UMA (RE)VISÃO DO TEOREMA DE PITÁGORAS E SEU ENSINO. Hugo de Oliveira Motta Serrano 1, Eugenia Brunilda Opazo Uribe

Tamanho: px
Começar a partir da página:

Download "UMA (RE)VISÃO DO TEOREMA DE PITÁGORAS E SEU ENSINO. Hugo de Oliveira Motta Serrano 1, Eugenia Brunilda Opazo Uribe"

Transcrição

1 Encontro de Ensino, Pesquis e Extensão, Presidente Prudente, 5 de outuro, UMA (RE)VISÃO DO TEOREMA DE PITÁGORAS E SEU ENSINO Hugo de Oliveir Mott Serrno 1, Eugeni Brunild Opzo Urie Universidde Federl de Mto Grosso do Sul Cmpus de Três Lgos. E mil: hugo_mott31@hotmil.com. 1 Bolsist do Grupo PET Conexões de Seres Mtemátic/CPTL/UFMS RESUMO O presente trlho é resultdo de um estudo feito sore o Teorem de Pitágors e seu ensino, que foi escolhido devido ser considerdo por muitos mtemáticos como um dos mis elos e importntes teorems d Mtemátic de todos os tempos. A prtir d leitur dos Prâmetros Curriculres Ncionis pr Mtemátic, são feits lgums reflexões sore necessidde de utilizr demonstrções no ensino de geometri e no cso prticulr do ensino deste teorem, ind no Ensino Fundmentl. Em seguid são orddos lguns spectos históricos, pr depois enuncir o teorem e desenvolver dus demonstrções: demonstrção clássic e demonstrção por semelhnç, em como demonstrção d recíproc do teorem. Buscndo um plicção do cotidino, é presentd um discussão, que utiliz o Teorem de Pitágors pr judr escolher um prelho de TV de tel lrg. Plvrs chve: Ensino de Mtemátic, Geometri, Ensino de Geometri, Teorem de Pitágors INTRODUÇÃO E OBJETIVO O Teorem de Pitágors tlvez sej um dos mis conhecidos e importntes teorems d Mtemátic, com inúmers plicções n resolução de prolems tnto teóricos qunto práticos, muitos deles presentes em nosso cotidino. Os Prâmetros Curriculres Ncionis pr quint oitv séries do Ensino Fundmentl (BRASIL, 1998, p.16), destcm pr áre de Mtemátic que, s tividdes de Geometri são muito propícis pr que o professor constru junto com seus lunos um cminho que prtir de experiêncis concrets leve os compreender importânci e necessidde d prov pr legitimr s hipóteses levntds. Porém, lertm sore o cuiddo necessário o trlhr o Teorem de Pitágors no sentido de evitr desvios o interpretr construções e visulizções geométrics como demonstrções do mesmo, Tome se o cso do Teorem de Pitágors pr esclrecer um dos desvios freqüentes qundo se tent rticulr esses domínios. O professor propõe o luno, por exemplo, um quer ceçs constituído por peçs plns que devem compor, por justposição, de dus mneirs diferentes, um modelo mteril de um qudrdo. Utilizndo o princípio ditivo reltivo o conceito de áre de figurs plns, oserv se que c. Diz se, então, que o Teorem de Pitágors foi provdo. Apesr d forç de convencimento pr os lunos que possm ter esses experimentos com mteril concreto Colloquium Exctrum, vol. 4, n. Especil, jul-dez, 01

