Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica COB781. Módulo 2

Tamanho: px
Começar a partir da página:

Download "Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica COB781. Módulo 2"

Transcrição

1 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica COB781 Módulo 2 Thévenin Norton Helmholtz Mayer Ohm Galvani

2 Conteúdo 2 - Elementos básicos de circuito e suas associações Resistores lineares e invariantes Curto circuito Circuito aberto Resistor linear e variante Resistores não lineares e invariantes Interruptor Diodo Diodo túnel Associação de resistores Associação série Associação paralela Fonte de tensão independente Associação de fontes de tensão Fonte de corrente independente Associações de fontes de corrente Modelo de Thévenin e Norton Associação de fontes e resistores Divisor de tensão Divisor de corrente Fontes controladas Exercícios...17

3 2 Elementos básicos de circuito e suas associações Resistor, diodo, transistor, válvula, capacitor, indutor e transformador, entre outros elementos de circuito, são elementos reais que podem ser representados por modelos ou associação de modelos, cada qual apresentando apenas 1 propriedade física. 2.1 Resistores lineares e invariantes Os resistores são os elementos de circuito mais comuns e concentram a característica de resistência elétrica, ou seja de oposição a passagem da corrente elétrica. Existem diversos símbolos para o resistor: na Europa se utiliza um retângulo (como os elementos apresentados no capítulo anterior), nos Estados Unidos e no Brasil o símbolo mais comum é apresentado na figura abaixo. O resistor é caracterizado pelas seguintes relações: v t =R i t, onde R é resistência (Ohm Ω). i t =G v t, onde G é condutância (Siemens S) R=G 1 Normalmente R e G são lineares (como no gráfico da figura abaixo) e invariantes com o tempo, mas isto não é uma exigência. Princípios de Instrumentação Biomédica COB781 1

4 OBS.: São condições essenciais para a linearidade: f x = f x f x 1 x 2 = f x 1 f x Curto circuito R=0. Isto significa que a diferença de tensão entre dois terminais de um curto circuito é zero, independente da corrente que circula por este elemento. Idealmente o curto circuito é representado por um fio. Num gráfico v x i o curto circuito se caracteriza por ser uma reta paralela ao eixo da corrente e que passa pela origem Circuito aberto R=. Isto significa que não há circulação de corrente pelo circuito aberto, independente da tensão aplicada a seus terminais. Idealmente o curto circuito é representado por dois nós não conectados. Num gráfico v x i o curto circuito se caracteriza por ser uma reta paralela ao eixo da tensão e que passa pela origem. 2.2 Resistores não lineares e invariantes Aqueles que apresentam uma relação não linear entre tensão e corrente porém são invariantes com o tempo (não são funções do tempo). Princípios de Instrumentação Biomédica COB781 2

5 2.2.1 Interruptor Uma chave ideal pode ser modelada por por um curto circuito ou por circuito aberto dependendo de estar fechada ou aberta respectivamente. Um modelo mais realístico pode representar as resistência de contatos elétricos (R1) quando a chave está fechada e uma resistência de isolação (R2) de quando a chave esta aberta. Outros modelos para a chave podem ser utilizados, como na figura abaixo Diodo Um elemento com comportamento muito semelhante ao de uma chave comutada por tensão é o diodo eletrônico, cujo símbolo e curva v x i são apresentados na figura abaixo. Observe que a curva v x i não é simétrica o que significa que este elemento apresenta polaridade, ou seja, dependendo de como ele for ligado ao circuito este terá um comportamento diferente. Princípios de Instrumentação Biomédica COB781 3

6 Tradicionalmente o diodo é modelado pela equação q v t i t =I S e 1 K T onde K T q 26mV para a temperatura ambiente. É muito comum, na prática, simplificar os cálculos de circuitos que utilizam diodos substituindo seu comportamento real (descrito pela exponencial acima) por uma chave controlada (um curto circuito ou circuito aberto). Eventualmente este modelo pode estar associada com outros elementos como fontes e resistores. 2.3 Associação de resistores Associação série A associação série de resistores é aquela onde um terminal de um resistor se conecta a um terminal do próximo formando uma seqüência de resistores. Esta associação, ilustrada na figura abaixo pelos resistores e R 2, tem um comportamento elétrico semelhante ao de uma resistência equivalente R EQ entre os nós A e C da associação. Princípios de Instrumentação Biomédica COB781 4

7 O valor da resistência equivalente pode ser calculada da seguinte maneira: v=v R1 v R2 v=i I R 2 v= I R 2 v=i R EQ R EQ = R 2 Genericamente R EQ = R n (a resistência equivalente é maior que todas as resistências individuais da associação). Cabe ressaltar que a resistência equivalente da associação é equivalente apenas do ponto de vista da tensão e da corrente nós A e C (na figura acima) pois a potência dissipada por cada resistor será diferente da potência dissipada pelo equivalente assim como a tensão sobre cada resistor será diferente da tensão sobre o resistor equivalente. A figura acima também apresenta um símbolo não utilizado anteriormente. Um triângulo interligado ao nó C. Este símbolo marca o nó como se fosse um nome e costuma ser utilizado para representar uma referência de tensão (também chamado de terra, massa, chassi, retorno...). Quando ele está presente no circuito as medidas de diferença de tensão são dadas com relação a este ponto. Abaixo vemos curvas de tensão em função da corrente para a associação série apresentada anteriormente. Princípios de Instrumentação Biomédica COB781 5

8 A tensão V a equivale a diferença de tensão V A V C, a tensão V b equivale a diferença de tensão V B V C, por outro lado a tensão V A, B ou V AB equivale a diferença de tensão V A V B. Estas representações de diferenças de potencial são comuns em circuitos e sempre que se deseja expressar uma diferença de tensão entre a referência e um nó qualquer do circuito basta indicar o nome deste nó. Quando a diferença de potencial se refere a uma medida que não inclua o nó de referência então se indicam os dois nós para os quais a diferença de tensão esta sendo fornecida ou solicitada Associação paralela A associação paralela de resistores é aquela onde um terminal de cada resistor se conecta a um determinado nó e todos os demais terminais se conectam a um outro nó. Esta associação, ilustrada na figura abaixo pelos resistores e R 2, tem um comportamento elétrico semelhante ao de uma resistência equivalente R EQ entre os nós A e C da associação. Princípios de Instrumentação Biomédica COB781 6

9 O valor da condutância equivalente pode ser calculado da seguinte maneira. i TOTAL =i R1 i R2 i TOTAL =v G 1 v G 2 i TOTAL =v G 1 G2 i TOTAL =v G EQ G EQ =G 1 G 2 Genericamente G EQ = G n (a condutância equivalente é maior que todas as condutâncias individuais da associação, ou seja a resistência equivalente é menor que todas as resistências da associação). Novamente aqui, assim como em todas as associações realizadas nesta disciplina, o conceito de equivalente está diretamente relacionado com o comportamento da tensão e da corrente entre dois nós, ou seja, para que dois circuitos sejam equivalentes a equação de tensão em função de corrente para quaisquer dois nós deve ser igual em ambos os circuitos. A figura abaixo mostra o gráfico das condutâncias formadas por, R 2 e R EQ Princípios de Instrumentação Biomédica COB781 7

10 2.4 Fonte de tensão independente As fontes de tensão são elementos capazes de absorver ou fornecer energia a circuitos mantendo constante a diferença de potencial entre seus terminais, independentemente da corrente que circule pela fonte. Existem diversos símbolos para a fonte mas o mais comum está representado na figura abaixo. Observe na figura abaixo que a curva v x i da fonte de tensão é uma reta paralela ao eixo da corrente, como se fosse um curto circuito (a resistência de uma fonte de tensão ideal é zero) porém esta curva não passa pela origem, ou seja não tem um comportamento linear. Correntes positivas estão associadas ao sentido de referência mostrado na figura acima e nesta região a fonte absorve energia (p>0) ou seja, esta sendo carregada. Quando a corrente é negativa (sentido contrario ao de referência) a fonte fornece energia (p<0). Fontes de tensão reais apresentam uma diminuição da tensão em seus terminais que é proporcional a corrente fornecida para a carga. A figura abaixo apresenta um modelo para Princípios de Instrumentação Biomédica COB781 8

