.

¹CPTL/UFMS, Três Lagoas, MS,Brasil, oliveiralimarafael@hotmail.com. ²CPTL/UFMS, Três Lagoas, MS, Brasil. Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 36 INTRODUÇÃO A CRIPTOGRAFIA RSA Rafael Lima Oliveira¹, Prof. Dr. Fernando Pereira de Souza². ¹CPTL/UFMS, Três Lagoas,

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

MÓDULO 4 DISTRIBUIÇÃO DE FREQÜÊNCIAS

MÓDULO 4 DISTRIBUIÇÃO DE FREQÜÊNCIAS MÓDULO 4 DISTRIBUIÇÃO DE FREQÜÊNCIS Como vimos no módulo 1, para que nós possamos extrair dos dados estatísticos de que dispomos a correta análise e interpretação, o primeiro passo deverá ser a correta

Leia mais

Princípio da Casa dos Pombos I

Princípio da Casa dos Pombos I Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 7 Princípio da Casa dos Pombos I O princípio da casa dos pombos também é conhecido em alguns países (na Rússia,

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

AULA 6 LÓGICA DOS CONJUNTOS

AULA 6 LÓGICA DOS CONJUNTOS Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem

Leia mais