2 Encontro de Ensino, Pesquis e Extensão, Presidente Prudente, 5 de outuro, ou com medição de um desenho, eles não se constituem provs mtemátics (Brsil, 1998). Pietropolo (005), discute potencilidde d prov no âmito dos currículos de Mtemátic do Ensino Básico e firm que existe um retomd ds demonstrções nos currículos prescritos de lguns píses e que isto decorreu do reconhecimento de que prov sendo um specto fundmentl d tividde mtemátic, deveri estr presente tmém n formção dos lunos, principlmente em função de sus potenciliddes pr desenvolver o rciocínio dedutivo. Ms, pesquiss mostrm que muitos professores trlhm pens com presentção de fórmuls e exercícios de fixção (Bressini, 011). Considerndo demonstrção um specto fundmentl n formção dos lunos, desenvolvemos um estudo sore o Teorem de Pitágors, ordndo conteúdos teóricos pr o desenvolvimento de diferentes demonstrções e plicções do mesmo. O presente trlho tem por ojetivo presentr o Teorem de Pitágors com destque pr su demonstrção e um plicção do cotidino, utilizndo conceitos dequdos pr serem desenvolvids no Ensino Básico. METODOLOGIA O trlho foi desenvolvido em etps, incluindo pesquis iliográfic sore ordgem históric do tem, enuncido do teorem e su recíproc, demonstrções e plicções. Form relizdos seminários de discussão e construção de mteriis concretos pr visulizção e mnipulção. Ao longo do trlho form estudds diverss demonstrções do Teorem de Pitágors, desenvolvendo tmém lgums plicções interessntes. O presente trlho foi delimitdo presentção de dus demonstrções, demonstrção clássic e quel sed em semelhnç, em como um plicção do cotidino. RESULTADOS Um Pouco de Históri Pitágors nsceu n ilh de Smos provvelmente em 570.C., cerc de 50 nos depois do nscimento de Tles de Mileto. Trnsferiu se pr Croton, n cost sudeste d tul Itáli, onde fundou escol Pitgóric dedicd o estudo d Mtemátic e d Filosofi. Lim (006), firm que Pitágors é um figur oscur n histori d mtemátic e, pr dificultr ind mis s coiss, su escol, lém de secret, er comunitári, ou sej, todo conhecimento e tods s Colloquium Exctrum, vol. 4, n. Especil, jul-dez, 01

3 Encontro de Ensino, Pesquis e Extensão, Presidente Prudente, 5 de outuro, descoerts erm comuns, pertencim todos. Assim, não semos sequer se foi o próprio Pitágors que descoriu o teorem que lev seu nome, pois er comum nquel époc dr todo crédito d descoert o mestre. Existem provs concrets de que os ilônios conhecim o Teorem de Pitágors, vários tletes de rro dtdos do período C. form encontrdos, decifrdos e té hoje se encontrm em diversos museus. O Teorem de Pitágors já er conhecido n chin cerc de 600 nos ntes de Pitágors; o livro Zhoui Sunjing, do terceiro século.c., present um prolem denomindo Gou Gu, o equivlente chinês do Teorem de Pitágors. (Lim, 006), (Boyer, 1991). O Enuncido do Teorem de Pitágors Em qulquer triângulo retângulo, áre do qudrdo cujo ldo é hipotenus é igul à som ds áres dos qudrdos que tem como ldos cd um dos ctetos. Se é medid d hipotenus e se e c são s medids dos ctetos, o enuncido do Teorem de Pitágors equivle firmr que c. A Demonstrção Clássic Ddo um triângulo retângulo de hipotenus e ctetos, e c, considerremos o qudrdo cujo ldo é c, de cordo com figur (1). Figur 1 Suponhmos que os ângulos do tringulo de hipótese sejm α e β; pel congruênci de triângulos, temos que nos qutro triângulos os ângulos gudos medem α e β. Como 90, Colloquium Exctrum, vol. 4, n. Especil, jul-dez, 01

4 Encontro de Ensino, Pesquis e Extensão, Presidente Prudente, 5 de outuro, cd ângulo interno do qudrilátero de ldo é reto. A áre do qudrdo mior é dd por ( c) ( c) ( c), enqunto áre do qudrdo de ldo menor é dd por e áre do tringulo será ( c) /, ms podemos notr que áre do qudrdo menor é igul áre do qudrdo mior sutríd d som dos triângulos retângulos. Considerndo que temos qutro triângulos semelhntes, teremos, Áre do qudrdo menor = Áre do qudrdo mior Áre dos triângulos ( c) 4( c) / ou c c c, otendo finlmente, c, como querímos demonstrr. A Demonstrção por Semelhnç Sej ABC um tringulo retângulo em A. Trçndo o segmento AH perpendiculr á hipotenus, podemos verificr que os triângulos AHB e AHC são semelhntes o triângulo ABC. Figur Como o ABC ~ AHC, temos que n e ssim, n. Colloquium Exctrum, vol. 4, n. Especil, jul-dez, 01