11 fonte de tensão real formado por uma fonte de tensão ideal vo em série com uma resistência R S,. Esta fonte está sendo utilizada para alimentar uma carga R L. v i =Rs i vo ou i v = v Rs vo Rs O comportamento v x i da fonte de tensão real é semelhante ao mostrado na figura abaixo. Neste exemplo, vo=10v e R S =10. Observe que com estes valores a curva de tensão nos terminais da fonte está longe de ser considerada constante, mas a medida que Rs for diminuído a curva torna-se mais parecida com a da fonte ideal Associação de fontes de tensão Fontes de tensão podem ser associadas em série e em paralelo. Se forem conectadas em série a fonte de tensão equivalente será dada pela soma algébrica das tensões de cada fonte. Por outro lado, se as fontes forem conectadas em paralelo todas devem ter o mesmo Princípios de Instrumentação Biomédica COB781 9

12 valor e a mesma polaridade. Isto deve ocorrer para que o somatório das tensões em cada caminho fechado seja nulo, obedecendo a LTK. 2.5 Fonte de corrente independente As fontes de corrente são elementos capazes de absorver ou fornecer energia a circuitos mantendo constante corrente que atravessa seus terminais, independentemente da diferença de tensão entre seus terminais. Existem diversos símbolos para a fonte mas o mais comum está representado na figura abaixo. Observe na figura abaixo que a curva v x i da fonte de corrente é uma reta paralela ao eixo da tensão, como se fosse um circuito aberto (a resistência de uma fonte de corrente ideal é infinita) porém esta curva não passa pela origem, ou seja não tem um comportamento linear. Tensões positivas estão associadas ao sentido de referência mostrado na figura acima e nesta região a fonte absorve energia (p>0) ou seja, esta sendo carregada. Quando a tensão é negativa (sentido contrario ao de referência) a fonte fornece energia (p<0). Princípios de Instrumentação Biomédica COB781 10

13 Fontes de corrente reais apresentam uma diminuição da corrente de saída a medida que a tensão nos terminais da fonte aumenta. A figura abaixo apresenta um modelo de uma fonte de corrente real, representada por uma fonte de corrente ideal io e uma resistência R S. Esta fonte está sendo utilizada para alimentar a carga R L. Desenhe o gráfico de v com relação a i. v i =Rs i Rs io ou i v = v Rs io O comportamento v x i da fonte de corrente real é semelhante ao mostrado na figura abaixo. Neste exemplo, io=1a e R S =10. Observe que a curva abaixo é idêntica aquela obtida para o exemplo de fonte de tensão real com vo=10v e R S =10. Se estes dois circuitos apresentam a mesma característica v x i então os dois circuitos são equivalentes do ponto de vista dos seus terminais. Princípios de Instrumentação Biomédica COB781 11

14 2.5.1 Associações de fontes de corrente Fontes de corrente podem ser associadas em série ou em paralelo. Se forem ligadas em série todas as fontes devem ter a mesma intensidade e o mesmo sentido para que seja respeitada a LCK. Se ligadas em paralelo podem ter qualquer valor e sentido e, neste caso, a fonte equivalente corresponde a uma fonte cuja intensidade e sentido é dada pela soma algébrica das correntes das fontes individuais. 2.6 Modelo de Thévenin e Norton Como foi mostrado os modelos de fontes de tensão e corrente reais apresentam a mesma equação para a curva v x i e portanto podem ser equivalentes. Estes equivalentes recebem nomes especiais (Thévenin e Norton respectivamente) e podem ser vistos na figura abaixo. Princípios de Instrumentação Biomédica COB781 12

15 Para substituir um equivalente Thévenin por um Norton e vice versa basta comparara as equação de cada equivalente. Comparando as equações de tensão v i =Rs i Rs io, v i =Rs i vo observa-se que vo=rs io, a inclinação do gráfico v(i) é Rs e seu intersepto é vo. Comparando-se as equações de tensão i v = v Rs io, i v = v Rs vo Rs observa-se que io= vo Rs, a inclinação do gráfico i(v) é 1 Rs e seu intersepto é io. 2.7 Associação de fontes e resistores Divisor de tensão Um problema muito comum em circuitos é o cálculo da tensão sobre um resistor numa ligação série de fonte de tensão e resistores conforme indicado na figura a seguir. A tensão v pode ser obtida da seguinte maneira: Princípios de Instrumentação Biomédica COB781 13

16 vs i TOT = R 2 R 3 v=i TOT R 2 vs v= R R 2 R 2 3 Genericamente v i = vs R i R n Divisor de corrente Outro problema muito comum é o cálculo de uma determinada corrente num circuito paralelo entre uma fonte de corrente e resistores, como ilustrado na figura abaixo. A corrente i1 pode ser obtida da seguinte maneira is v TOT = G 1 G 2 G 3 i 1 =v TOT G 1 is i 1 = G G 1 G 2 G 1 3 Genericamente i i = is G i G n 2.8 Fontes controladas Uma fonte controlada é um elemento de circuito com 2 braços onde o primeiro é Princípios de Instrumentação Biomédica COB781 14

17 formado por um curto circuito ou circuito aberto e o segundo por uma fonte de tensão ou corrente. A forma de onda na fonte do segundo braço é uma função na tensão de circuito aberto ou da corrente de curto circuito do primeiro braço ou seja a fonte do segundo braço é controlada pela tensão ou corrente no primeiro braço. Assim, existem quatro combinações possíveis de fontes controladas que estão representadas na figura abaixo. Fonte de corrente controlada por corrente: i 2 =α i 1 Fonte de corrente controlada por tensão: i 2 =gm v 1 Fonte de tensão controlada por tensão: v 2 = μ v 1 Fonte de tensão controlada por corrente: v 2 =rm i 1 Estas fontes são muito comuns em eletrônica e representam o funcionamento de circuitos ou elementos como transistores, amplificadores operacionais e válvulas. Os símbolos utilizados diferem um pouco na literatura e nos simuladores. Via de regra o símbolo da fonte continua o mesmo utilizado para fontes independentes ou assume um formato de losângulo. A dependência com a corrente ou a tensão do primeiro braço é explicitada pela equação que governa o funcionamento da fonte. Princípios de Instrumentação Biomédica COB781 15

18 Diferente das fontes independentes, fontes controladas representadas por α, gm, µ e rm constantes são fontes lineares e invariantes com o tempo mas também podem existir fontes controladas não lineares e variantes. As fontes independentes representam fornecimento de energia ou seja a ação do mundo externo e são componentes não lineares por natureza. As fontes controladas representam comportamento de elementos eletrônicos (resistores, por exemplo) acoplados ou seja podem ser elementos lineares. Nos exemplos mostrados acima, com coeficientes constantes, a impedância de uma fonte de corrente controlada não é infinita e a impedância de uma fonte de tensão controlada não é zero. De resto as fontes controladas podem ser consideradas fontes de tensão ou corrente e assim são consideradas na análise de circuitos. 2.9 Exercícios polaridade? 1) Observando a curva v x i de um elemento é possível determinar se ele apresenta Sim. Simetria impar indicam elementos sem polaridade. 2) Calcule a resistência equivalente para os circuitos da figura abaixo Princípios de Instrumentação Biomédica COB781 16