5 Encontro de Ensino, Pesquis e Extensão, Presidente Prudente, 5 de outuro, De mneir nálog, como ABC ~ HAB, temos que somndo s dus relções memro memro encontrmos, c, donde c m. Assim, c m c n m ( n m) como m n, otemos finlmente, como querímos demonstrr. c, Recíproc do Teorem de Pitágors Se,, c, são números reis positivos com c, será que o triângulo de ldos,, c é retângulo? A respost é sim. Pr demonstrrmos, considerremos o tringulo ABC, com AB c, BC e CA. 1 Cso: Considerndo A 90 e supondo que c, o ponto D, projeção de C sore AB, ci no interior do ldo AB. Sejm AD y e CD h. Figur 3 Como o ADC é retângulo temos y h e como o BDC tmém é retângulo temos, ( ) h c y, Colloquium Exctrum, vol. 4, n. Especil, jul-dez, 01

6 Encontro de Ensino, Pesquis e Extensão, Presidente Prudente, 5 de outuro, o que mostr que c cy y h ou c cy y y, resultndo que c cy e, portnto, c, o que contrdiz condição inicil. Cso: Considerndo gor A 90, o ponto D ci for do ldo AB. Figur 4 Como o ADC é retângulo, temos h y e como BDC tmém é retângulo temos, h ( c y) e prtir dest iguldde, otemos c cy, o que mostr que c, novmente contrdizendo condição inicil. Portnto, num tringulo ABC de ldos,, c, condição c implic necessrimente que o triângulo é retângulo. Um Aplicção do Cotidino Colloquium Exctrum, vol. 4, n. Especil, jul-dez, 01

7 Encontro de Ensino, Pesquis e Extensão, Presidente Prudente, 5 de outuro, Teodoro (009) present um prolem do cotidino, como plicção do Teorem de Pitágors, relciondo à escolh de um TV de tel lrg. Ele firm que Qundo se põe ldo ldo um velh TV de tuo de 9 polegds e um modern wide screen, de tel lrg, com 3 polegds, fic se com impressão de que imgem dest últim é menor e firm ind que Em comprção com o modelo de tuo, ltur dess TV de tel lrg e, portnto, su percepção d áre d tel será mesmo menor, não import o que dig o fricnte. O número de polegds de um TV indic medid d linh digonl que cruz tel. Assim, emor os prelhos de TV de tuo e tel lrg tenhm digonis equivlentes eles seguem diferentes proporções entre lrgur e ltur. Os fricntes fornecem proporção entre 4 16 s medids de lrgur e d ltur ds tels: pr s tels de tuo e pr s tels lrgs. 3 9 Indicndo por e s medids d lrgur e ltur pr os prelhos de TV de tuo, e de x e y pr os prelhos de TV de tel lrg, temos 4 16 e x y. 3 9 Denotndo por d T medid d digonl e por A T Teorem de Pitágors que, áre do prelho de TV de tuo, temos do d T 4 5 ou d T e ssim, áre pr este cso será A T d T Agor, denotndo por d L medid d digonl e por A L áre do prelho de TV de tel lrg, temos do Teorem de Pitágors que, d L x y y y y ou 9 81 y d L e ssim, áre pr este cso será A xy y L d L Colloquium Exctrum, vol. 4, n. Especil, jul-dez, 01