19 Circuito da esquerda: Req=R1 R2 R3 R2 R3 R4 R2 R3 Circuito da direita: Req=R1 R4 R2 R3 3) Apresente as curvas v x i para as figuras abaixo (considerar o diodo como uma chave ideal controlada por corrente). Com base nestes resultados determinar como seria possível modelar a curva do diodo real apresentada na secção sobre resistores não lineares e invariantes. No LTSpice insira a diretiva spice:.model D d(n=0.001) para obter um diodo próximo do ideal. Princípios de Instrumentação Biomédica COB781 17

20 4) Para os circuitos da figura abaixo calcule as tensões e as correntes sobre os elementos. Considere =1, =2 e =3. Determine quem absorve e quem fornece energia. Circuito de cima a esquerda =1, v R1 =v 1, i R1 =2 A, i V1 = 1 A, p V1 = 2W, p R1 =4 W, p I1 = 2W =2, v R1 =v 1, i R1 =1 A, i V1 =0 A, p V1 =0W, p R1 =2 W, p I1 = 2 W =3, v R1 =v 1, i R1 =2/3 A, i V1 =1/3 A, p V1 =2/3W, p R1 =4/3 W, p I1 = 2W Circuito de cima a direita =1, v R1 =1V, i R1 =i I1, i V1 =i I1, p V1 =2W, p R1 =1W, p I1 = 3W =2, v R1 =2 V, i R1 =i I1, i V1 =i I1, p V1 =2W, p R1 =2 W, p I1 = 4W =3, v R1 =3 V, i R1 =i I1, i V1 =i I1, p V1 =2W, p R1 =3W, p I1 = 5W Circuito de baixo, v R2 =3 V, p R2 =3W =1, i R1 =2 A, i V1 = 1 A, p V1 = 2 W, p R1 =4 W, p I1 = 5W Princípios de Instrumentação Biomédica COB781 18

21 =2, i R1 =1 A, i V1 =0 A, p V1 =0W, p R1 =2 W, p I1 = 5W =3, i R1 =2/3 A, i V1 =1/3 A, p V1 =2/3W, p R1 =4/3W, p I1 = 5W 5) Determine a tensão, a corrente e a potência sobre cada elemento do circuito abaixo. Os resultados estão apresentados na tabela abaixo. As células pintadas correspondem as fontes que fornecem energia. I R1 =3A, V R1 =6V, P R1 =18W I R6 =4A, V R6 =16V, P R6 =64W I R5 =2A, V R5 =10V, P R5 =20W V I1 =V 7 +V R1 =26V, P I1 =78W I V10 = 4A, P V10 = 200W V I2 =V V8 +V R5 =25V, P=50W I R7 =V 9 / R 7 = 4A, V R7 = 40V, P R7 = 160W V I3 =V V10 +V R6 V V9 =26V, P=104W V R4 =15V, I R4 =2A, P R4 =30W V R2 =20V, I R2 =5A, P R2 =100W V R3 =V V9 V R2 V R4 =5V, I R3 =2A, P R3 = 10W I V7 =I R1 +I R3 I R2 =0A, P V7 =0W I V8 =I R3 +I R5 I R4 =2A, P V8 =30W I V9 =I R4 +I V8 +I I3 +I R7 -I I2 =10A, P V9 =400W Princípios de Instrumentação Biomédica COB781 19

22 6) Para a figura abaixo calcule as tensões V 1 e V 2. v 2 =25V, v 1 = 1V 7) Determine o modelo equivalente para os dois circuitos abaixo. Circuito da esquerda igual a uma fonte de tensão de valor V1. Circuito da direita igual a uma fonte de corrente de valor I1. 8) Abaixo são apresentadas duas redes resistivas: uma rede chamada T ou Y e outra rede chamada Π ou. Dependendo dos valores dos resistores estas redes podem ser equivalentes do ponto de vista dos terminais A, B e C. a) Determine os valores de RA, RB e RC para que a rede Y seja equivalente a uma dada rede. b) Determine os valores de R1, R2 e R3 para que a rede seja equivalente a uma dada rede Y. a) R AC = RA RC, R AB = RA RB, R BC =RB RC Princípios de Instrumentação Biomédica COB781 20

23 R AC = R1 // R2 R3 = R1 R2 R3 R1 R2 R3 = R1 R2 R1 R3 R1 R2 R3 R AB = R2 // R1 R3 = R2 R1 R3 R1 R2 R3 = R1 R2 R2 R3 R1 R2 R3 R3 R1 R2 R BC =R3 // R1 R2 = R1 R2 R3 = R1 R3 R2 R3 R1 R2 R3 RA RC= R1 R2 R1 R3 R1 R2 R3 (1) RA RB= R1 R2 R2 R3 R1 R2 R3 (2) RB RC = R1 R3 R2 R3 R1 R2 R3 (3) =2 RA, =2 RB, =2 RC RA= R1 R2 R1 R2 R3, RB= R2 R3 R1 R2 R3, RC= R1 R3 R1 R2 R3 b) considerando que R T =R1 R2 R3 então RA= R1 R2 RT, RB= R2 R3 RT, RC= R1 R3 RT RA RB= R1 R22 R3 RT 2, RA RC= R12 R2 R3 RT 2, RB RC = R1 R2 R33 RT 2 RA RB RA RC RB RC= R1 R22 R3 R1 2 R2 R3 R1 R2 R3 2 RT RA RB RA RC RB RC= RA RA R1 R2 R3 R1 2 R2 R3 R1 R2 R3 2 RT 2 1 RA RB RA RC RB RC= RT RA R3 R1 2 R2 R3 R1 R2 R3 2 R1 R2 R1 R22 RT 2 Princípios de Instrumentação Biomédica COB781 21

24 RA RB RA RC RB RC = R2 R3 R1 R3 R3 2 RA RT RA RB RA RC RB RC R3 R2 R1 R3 = RA R1 R2 R3 R3= RA RB RA RC RB RC RA, RA RB RA RC RB RC R2= RC R1= RA RB RA RC RB RC RB 9) Utilizando apenas associação de resistores e transformação de modelos Thévenin- Norton determine o valor da tensão v. R 4 e R 6 não influenciam a tensão v e podem ser desconsiderados V 12 =V 1 V 2 =10 4 =6V O modelo Thevènin formado por V 12 e pode ser transformado em um Norton I 12 =V 12 / =6/2=3 A e =2. R eq = R 3 R 5 R 2 =1,14, e I eq =I 12 I 1 =3 10=13 A. Princípios de Instrumentação Biomédica COB781 22

25 Assim, v= I eq R eq =14,85V 10) Para a figura abaixo calcule a tensão sobre a carga (resistor R L ) v RL = R L gm v 1 e v 1 = v s R 2 v RL = R L gm v s R 2 com polaridade positiva para baixo. 11) Para o circuito abaixo, calcular v L (tensão sobre o resistor R L ). Solução: v µ v v = R = R 2 1 L L L R2 + RL R2 + RL v 1 = v S R S μ v v L = S R L R L R 2 R S Princípios de Instrumentação Biomédica COB781 23

26 12) Para o circuito abaixo calcular a impedância vista pela fonte de corrente Solução: R E = V L = 1 a I L = 1 a R I L S I S Observe que dependendo do valor de a a impedância equivalente conectada em paralelo com a fonte de corrente varia. Se a=1 a impedância é nula e o circuito se comporta como um curto circuito. Se 0 a 1 a impedância será uma parcela da impedância da carga. Se a 1 a impedância é negativa. 13) Para os circuitos abaixo calcular o valor de v o considerando que o ganho A do amplificador operacional não é infinito. Determine o limite de v o quando o ganho A tende a infinito. Refaça as contas considerando que a fonte controlada da saída é uma fonte de tensão independente de valor v o e que a diferença de tensão entre as duas entradas do operacional é nula. Compare os resultados e explique o que aconteceu. Princípios de Instrumentação Biomédica COB781 24

27 Solução para o primeiro circuito. Redesenhando o circuito para facilitar o equacionamento i 1 = v i v o R 2 v _ =i 1 R 2 v o = v i v o R 2 R 2 v o v _ = v i R 2 v o R 2 v o = A v + v _ como v + =0, v o = A v _ v _ = v o A = v i R 2 v o R 2 R 2 v o = R 2 R 2 A v i se lim v o = R 2 v A R i 1 Princípios de Instrumentação Biomédica COB781 25

28 Observe que se A tende a infinito e a saída v o é finita então a diferença de tensão entre as duas entradas do amplificador operacional obrigatoriamente deve ser ser nula. Considerando antecipadamente as duas entradas do operacional com o mesmo potencial podemos resolver o problema da seguinte forma: v + =v _ =0 logo i 1 = v i = v o R 2, então v o = R 2 v i. v + =v _ =0 i 1 = v 0 i = 0 v o R 2 v o = R 2 v i Para o segundo circuito, resolvendo da forma simplificada: v R1 =v i i R1 =i R2 = v v 0 i = v i R 2 = v R 2 o 1 v i Princípios de Instrumentação Biomédica COB781 26

Programa de engenharia biomédica

Programa de engenharia biomédica Programa de engenharia biomédica princípios de instrumentação biomédica COB 781 Conteúdo 2 - Elementos básicos de circuito e suas associações...1 2.1 - Resistores lineares e invariantes...1 2.1.1 - Curto

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Conteúdo 2 - Elementos básicos de circuito e suas associações...1 2.1 - Resistores lineares e invariantes...1 2.1.1 - Curto circuito...2

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 2

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 2 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Módulo 2 Thévenin Norton Helmholtz Mayer Ohm Galvani Conteúdo 2 Elementos básicos de circuito e suas associações...1 2.1 Resistores lineares

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica COB781. Módulo 3

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica COB781. Módulo 3 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica COB781 Módulo 3 Conteúdo 3 - Teoremas e análise sistemática de redes...1 3.1 - Revisão de definições...1 3.2 - Teoremas de

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 5. Heaviside Dirac Newton

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 5. Heaviside Dirac Newton Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 5 Heaviside Dirac Newton Conteúdo 5 - Circuitos de primeira ordem...1 5.1 - Circuito linear invariante de primeira ordem

Leia mais

CIRCUITOS CONCENTRADOS E LEIS DE KIRCCHOFF

CIRCUITOS CONCENTRADOS E LEIS DE KIRCCHOFF UNIDADE 1 1. Circuitos Concentrados CIRCUITOS CONCENTRADOS E LEIS DE KIRCCHOFF É qualquer ligação de elemento concentrado, de tal forma que as dimensões sejam pequenas comparadas com o comprimento de onda

Leia mais

Se no terminal b do circuito for conectado um terceiro componente, como na figura abaixo, os resistores R 1 e R 2 não estarão mais em série.

Se no terminal b do circuito for conectado um terceiro componente, como na figura abaixo, os resistores R 1 e R 2 não estarão mais em série. Circuitos em Série Um circuito consiste em um número qualquer de elementos unidos por seus terminais, com pelo menos um caminho fechado através do qual a carga possa fluir. Dois elementos de circuitos

Leia mais

Eletrotécnica. Circuitos Elétricos

Eletrotécnica. Circuitos Elétricos Eletrotécnica Circuitos Elétricos Introdução Caracterizamos um circuito elétrico como sendo um conjunto de componentes elétricos / eletrônicos ligados entre si formando pelo menos um caminho para a passagem

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo Laplace Bode Fourier Conteúdo - Transformada de Laplace.... - Propriedades básicas da transformada de Laplace....2 - Tabela de

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo Laplace Bode Fourier Conteúdo - Transformada de Laplace.... - Propriedades básicas da transformada de Laplace....2 - Tabela de

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Conteúdo 5 - Capacitores e Indutores...1 5.1 - Capacitores...1 5.2 - Capacitor linear e invariante com o tempo...2 5.2.1 - Modelo Thévenin

Leia mais

Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781

Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781 Programa de engenharia biomédica Princípios de instrumentação biomédica cob 781 5 Circuitos de primeira ordem 5.1 Circuito linear invariante de primeira ordem resposta a excitação zero 5.1.1 O circuito

Leia mais

Aula 5. Divisor de tensão Divisor de corrente

Aula 5. Divisor de tensão Divisor de corrente Aula 5 Divisor de tensão Divisor de corrente Simulador de circuitos online Site: http://everycircuit.com/ Simulador online de circuito Exemplos desta aula: http://everycircuit.com/circuit/5500995385163776

Leia mais

Capítulo 4. Análise de circuitos elétricos básicos: em série, em paralelo e misto. Figura 3.32 Associação em série-paralelo de geradores.

Capítulo 4. Análise de circuitos elétricos básicos: em série, em paralelo e misto. Figura 3.32 Associação em série-paralelo de geradores. ELETRôNCA Figura 3.3 Associação em série-paralelo de geradores. Capítulo 4 A figura 3.33 mostra as simplificações sucessivas do circuito da figura 3.3. Figura 3.33 Simplificações sucessivas do circuito

Leia mais

TEOREMAS: - SUPERPOSIÇÃO

TEOREMAS: - SUPERPOSIÇÃO TEOREMAS: - SUPERPOSIÇÃO - THEVENIN e NORTON - MILLMAN - MÁXIMA TRANSFERÊNCIA DE POTÊNCIA Professor: Paulo Cícero Fritzen E-mail: pcfritzen@utfpr.edu.br TEOREMAS PARA ANÁLISE EM CIRCUITOS ELÉTRICOS Os

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 6

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 6 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 6 Steinmetz Tesla Hertz Westinghouse Conteúdo 6 - Análise de Regime Permanente Senoidal...1 6.1 - Números complexos...1

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I - EEL420. Módulo 5

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I - EEL420. Módulo 5 Universidade Federal do Rio de Janeiro Circuitos Elétricos I - EEL420 Módulo 5 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 5 Capacitores e Indutores...1 5.1 Capacitores...1 5.2 Capacitor linear e

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 10

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 10 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 40 Módulo 10 Drawing of Michael Faraday's 1831 experiment showing electromagnetic induction between coils of wire, using 19th century apparatus,

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Conteúdo 3 - Teoremas e análise sistemática de redes...1 3.1 - Revisão de definições...1 3.2 - Teoremas de rede e transformações de fontes...1

Leia mais

Teorema da superposição

Teorema da superposição Teorema da superposição Esse teorema é mais uma ferramenta para encontrar solução de problemas que envolvam mais de uma fonte que não estejam em paralelo ou em série. A maior vantagem desse método é a

Leia mais

Aula 8.2 Conteúdo: Associação de resistores em paralelo, potência elétrica de uma associação em paralelo de resistores. INTERATIVIDADE FINAL

Aula 8.2 Conteúdo: Associação de resistores em paralelo, potência elétrica de uma associação em paralelo de resistores. INTERATIVIDADE FINAL Aula 8.2 Conteúdo: Associação de resistores em paralelo, potência elétrica de uma associação em paralelo de resistores. Habilidades: Diferenciar as formas de associação de resistores, bem como determinar

Leia mais

Aula 4. Leis de Kirchhoff

Aula 4. Leis de Kirchhoff Aula 4 Leis de Kirchhoff Revisão Corrente (A) i = dq dt Potência (W) p = dω dt Tensão (V) v = dω dq Energia (J) ω = p dt Para a corrente indicamos a direção do fluxo da corrente Para a tensão indicamos

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 1

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 1 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 1 Ampère Volta Kirchhoff Coulomb Joule Watt Conteúdo 1 - Circuitos de parâmetros concentrados e leis de Kirchhoff...1