8 Encontro de Ensino, Pesquis e Extensão, Presidente Prudente, 5 de outuro, Pr que s áres sejm iguis, devemos ter AL AT, o que crret que d L 1, 06dT. Assim, pr termos um tel lrg que tenh áre equivlente à TV de tuo de 9 polegds, por exemplo, st clculr 1, ,74. Arredondndo os vlores otemos que TV de tel lrg correspondente seri no cso de 3 polegds. DISCUSSÃO Ao desenvolver s dus demonstrções presentds, em como recíproc do Teorem, são utilizdos pens conceitos ásicos de Geometri que fzem prte dos conteúdos de Mtemátic do Ensino Fundmentl, permitindo ssim que este trlho poss ser desenvolvido durnte s uls regulres de Mtemátic. A escolh de um plicção do cotidino, usc contriuir no processo de motivção dos lunos. CONCLUSÃO O trlho foi desenvolvido com idéi de explorr os conteúdos relciondos com o Teorem de Pitágors, um tem que deve fzer prte d formção inicil dos professores de Mtemátic, já que ele é utilizdo n resolução de diversos prolems de Mtemátic, tnto do Ensino Fundmentl como do Ensino Médio. Neste trlho form presentds dus demonstrções do Teorem, em como d recíproc e um plicção do cotidino. Acreditmos que form em que s demonstrções são desenvolvids, permite o seu estudo ind no Ensino Básico, compnhdo de mteriis concretos que permitm su visulizção. O trlho terá continuidde estudndo generlizção do Teorem e su versão pr o espço. REFERÊNCIAS BOYER, C.B. Históri d Mtemátic. ª. Ed. Trdução Elz F. Gomide. São Pulo: Edgrd Blücher, Brsil. Secretri de Educção Fundmentl. Prâmetros Curriculres Ncionis: Mtemátic. 5ª. 8ª. séries. Brsíli : MEC/SEF, Disponível em < Consultdo em: 07/09/01. BRESSIANI, L. Teorem de Pitágors: Aordgem em Mídis Digitis f. Monogrfi (Especilizção em Mtemátic, Mídis Digitis e Didátic). Deprtmento de Mtemátic Pur e Aplicd, Universidde Federl do Rio Grnde do Sul, Porto Alegre. Colloquium Exctrum, vol. 4, n. Especil, jul-dez, 01

9 Encontro de Ensino, Pesquis e Extensão, Presidente Prudente, 5 de outuro, 01 7 Disponível em: < Consultdo em: 07/07/01. LIMA, E.L. et l. Tems e Prolems Elementres. 1 ed. Rio de Jneiro: SBM, 006. PIETROPAOLO, R. C. (Re)significr Demonstrção nos Currículos d Educção Básic e d Formção de Professores de Mtemátic f. Tese (Doutordo em Educção Mtemátic). Pontifíci Universidde Ctólic de São Pulo, São Pulo. Disponível em: < Consultdo em: 07/09/01. TEODORO, D. SANTOS, R.N. Como Escolher TV de Tel Lrg Um plicção do Teorem de Pitágors. Revist do Professor de Mtemátic No. 70. p Colloquium Exctrum, vol. 4, n. Especil, jul-dez, 01

Algumas Demonstrações Geométricas

Algumas Demonstrações Geométricas Algums Demonstrções Geométrics Mtemátic A 10º Ano Tem I Nos novos progrms, d Mtemátic A refere- se que: No ensino secundário, o estudnte deverá ser solicitdo frequentemente justificr processos de resolução,

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras - Parte 2. Nono Ano

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras - Parte 2. Nono Ano Mteril Teórico - Módulo Teorem de itágors e plicções lgums demonstrções do Teorem de itágors - rte 2 Nono no utor: rof. Ulisses Lim rente Revisor: rof. ntonio minh M. Neto 27 de ril de 2019 1 lgums plicções

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M.

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 Eercícios Introdutórios Eercício 10. Três ilhs

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental Mteril Teórico - Módulo de Rzões e Proporções Proporções e Conceitos Relciondos Sétimo Ano do Ensino Fundmentl Prof. Frncisco Bruno Holnd Prof. Antonio Cminh Muniz Neto Portl OBMEP 1 Introdução N ul nterior,

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

Teorema Fundamental do Cálculo - Parte 1

Teorema Fundamental do Cálculo - Parte 1 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte Neste texto vmos provr um importnte resultdo que nos permite clculr integris definids. Ele pode ser enuncido como

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

PROCESSO SELETIVO/2006 RESOLUÇÃO 1. Braz Moura Freitas, Margareth da Silva Alves, Olímpio Hiroshi Miyagaki, Rosane Soares Moreira Viana.

PROCESSO SELETIVO/2006 RESOLUÇÃO 1. Braz Moura Freitas, Margareth da Silva Alves, Olímpio Hiroshi Miyagaki, Rosane Soares Moreira Viana. PROCESSO SELETIVO/006 RESOLUÇÃO MATEMÁTICA Brz Mour Freits, Mrgreth d Silv Alves, Olímpio Hiroshi Miygki, Rosne Sores Moreir Vin QUESTÕES OBJETIVAS 0 Pr rrecdr doções, um Entidde Beneficente usou um cont

Leia mais

( 3. a) b) c) d) 10 5 e) 10 5

( 3. a) b) c) d) 10 5 e) 10 5 Pré-F 207 Simuldo # 26 de bril de 207 2 Q. (EsS) Em um progressão ritmétic cujo primeiro termo é, 87 e rzão é 0, 004, temos que som dos seus dez primeiros é igul : () 8, 99 () 9, 5674 () 8, 88 (D) 9, 5644

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º no Mtemátic FUNDMENTL tividdes complementres Este mteril é um complemento d obr Mtemátic 9 Pr Viver Juntos. Reprodução permitid somente pr uso escolr. Vend proibid. Smuel Csl Cpítulo 6 Rzões

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a.

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a. O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic (PA) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric (PG), de rzão q, com qer ~ (nturl diferente de

Leia mais

Revisão EXAMES FINAIS Data: 2015.

Revisão EXAMES FINAIS Data: 2015. Revisão EXAMES FINAIS Dt: 0. Componente Curriculr: Mtemátic Ano: 8º Turms : 8 A, 8 B e 8 C Professor (): Anelise Bruch DICAS Use s eplicções que form copids no cderno; Use e buse do livro didático, nele

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 2

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 2 Mteril Teórico - Módulo Triângulo Retângulo, Leis dos ossenos e dos Senos, Poĺıgonos Regulres Lei dos Senos e Lei dos ossenos - Prte Nono no utor: Prof. Ulisses Lim Prente Revisor: Prof. ntonio minh M.

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO COLÉGIO MILITA DE BELO HOIZONTE CONCUSO DE ADMISSÃO 6 / 7 POVA DE MATEMÁTICA 1ª SÉIE DO ENSINO MÉDIO CONFEÊNCIA: Chefe d Sucomissão de Mtemátic Chefe d COC Dir Ens CPO / CMBH CONCUSO DE ADMISSÃO À 1ª SÉIE

Leia mais

2. Prisma de base hexagonal: formado 8 faces, 2 hexágonos (bases), 6 retângulos (faces laterais).

2. Prisma de base hexagonal: formado 8 faces, 2 hexágonos (bases), 6 retângulos (faces laterais). unifmu Nome: Professor: Ricrdo Luís de Souz Curso de Design Mtemátic Aplicd Atividde Explortóri V Turm: Dt: SÓLIDOS GEOMÉTRICOS: CÁLCULO DE ÁREA SUPERFICIAL E DE VOLUME Objetivo: Conecer e nomer os principis

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

A MODELAGEM MATEMÁTICA NA CONSTRUÇÃO DE TELHADOS COM DIFERENTES TIPOS DE TELHAS

A MODELAGEM MATEMÁTICA NA CONSTRUÇÃO DE TELHADOS COM DIFERENTES TIPOS DE TELHAS A MODELAGEM MATEMÁTICA NA CONSTRUÇÃO DE TELADOS COM DIFERENTES TIOS DE TELAS Angéli Cervi, Rosne Bins, Til Deckert e edro A.. Borges 4. Resumo A modelgem mtemátic é um método de investigção que utiliz

Leia mais

QUESTÃO 01 Seja f : R R uma função definida pela sentença f(x) = 3 0,5 x. A respeito desta função considere as seguintes afirmativas:

QUESTÃO 01 Seja f : R R uma função definida pela sentença f(x) = 3 0,5 x. A respeito desta função considere as seguintes afirmativas: PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JUNHO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO Sej f : R R um

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

Universidade Federal de Rio de Janeiro

Universidade Federal de Rio de Janeiro Universidde Federl de Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Prof. Jime E. Muñoz River river@im.ufrj.r ttp//www.im.ufrj.r/ river Grito d Primeir Prov de Cálculo I Rio de Jneiro

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 1

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 1 Mteril Teório - Módulo Triângulo Retângulo, Leis dos ossenos e dos Senos, Poĺıgonos Regulres Lei dos Senos e Lei dos ossenos - Prte 1 Nono no utor: Prof. Ulisses Lim Prente Revisor: Prof. ntonio min M.

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB.

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB. MÚLTIPL ESCOLH NOTÇÕES C : conjunto dos números compleos. Q : conjunto dos números rcionis. R : conjunto dos números reis. Z : conjunto dos números inteiros. N {0,,,,...}. N* {,,,...}. : conjunto vzio.