Leia mais

Eletrônica Aula 06 CIN-UPPE

Eletrônica Aula 06 CIN-UPPE Eletrônica Aula 06 CIN-UPPE Amplificador básico (classe A)! Amplificador básico É um circuito eletrônico, baseado em um componente ativo, como o transistor ou a válvula, que tem como função amplificar

Leia mais

Campus de Guaratinguetá Colégio Técnico Industrial de Guaratinguetá Professor Carlos Augusto Patrício Amorim

Campus de Guaratinguetá Colégio Técnico Industrial de Guaratinguetá Professor Carlos Augusto Patrício Amorim unesp UNIVERSIDADE ESTADUAL PAULISTA Campus de Guaratinguetá Colégio Técnico Industrial de Guaratinguetá Professor Carlos Augusto Patrício Amorim 1 EXERCÍCIOS DE ELETRÔNICA BÁSICA II Prof. Marcelo Wendling

Leia mais

Aula 2. Revisão Circuitos Resistivos

Aula 2. Revisão Circuitos Resistivos Aula 2 Revisão Circuitos Resistivos Conceitos básicos Corrente (A) Tensão (V) Potência (W) i = dq dt v = dw dq p = dw dt Energia (J) w = න Pdt Corrente: Fluxo de cargas; Tensão: Diferença de potencial

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 3

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 3 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Módulo 3 Conteúdo 3 Teoremas e análise sistemática de redes...1 3.1 Revisão de definições...1 3.2 Análise de nós e malhas...1 3.2.1 Análise

Leia mais

Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara

Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara ELETICIDADE Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul 2 Circuito Elétrico Chamamos de circuito elétrico a um caminho fechado, constituído de condutores,

Leia mais

MÓDULO 5: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET.

MÓDULO 5: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. DISCIPLINA: CIRCUITOS ELETRÔNICOS MÓDULO 5: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. 1. Introdução: O circuito amplificador de sinal a JFET possui ganho alto, uma impedância alta

Leia mais

Eletricidade básica. Aula 06: Circuitos em série

Eletricidade básica. Aula 06: Circuitos em série Eletricidade básica Aula 06: Circuitos em série Fonte elétrica As fontes elétricas são fundamentais na compreensão da eletrodinâmica, pois elas que mantém a diferença de potencial (ddp) necessária para

Leia mais

Aula 01. Análise de Circuitos Elétricos. Prof. Alexandre Akira Kida, Msc., Eng. IFBA

Aula 01. Análise de Circuitos Elétricos. Prof. Alexandre Akira Kida, Msc., Eng. IFBA Aula 01 Análise de Circuitos Elétricos Prof. Alexandre Akira Kida, Msc., Eng. IFBA 1 Plano de aula 1. Associação de fontes de tensão 2. Leis de Kirchhoff 3. Método de Maxwell 4. Transformação Y - 2 Introdução

Leia mais

3) Cite 2 exemplos de fontes de Alimentação em Corrente Continua e 2 exemplos em Corrente Alternada.

3) Cite 2 exemplos de fontes de Alimentação em Corrente Continua e 2 exemplos em Corrente Alternada. Lista de exercícios Disciplina: Eletricidade Aplicada Curso: Engenharia da Computação Turma: N30 1 -) Assinale a alternativa correta. Descreva o que é tensão elétrica. a - A diferença de potencial elétrico

Leia mais

Figura 4.1: Circuito elétrico tipo RL com o indutor inicialmente carregado.

Figura 4.1: Circuito elétrico tipo RL com o indutor inicialmente carregado. Guia de Atividades para abordar Equações Diferenciais Ordinárias através da exploração de situações-problema que envolvem queda de corpos e circuitos elétricos. Nestas atividades temos como objetivo abordar

Leia mais

Ministério da Educação Universidade Tecnológica Federal do Paraná Pró-Reitoria de Graduação Departamento Acadêmico de Eletrônica

Ministério da Educação Universidade Tecnológica Federal do Paraná Pró-Reitoria de Graduação Departamento Acadêmico de Eletrônica 1 Ministério da Educação Universidade Tecnológica Federal do Paraná Pró-Reitoria de Graduação Departamento Acadêmico de Eletrônica PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Aula de Laboratório 02 (22

Leia mais

Eletricidade (EL63A) LEIS BÁSICAS

Eletricidade (EL63A) LEIS BÁSICAS Eletricidade (EL63A) LEIS BÁSICAS Prof. Luis C. Vieira vieira@utfpr.edu.br http://paginapessoal.utfpr.edu.br/vieira/el63a-eletricidade INTRODUÇÃO Como determinar os valores de tensão, corrente e potência

Leia mais

Circuitos Elétricos I EEL420 16/04/2015

Circuitos Elétricos I EEL420 16/04/2015 Circuitos Elétricos I EE420 16/04/2015 Nome: 1) COOQUE SEU NOME E NUMERE AS FOHAS DOS CADERNOS DE RESPOSTA 2) RESPONDA AS QUESTÕES EM ORDEM UTIIZANDO ATÉ 2 PÁGINAS POR QUESTÃO (NO MÁXIMO 3) 3) REDESENHE

Leia mais

O símbolo usado em diagramas de circuito para fontes de tensão é:

O símbolo usado em diagramas de circuito para fontes de tensão é: Circuitos Elétricos Para fazer passar cargas elétricas por um resistor, precisamos estabelecer uma diferença de potencial entre as extremidades do dispositivo. Para produzir uma corrente estável é preciso

Leia mais

Aula 5 Análise de circuitos indutivos em CA circuitos RL

Aula 5 Análise de circuitos indutivos em CA circuitos RL Aula 5 Análise de circuitos indutivos em CA circuitos RL Objetivos Aprender analisar circuitos RL em série e em paralelo em corrente alternada, utilizando as diversas formas de representação: números complexos,

Leia mais

PRINCÍPIO PIO FUNDAMENTAL DA CONSERVAÇÃO EM ENGENHARIA ELÉTRICA. CARGA NÃO PODE SER CRIADA NEM DESTRUIDA NEM DESTRUIDA

PRINCÍPIO PIO FUNDAMENTAL DA CONSERVAÇÃO EM ENGENHARIA ELÉTRICA. CARGA NÃO PODE SER CRIADA NEM DESTRUIDA NEM DESTRUIDA LEI DAS CORRENTES DE KIRCHOFF PRINCÍPIO PIO FUNDAMENTAL DA CONSERVAÇÃO EM ENGENHARIA ELÉTRICA. CARGA NÃO PODE SER CRIADA NEM DESTRUIDA LEI DAS TENSÕES DE KIRCHOFF PRINCÍPIO PIO DA CONSERVAÇÃO EM ENERGIA

Leia mais

Eletricidade (EL63A) TÉCNICAS ADICIONAIS DE ANÁLISE DE CIRCUITOS

Eletricidade (EL63A) TÉCNICAS ADICIONAIS DE ANÁLISE DE CIRCUITOS Eletricidade (EL63A) TÉCNICAS ADICIONAIS DE ANÁLISE DE CIRCUITOS Prof. Luis C. Vieira vieira@utfpr.edu.br http://paginapessoal.utfpr.edu.br/vieira/el63a-eletricidade INTRODUÇÃO Teoremas de circuitos e

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 6

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 6 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo 6 Heaviside Dirac Newton Conteúdo 6 Circuitos de primeira ordem...1 6.1 Equação diferencial ordinária de primeira ordem...1 6.1.1

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I - EEL420. Módulo 7

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I - EEL420. Módulo 7 Universidade Federal do Rio de Janeiro Circuitos Elétricos I - EEL420 Módulo 7 Musschenbroek Green Gauss Edison Tesla Lorentz Conteúdo 7 - Circuitos de Segunda Ordem...1 7.1 - Circuito RLC linear e invariante

Leia mais

RESOLUÇÃO DA LISTA II P3

RESOLUÇÃO DA LISTA II P3 RESOLUÇÃO DA LISTA II P3 9.25) Determine a expressão em regime permanente i o (t) no circuito abaixo se v s = 750cos (5000t)mV Z L = jωl = 40 0 3 5000 Z L = 200j Z C = jωc = j 5000 0,4 0 6 Z C = 500j Sabemos

Leia mais

1. dois nós: B e F. 2. três ramos: BAEF, BDF e BCGF. 3. três malhas: ABDFEA, BCGFDB e ABCGFEA A SOMA ALGÉBRICA DAS CORRENTES EM UM NÓ

1. dois nós: B e F. 2. três ramos: BAEF, BDF e BCGF. 3. três malhas: ABDFEA, BCGFDB e ABCGFEA A SOMA ALGÉBRICA DAS CORRENTES EM UM NÓ Capítulo 6 Leis de Kirchhoff 6.1 Definições Em alguns casos, um circuito não pode ser resolvido através de associações em série e paralelo. Nessas situações geralmente são necessárias outras leis, além

Leia mais

Capítulo 27: Circuitos

Capítulo 27: Circuitos Capítulo 7: Circuitos Índice Força letromotriz Trabalho, nergia e Força letromotriz Calculo da Corrente de um Circuito de uma Malha Diferença de Potencial entre dois Pontos Circuitos com mais de uma Malha

Leia mais

Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua

Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua Eletricidade II Aula 1 Resolução de circuitos série de corrente contínua Livro ELETRICIDADE II Avaliações Provas - 100 pontos lesp-ifmg.webnode.com 2 Conexão de um circuito série Um circuito série contém

Leia mais

PEA2502 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA

PEA2502 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA EXPERIÊNCIA N o 1 PEA2502 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA RETIFICADORES NÃO CONTROLADOS DE UM CAMINHO W. KAI SER 02/2012 1. OBJETIVOS Estudo do funcionamento e processo de comutação em retificadores

Leia mais

CAPÍTULO 5 TRANSISTORES BIPOLARES

CAPÍTULO 5 TRANSISTORES BIPOLARES CAPÍTULO 5 TRANSSTORES BPOLARES O transistor é um dispositivo semicondutor de três terminais, formado por três camadas consistindo de duas camadas de material tipo "n", de negativo, e uma de tipo "p",

Leia mais

ASSOCIAÇÃO DE ENSINO E CULTURA PIODÉCIMO FACULDADE PIO DÉCIMO, CAMPUS III ARACAJU, SERGIPE QUESTÕES PARA AULA DO ENAD ÁREA ESPECÍFICA

ASSOCIAÇÃO DE ENSINO E CULTURA PIODÉCIMO FACULDADE PIO DÉCIMO, CAMPUS III ARACAJU, SERGIPE QUESTÕES PARA AULA DO ENAD ÁREA ESPECÍFICA ASSOCIAÇÃO DE ENSINO E CULTURA PIODÉCIMO FACULDADE PIO DÉCIMO, CAMPUS III ARACAJU, SERGIPE QUESTÕES PARA AULA DO ENAD ÁREA ESPECÍFICA CIRCUITO ELÉTRICOS (Revisão 00) ENGENHARIA ELÉTRICA Prof. Jether Fernandes

Leia mais

ENUNCIADO DOS EXERCÍCIOS ESTÃO NAS ULTIMAS PÁGINAS

ENUNCIADO DOS EXERCÍCIOS ESTÃO NAS ULTIMAS PÁGINAS ENUNCIADO DOS EXERCÍCIOS ESTÃO NAS ULTIMAS PÁGINAS ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PEA - Departamento de Engenharia de Energia e Automação Elétricas Eletrotécnica Geral Lista de Exercícios

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 9

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 9 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo 9 Steinmetz Tesla Hertz Westinghouse Conteúdo 9 - Análise de Regime Permanente Senoidal...1 9.1 - Números complexos...1 9.2 -

Leia mais

AULA 03 Exercícios Lista 01 Lista 02 Lista 03 Resolução de exercícios em sala

AULA 03 Exercícios Lista 01 Lista 02 Lista 03 Resolução de exercícios em sala AULA 03 Exercícios Lista 01 Lista 02 Lista 03 Resolução de exercícios em sala AULA 04 Tensão e Corrente alternada Ondas senoidais Ondas quadradas Ondas triangulares Frequência e período Amplitude e valor

Leia mais

Resistores e Associação de Resistores

Resistores e Associação de Resistores Resistores e Associação de Resistores Gabarito Parte I: O esquema a seguir ilustra a situação: Como mostrado, a resistência equivalente é Ω. Aplicando a lei de Ohm-Pouillet: = R eq i 60 = i i = 15 A. a)

Leia mais

Ánalise de Circuitos. 1. Método Intuitivo

Ánalise de Circuitos. 1. Método Intuitivo Ánalise de Circuitos 1. Método Intuitivo Ramo de um circuito: é um componente isolado tal como um resistor ou uma fonte. Este termo também é usado para um grupo de componentes sujeito a mesma corrente.

Leia mais

Circuitos Elétricos I - Resistência e Lei de Ohm -

Circuitos Elétricos I - Resistência e Lei de Ohm - Universidade de Itaúna Faculdade de Engenharia A esistência Elétrica, : Os elétrons livres, durante o movimento em um condutor, colidem com os átomos desse condutor perdendo parte de sua energia cinética

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA GERÊNCIA EDUCACIONAL DE ELETRÔNICA Fundamentos de Eletricidade LISTA DE EXERCÍCIOS 01

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA GERÊNCIA EDUCACIONAL DE ELETRÔNICA Fundamentos de Eletricidade LISTA DE EXERCÍCIOS 01 CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA GERÊNCIA EDUCACIONAL DE ELETRÔNICA Fundamentos de Eletricidade LISTA DE EXERCÍCIOS 01 1) Um par de faróis de automóvel é ligado a uma bateria de

Leia mais

5) No circuito abaixo, determine a potência gerada pela bateria de 5 V.

5) No circuito abaixo, determine a potência gerada pela bateria de 5 V. ) Determine Vab (i7 é desconhecido). V = 0V ab ) Obtenha os circuitos equivalentes de Thévenin e Norton do seguinte circuito. R.: 3) Determine a resistência equivalente R ab vista dos terminais ab do circuito

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA III EXERCÍCIO ESCOLAR (1) (A) Como se chama o fenômeno que ocorre quando

Leia mais

5. PARTE PRÁTICA OBS:

5. PARTE PRÁTICA OBS: EXPERIÊNCIA 6 PEA2502 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA CONVERSOR CC / CC W. KAISER 02/2009 1. OBJETIVOS Familiarização com o funcionamento de um conversor CC/CC a tiristor e medições de desempenho.

Leia mais

2 Objetivos Verificação e análise das diversas características de amplificadores operacionais reais.

2 Objetivos Verificação e análise das diversas características de amplificadores operacionais reais. Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 6 1 Título Prática 11 Características dos Amplificadores Operacionais 2 Objetivos Verificação e análise das diversas características

Leia mais

Respostas Finais Lista 6. Corrente Elétrica e Circuitos de Corrente Contínua ( DC )

Respostas Finais Lista 6. Corrente Elétrica e Circuitos de Corrente Contínua ( DC ) Respostas Finais Lista 6 Corrente Elétrica e Circuitos de Corrente Contínua ( DC ) Q 26.3) Essa diferença esta mais associada à energia entregue à corrente de um circuito por algum tipo de bateria e à

Leia mais

3 e I x = 0,2I E (considere inicialmente = ). (b) Recalcule I E (somente) para o caso do transistor apresentar = 100.