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO GABARITO NÍVEL 3 ) C 6) B ) C 6) D ) D ) C 7) B ) D 7) A ) D 3) C 8) B 3) A 8) D 3) D 4) A 9) B 4) C 9) D 4) E 5)

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA I 1 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA I 1 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO... TRIGONOMETRIA TRIÂNGULO RETÂNGULO... 6 RELAÇÕES FUNDAMENTAIS DA TRIGONOMETRIA... 10 ÂNGULOS NOTÁVEIS... 14 TABELA DE RAZÕES TRIGNOMÉTRICAS... 16 RESPOSTAS...

Leia mais

11

11 01 O vlor de 8 6 0,15 é : (A) 8 (B) (C) (E) 6 0 Os números x, y e z são diretmente proporcionis, 9 e 15respectivmente. Sendo que o produto desses números é xyz 960, som será : (A) 5 (B) 8 (C) 6 7 (E) 0

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

Como calcular a área e o perímetro de uma elipse?

Como calcular a área e o perímetro de uma elipse? Como clculr áre e o perímetro de um elipse? Josiel Pereir d Silv Resumo Muitos professores de Mtemátic reltm que miori dos livros didáticos de Mtemátic utilizdos no Ensino Médio não bordm o conceito de

Leia mais

ESTUDO SOBRE A INTEGRAL DE DARBOUX. Introdução. Partição de um Intervalo. Alana Cavalcante Felippe 1, Júlio César do Espírito Santo 1.

ESTUDO SOBRE A INTEGRAL DE DARBOUX. Introdução. Partição de um Intervalo. Alana Cavalcante Felippe 1, Júlio César do Espírito Santo 1. Revist d Mtemátic UFOP, Vol I, 2011 - X Semn d Mtemátic e II Semn d Esttístic, 2010 ISSN 2237-8103 ESTUDO SOBRE A INTEGRAL DE DARBOUX Aln Cvlcnte Felippe 1, Júlio Césr do Espírito Snto 1 Resumo: Este trblho

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 01 1 Fse Prof. Mri Antôni Gouvei. QUESTÃO 83. Em 010, o Instituto Brsileiro de Geogrfi e Esttístic (IBGE) relizou o último censo populcionl brsileiro, que mostrou

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 ) Universidde Federl de Viços Deprtmento de Mtemátic MAT 40 Cálculo I - 207/II Eercícios Resolvidos e Comentdos Prte 2 Limites: Clcule os seguintes ites io se eistirem. Cso contrário, justique não eistênci.

Leia mais

Análise de Variância com Dois Factores

Análise de Variância com Dois Factores Análise de Vriânci com Dois Fctores Modelo sem intercção Eemplo Neste eemplo, o testrmos hipótese de s três lojs terem volumes médios de vends iguis, estmos testr se o fctor Loj tem influênci no volume

Leia mais

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras. Nono Ano

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras. Nono Ano teril Teório - ódulo Teorem de Pitágors e plições lgums demonstrções do Teorem de Pitágors Nono no utor: Prof. Ulisses im Prente Revisor: Prof. ntonio minh. Neto 30 de mrço de 2019 1 Teorem de Pitágors

Leia mais

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um

Leia mais

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam Aplicções de integris Volumes Aul 28 Aplicções de integris Volumes Objetivo Conhecer s plicções de integris no cálculo de diversos tipos de volumes de sólidos, especificmente os chmdos método ds seções

Leia mais

GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO

GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO PROCESSO SELETIVO DE PROVAS E TÍTULOS PARA CONTRATAÇÃO TEMPORÁRIA DE PROFESSOR DA EDUCAÇÃO SUPERIOR EDITAL N 004/2012 UNEMAT A, no uso de sus tribuições legis e em cumprimento ds norms prevists no rtigo

Leia mais

ESCOLA SECUNDÁRIA DE CALDAS TAIPAS CURSO PROFISSIONAL DE TÉCNICO DE COMÉRCIO. DISCIPLINA: ORGANIZAR E GERIR A EMPRESA (10º Ano Turma K)