3 e I x = 0,2I E (considere inicialmente = ). (b) Recalcule I E (somente) para o caso do transistor apresentar = 100. 1) (271099) Para o circuito mostrado na figura abaixo, encontre as tensões indicadas no circuito para (a) = + (b) = 100 (c) = 10. 2) (271099) (a) Projete R C e R B para o circuito mostrado na figura abaixo

Leia mais

Eletrônica Aula 06 CIN-UPPE

Eletrônica Aula 06 CIN-UPPE Eletrônica Aula 06 CIN-UPPE Amplificador básico Amplificador com transistor Exemplo: Análise Modelo CC Modelo CA V CC C 2 R L R G C 1 C E Análise CA Para se fazer a análise CA é necessário: Eliminar as

Leia mais

ELETRICIDADE CAPÍTULO 2 ELEMENTOS DOS CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 2 ELEMENTOS DOS CIRCUITOS ELÉTRICOS ELETRICIDADE CAPÍTULO 2 ELEMENTOS DOS CIRCUITOS ELÉTRICOS 2.1 - INTRODUÇÃO - EXISTEM CINCO ELEMENTOS BÁSICOS IDEAIS QUE SÃO UTILIZADOS EM CIRCUITOS ELÉTRICOS. - ELEMENTOS ATIVOS (GERAM ENERGIA ELÉTRICA)

Leia mais

CENTRO UNIVERSITÁRIO ANHANGUERA DE CAMPO GRANDE. ENGENHARIA DE CONTROLE E AUTOMAÇÃO. ATPS. Circuitos resistivos. Lei de Ohm.

CENTRO UNIVERSITÁRIO ANHANGUERA DE CAMPO GRANDE. ENGENHARIA DE CONTROLE E AUTOMAÇÃO. ATPS. Circuitos resistivos. Lei de Ohm. CENTRO UNIVERSITÁRIO ANHANGUERA DE CAMPO GRANDE. ENGENHARIA DE CONTROLE E AUTOMAÇÃO Nome: Luciano dos Santos Benevides RA: 3773769606 ATPS. Circuitos resistivos. Lei de Ohm. CAMPO GRANDE-MS 2013 Nome:

Leia mais

CIRCUITO AUTOPOLARIZAÇÃO Análise do modelo equivalente para o circuito amplificador em autopolarização a JFET.

CIRCUITO AUTOPOLARIZAÇÃO Análise do modelo equivalente para o circuito amplificador em autopolarização a JFET. MÓDULO 6: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. 1. Introdução: O circuito amplificador de sinal a JFET possui ganho alto, uma impedância alta de entrada e ampla faixa de resposta

Leia mais

Teoria de Eletricidade Aplicada

Teoria de Eletricidade Aplicada 1/25 Teoria de Eletricidade Aplicada Teoremas dos Circuitos Elétricos Prof. Jorge Cormane Engenharia de Energia 2/25 SUMÁRIO 1. Introdução 2. Princípio de Superposição 3. Transformações de Fontes 4. Teorema

Leia mais

PEA2502 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA

PEA2502 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA EXPERIÊNCIA N o PEA50 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA RETIFICADORES NÃO CONTROLADOS DE DOIS CAMINHOS W. KAISER 0/009 1. OBJETIVOS Estudo do funcionamento e processo de comutação em retificadores

Leia mais

IMPEDÂNCIA Impedância

IMPEDÂNCIA Impedância IMPEDÂNCIA Em um circuito real a resistência elétrica, que é propriedade física dos materiais que o constituem, está sempre presente. Ela pode ser minimizada, mas não eliminada. Portanto, circuitos indutivos

Leia mais

208 TÉCNICO EM ELETRÔNICA

208 TÉCNICO EM ELETRÔNICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE BRASÍLIA CONCURSO PÚBLICO NÍVEL MÉDIO TÉCNICO-ADMINISTRATIVO EM EDUCAÇÃO 208 TÉCNICO EM ELETRÔNICA INSTRUÇÕES Verifique atentamente se este caderno

Leia mais

1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura:

1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura: 1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura: Considere nula a resistência elétrica dos fios que fazem a ligação entre a bateria e as

Leia mais

Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki

Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki Estágio Amplificadores Simples (1) Estágio Amplificadores Simples (2) Conceitos Básicos (1) Conceitos de grande e pequenos sinais : Quando x

Leia mais

Conceitos Básicos de Teoria dos Circuitos

Conceitos Básicos de Teoria dos Circuitos Teoria dos Circuitos e Fundamentos de Electrónica Conceitos Básicos de Teoria dos Circuitos T.M.lmeida ST-DEEC- CElectrónica Teresa Mendes de lmeida TeresaMlmeida@ist.utl.pt DEEC Área Científica de Electrónica

Leia mais

Circuitos Série e a Associação Série de Resistores

Circuitos Série e a Associação Série de Resistores 1 Painel para análise de circuitos resistivos CC (Revisão 00) Circuitos Série e a Associação Série de Resistores 1 2 Circuitos Série e a Associação Série de Resistores Utilizando as chaves disponíveis

Leia mais

MÉTODOS DE ANÁLISE DE CIRCUITOS (CORRENTE CONTÍNUA)

MÉTODOS DE ANÁLISE DE CIRCUITOS (CORRENTE CONTÍNUA) NOTA DE AULA POF. JOSÉ GOMES IBEIO FILHO MÉTODOS DE ANÁLISE DE CICUITOS (COENTE CONTÍNUA) INTODUÇÃO Os circuitos descritos nos capítulos anteriores tinham somente uma fonte ou duas ou mais fontes em série

Leia mais

PSI3213 CIRCUITOS ELÉTRICOS II Lista 7: Quadripolos

PSI3213 CIRCUITOS ELÉTRICOS II Lista 7: Quadripolos 1 PSI3213 CIRCUITOS ELÉTRICOS II Lista 7: Quadripolos 1 Considere os quadripolos resistivos dos itens a) até g). Para cada quadripolo, determine as matrizes Z, Y, H e T, se existirem. Classifique-os quanto

Leia mais

Retificadores com tiristores

Retificadores com tiristores Retificadores com tiristores 2.1 O retificador controlado monofásico de meia onda a) Carga Resistiva com Força Contra-eletromotriz CC Quando a carga possui uma força contra-eletromotriz de corrente contínua

Leia mais

Método das Malhas. Abordagem Geral

Método das Malhas. Abordagem Geral Método das Malhas Abordagem Geral Método das Malhas 1. Associe uma corrente no sentido horário a cada malha fechada e independente do circuito. Não é necessário escolher o sentido horário para todas as

Leia mais

Física C Semiextensivo V. 3

Física C Semiextensivo V. 3 GABAITO Física C Semiextensivo V. Exercícios 01) D 0) A Para que a corrente elétrica total seja a maior possível, o circuito deve possuir a menor resistência equivalente, ou seja, o menor número de resistência

Leia mais

Indução Magnética. E=N d Φ dt

Indução Magnética. E=N d Φ dt Indução Magnética Se uma bobina de N espiras é colocada em uma região onde o fluxo magnético está variando, existirá uma tensão elétrica induzida na bobina, e que pode ser calculada com o auxílio da Lei

Leia mais

Conteúdo programático: Quadripolos. Notas de aula e exercícios: 1. Apresentação do Tópico

Conteúdo programático: Quadripolos. Notas de aula e exercícios: 1. Apresentação do Tópico Conteúdo programático: Quadripolos Notas de aula e exercícios: 1. Apresentação do Tópico Um dos principais métodos de análise de circuitos consiste na substituição de blocos complexos em circuitos equivalentes

Leia mais

UNIVERSIDADE PAULISTA UNIP FUNDAMENTOS DE CIRCUITOS ELÉTRICOS INTRODUÇÃO CIRCUITOS SÉRIE DE CORRENTE CONTÍNUA

UNIVERSIDADE PAULISTA UNIP FUNDAMENTOS DE CIRCUITOS ELÉTRICOS INTRODUÇÃO CIRCUITOS SÉRIE DE CORRENTE CONTÍNUA UNIVERSIDADE PAULISTA UNIP FUNDAMENTOS DE CIRCUITOS ELÉTRICOS INTRODUÇÃO CIRCUITOS SÉRIE DE CORRENTE CONTÍNUA Um circuito série é aquele que permite somente um percurso para a passagem da corrente. Nos

Leia mais

CIRCUITOS RETIFICADORES

CIRCUITOS RETIFICADORES CIRCUITOS RETIFICADORES Basicamente, um retificador tem a finalidade de converter uma tensão alternada em uma tensão contínua. Classificam-se em: retificadores de meia onda e retificadores de onda completa.