ESCOLA SECUNDÁRIA DE CALDAS TAIPAS CURSO PROFISSIONAL DE TÉCNICO DE COMÉRCIO. DISCIPLINA: ORGANIZAR E GERIR A EMPRESA (10º Ano Turma K) ESCOLA SECUNDÁRIA DE CALDAS TAIPAS CURSO PROFISSIONAL DE TÉCNICO DE COMÉRCIO DISCIPLINA: ORGANIZAR E GERIR A EMPRESA (10º Ano Turm K) PLANIFICAÇÃO ANUAL Diretor do Curso Celso Mnuel Lim Docente Celso Mnuel

Leia mais

CPV 82% de aprovação na ESPM em 2011

CPV 82% de aprovação na ESPM em 2011 CPV 8% de provção n ESPM em 0 Prov Resolvid ESPM Prov E 0/julho/0 MATEMÁTICA. Considerndo-se que x = 97, y = 907 e z =. xy, o vlor d expressão x + y z é: ) 679 b) 58 c) 7 d) 98 e) 77. Se três empds mis

Leia mais

Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. 8 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. 8 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometri Pln - Prte 3 Prlelogrmos Especiis 8 no E.F. Professores Cleer Assis e Tigo Mirnd Elementos Básicos de Geometri Pln - Prte 3 Prlelogrmos Especiis 1 Exercícios Introdutórios

Leia mais

a) sexto b) sétimo c) oitavo d) nono e) décimo

a) sexto b) sétimo c) oitavo d) nono e) décimo 1 INSPER 16/06/013 Seu Pé Direito ns Melhores Fculddes 1. Nos plnos seguir, estão representds dus relções entre s vriáveis x e y: y = x e y = x, pr x 0.. Em um sequênci, o terceiro termo é igul o primeiro

Leia mais

Matemática D Extensivo V. 6

Matemática D Extensivo V. 6 Mtemátic D Extensivo V. 6 Exercícios 0) ) cm Por definição temos que digonl D vle: D = D = cm. b) 6 cm² A áre d lterl é dd pel som ds áres dos qutro ldos que compõe: =. ² =. ( cm)² = 6 cm² c) 96 cm² O

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 3 SEMELHANÇA. Disciplina: Matemática Professor: Marcello Amadeo Série: 9º ano / EF

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 3 SEMELHANÇA. Disciplina: Matemática Professor: Marcello Amadeo Série: 9º ano / EF INSTITUTO E PLIÇÃO FERNNO RORIGUES SILVEIR isciplin: Mtemátic Professor: Mrcello mdeo Série: 9º no / EF lun(o): Turm: LIST 3 SEMELHNÇ FIGURS SEMELHNTES Em Mtemátic, qundo usmos medids proporcionis pr desenhr

Leia mais

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Mtemátic ásic II - Trigonometri Not 0 - Trigonometri no Triângulo Retângulo Márcio Nscimento d Silv Universidde Estdul Vle do crú - UV urso de Licencitur em Mtemátic mrcio@mtemticuv.org 18 de mrço de 014

Leia mais

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o VETORES INTRODUÇÃO No módulo nterior vimos que s grndezs físics podem ser esclres e vetoriis. Esclres são quels que ficm perfeitmente definids qundo expresss por um número e um significdo físico: mss (2

Leia mais

PROFESSOR RIKEY FELIX

PROFESSOR RIKEY FELIX PROFESSOR RIKEY FELIX Mtemátic Instrumentl Introdução noções de medids numérics, rzão e proporção, porcentgem e princípio de equivlênci. Professor Rikey Pulo Pires Feli, Licencido em Mtemátic pel Universidde

Leia mais

Material Teórico - Módulo Números Naturais: Contagem, Divisibilidade e o Teorema da Divisão Euclidiana

Material Teórico - Módulo Números Naturais: Contagem, Divisibilidade e o Teorema da Divisão Euclidiana Mteril Teórico - Módulo Números Nturis: Contgem, Divisibilidde e o Teorem d Divisão Euclidin Divisibilidde e Teorem d Divisão Euclidin Prte 1 Oitvo Ano Autor: Prof. Ulisses Lim Prente Revisor: Prof. Antonio

Leia mais

Matemática Fascículo 02 Manoel Benedito Rodrigues

Matemática Fascículo 02 Manoel Benedito Rodrigues Mtemáti Fsíulo 0 Mnoel Benedito odrigues Índie Geometri Pln esumo Teório...1 Eeríios... Dis...5 esoluções...6 Geometri Pln esumo Teório Prinipis Fórmuls Lei dos Senos sen sen sen Lei dos Cossenos = + os