Leia mais

NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º BIMESTRE

NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º BIMESTRE 1925 *** COLÉGIO MALLET SOARES *** 2016 91 ANOS DE TRADIÇÃO, RENOVAÇÃO E QUALIDADE DEPARTAMENTO DE ENSINO DATA: / / NOTA: NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA. Campus de Guaratinguetá Colégio Técnico Industrial de Guaratinguetá Professor Carlos Augusto Patrício Amorim

UNIVERSIDADE ESTADUAL PAULISTA. Campus de Guaratinguetá Colégio Técnico Industrial de Guaratinguetá Professor Carlos Augusto Patrício Amorim unesp UNIVERSIDADE ESTADUAL PAULISTA Campus de Guaratinguetá Colégio Técnico Industrial de Guaratinguetá Professor Carlos Augusto Patrício Amorim 1 Atividades de Recuperação Final Eletrônica Básica II

Leia mais

Eletrotécnica Geral. Lista de Exercícios 1

Eletrotécnica Geral. Lista de Exercícios 1 ESCOL POLITÉCNIC D UNIVERSIDDE DE SÃO PULO PE - Departamento de Engenharia de Energia e utomação Elétricas Eletrotécnica Geral Lista de Exercícios 1 1. Circuitos em corrente contínua 2. Circuitos monofásicos

Leia mais

Transistor. Este dispositivo de controle de corrente recebeu o nome de transistor.

Transistor. Este dispositivo de controle de corrente recebeu o nome de transistor. Transistor Em 1947, John Bardeen e Walter Brattain, sob a supervisão de William Shockley no AT&T Bell Labs, demonstraram que uma corrente fluindo no sentido de polaridade direta sobre uma junção semicondutora

Leia mais

LISTA 4A: Teoremas Básicos de Análise de Circuitos: Superposição, Thevenin, Norton e Máxima Transferência de Potência. Observação

LISTA 4A: Teoremas Básicos de Análise de Circuitos: Superposição, Thevenin, Norton e Máxima Transferência de Potência. Observação Graduação em Engenharia Elétrica Disciplina: Circuitos Elétricos 01 Professor Wesley Peres wesley.peres@ufsj.edu.br LISTA 4A: Teoremas Básicos de Análise de Circuitos: Superposição, Thevenin, Norton e

Leia mais

5. Aplicações. 5.1 Introdução

5. Aplicações. 5.1 Introdução Aplicações 5. Aplicações 5.1 Introdução Neste capítulo será descrita, como ilustração de sistema não linear, a modelagem de uma típica indústria produtora de alumínio, utilizando eletrólise. Uma linha

Leia mais

Aula Prática: Determinação da resistência interna de uma bateria e uso de regressão linear para determinação da equação de uma reta

Aula Prática: Determinação da resistência interna de uma bateria e uso de regressão linear para determinação da equação de uma reta Aula Prática: Determinação da resistência interna de uma bateria e uso de regressão linear para determinação da equação de uma reta Introdução Observe o circuito representado na figura ao lado em que uma

Leia mais

EELi04 Eletricidade Aplicada I Aula 4

EELi04 Eletricidade Aplicada I Aula 4 UNIFEI - campus ITABIRA EELi04 Eletricidade Aplicada I Aula 4 Professor: Valmor Ricardi Junior Transparências: Prof. Clodualdo Sousa Prof. Tiago Ferreira Prof. Valmor Junior Sumário Circuito CC série (revisão):

Leia mais

Associação de resistores em série e em paralelo

Associação de resistores em série e em paralelo Aula Prática: Associação de resistores em série e em paralelo Introdução Suponha que você possua duas lâmpadas, cujas resistências elétricas sejam R 1 e R 2, e uma bateria cuja FEM (Força Eletro Motriz,

Leia mais

Circuitos Elétricos III

Circuitos Elétricos III Circuitos Elétricos III Prof. Danilo Melges Depto. de Eng. Elétrica Universidade Federal de Minas Gerais Introdução aos circuitos de seleção de freqüência parte 2 Filtros passa-faixa: parâmetros 2 freqüências

Leia mais

BIPOLOS NÃO ÔHMICOS INTRODUÇÃO TEÓRICA

BIPOLOS NÃO ÔHMICOS INTRODUÇÃO TEÓRICA BIPOLOS NÃO ÔHMICOS OBJETIVOS: a) verificar o comportamento de bipolos que não obedecem a lei de ohm; b) construir experimentalmente as características de bipolos não ôhmicos; c) distinguir a diferença

Leia mais

2 - Circuitos Basicos

2 - Circuitos Basicos 2 - Circuitos Basicos Carlos Marcelo Pedroso 18 de março de 2010 1 Introdução A matéria é constituída por átomos, que por sua vez são compostos por 3 partículas fundamentais. Estas partículas são os prótons,

Leia mais

EN2705: Circuitos Elétricos II UFABC Lista 01 (Carlos Eduardo Capovilla) v3

EN2705: Circuitos Elétricos II UFABC Lista 01 (Carlos Eduardo Capovilla) v3 1. Se, na figura abaixo, V an = V nb = 100 0 V (eficazes), a impedância entre os terminais A-N é 10 60 Ω, e a entre os terminais N-B é 10-60 Ω, calcule a corrente de neutro I nn. (R.: 10 3 90 A (valor

Leia mais

Etapa 1: Questões relativas aos resultados Lei de Ohm. 1.1 A partir dos dados tabelados, calcule o valor médio da resistência do resistor.

Etapa 1: Questões relativas aos resultados Lei de Ohm. 1.1 A partir dos dados tabelados, calcule o valor médio da resistência do resistor. Respostas Questões relativas ao resultado Etapa 1: Questões relativas aos resultados Lei de Ohm 1.1 A partir dos dados tabelados, calcule o valor médio da resistência do resistor. Resposta: O valor encontrado

Leia mais

Universidade Federal de São João del-rei. Material Teórico de Suporte para as Práticas

Universidade Federal de São João del-rei. Material Teórico de Suporte para as Práticas Universidade Federal de São João del-rei Material Teórico de Suporte para as Práticas 1 Amplificador Operacional Um Amplificador Operacional, ou Amp Op, é um amplificador diferencial de ganho muito alto,

Leia mais

Disciplina: Circuitos Elétricos I. Conceitos Preliminares

Disciplina: Circuitos Elétricos I. Conceitos Preliminares Disciplina: Circuitos Elétricos I Conceitos Preliminares Introdução O termo circuito elétrico se refere tanto a um sistema elétrico real quanto a um modelo matemático; É o instrumento básico para a compreensão

Leia mais

Circuitos Elétricos Ativos, análise via transformada de Laplace

Circuitos Elétricos Ativos, análise via transformada de Laplace Circuitos Elétricos Ativos, análise via transformada de Laplace Carlos Eduardo de Brito Novaes carlosnov@gmail.com 8 de maio de 0 Introdução Utilizando a transformada de Laplace, a modelagem dinâmica de

Leia mais