Leia mais

A ÁGUA COMO TEMA GERADOR PARA O ENSINO DE QUÍMICA

A ÁGUA COMO TEMA GERADOR PARA O ENSINO DE QUÍMICA A ÁGUA COMO TEMA GERADOR PARA O ENSINO DE QUÍMICA AUTORES: AMARAL, An Pul Mgno; NETO, Antônio d Luz Cost. E-MAIL: mgno_n@yhoo.com.br; ntonioluzneto@gmil.com INTRODUÇÃO Sendo um desfio ensinr químic pr

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL

MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL MAT 103 - Complementos de Mtemátic pr Contbilidde - FEAUSP 1 o semestre de 011 Professor Oswldo Rio Brnco de Oliveir INTEGRAL Suponhmos um torneir bert em um recipiente e com velocidde de escomento d águ

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (II Determinntes) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Determinntes Índice 2 Determinntes 2

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

8 é possível preencher o quadriculado inicial de exatamente duas maneiras distintas.

8 é possível preencher o quadriculado inicial de exatamente duas maneiras distintas. OBMEP 011 Fse 1 Questão 1 Solução ) Primeiro notmos que é possível preencher o qudriculdo de cordo com o enuncido; um exemplo está o ldo. Oservmos gor que, qulquer que sej mneir de preencher o qudriculdo,

Leia mais

São possíveis ladrilhamentos com um único molde na forma de qualquer quadrilátero, de alguns tipos de pentágonos irregulares, etc.

São possíveis ladrilhamentos com um único molde na forma de qualquer quadrilátero, de alguns tipos de pentágonos irregulares, etc. LADRILHAMENTOS Elvi Mureb Sllum Mtemtec-IME-USP A rte do ldrilhmento consiste no preenchimento do plno, por moldes, sem superposição ou burcos. El existe desde que o homem começou usr pedrs pr cobrir o

Leia mais

Resoluções das atividades

Resoluções das atividades Resoluções ds tividdes Começo de convers A velocidde ds notícis Resposts pessois. É possível pontr indicdores numéricos comuns à relidde ds mídis sociis, tis como: quntidde de comprtilhmentos, número de

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES SISTEMAS LINEARES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES SISTEMAS LINEARES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 - CAPES SISTEMAS LINEARES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic r

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7011 ELETRICIDADE BÁSICA TURMA: 141A

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7011 ELETRICIDADE BÁSICA TURMA: 141A UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7011 ELETRICIDADE BÁSICA TURMA: 141A EQUIVALENTES DE THÉVENIN E NORTON E MÉTODOS DIRETO E INDIRETO DE MEDIR UMA RESISTÊNCIA

Leia mais

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C GRITO temátic tensivo V. ercícios 0) ) 40 b) 0) 0) ) elo Teorem de Tles, temos: 8 40 5 b) elo Teorem de Tles, temos: 4 7 prtir do Teorem de Tles, temos: 4 0 48 0 4,8 48, 48 6 : 9 6, + 4,8 + 9,8 prtir do

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1;

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1; Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Curso Teste (ii) cso qundo 0 < < 1 EXPONENCIAL E LOGARITMO f() é decrescente e Im = R + 1. FUNÇÃO EXPONENCIAL A função f: R R + definid

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

MÉTODO DA POSIÇÃO FALSA EXEMPLO

MÉTODO DA POSIÇÃO FALSA EXEMPLO MÉTODO DA POSIÇÃO FALSA Vimos que o Método d Bissecção encontr um novo intervlo trvés de um médi ritmétic. Ddo o intervlo [,], o método d posição fls utiliz médi ponderd de e com pesos f( e f(, respectivmente:

Leia mais

CONJUNTOS NUMÉRICOS Símbolos Matemáticos

CONJUNTOS NUMÉRICOS Símbolos Matemáticos CONJUNTOS NUMÉRICOS Símolos Mtemáticos,,... vriáveis e prâmetros igul A, B,... conjuntos diferente pertence > mior que não pertence < menor que está contido mior ou igul não está contido menor ou igul

Leia mais