Movimento Circular. Parte I. Página 1

Tamanho: px
Começar a partir da página:

Download "Movimento Circular. Parte I. www.soexatas.com Página 1"

Transcrição

1 Parte I Movimento Circular 1. (Ufpa 2013) O escalpelamento é um grave acidente que ocorre nas pequenas embarcações que fazem transporte de ribeirinhos nos rios da Amazônia. O acidente ocorre quando fios de cabelos longos são presos ao eixo desprotegido do motor. As vitimas são mulheres e crianças que acabam tendo o couro cabeludo arrancado. Um barco típico que trafega nos rios da Amazônia, conhecido como rabeta, possui um motor com um eixo de 80 mm de diâmetro, e este motor, quando em operação, executa 3000 rpm. Considerando que, nesta situação de escalpeamento, há um fio ideal que não estica e não desliza preso ao eixo do motor e que o tempo médio da reação humana seja de 0,8 s (necessário para um condutor desligar o motor), é correto afirmar que o comprimento deste fio que se enrola sobre o eixo do motor, neste intervalo de tempo, é de: a) 602,8 m b) 96,0 m c) 30,0 m d) 20,0 m e) 10,0 m 2. (Ufsm 2013) Algumas empresas privadas têm demonstrado interesse em desenvolver veículos espaciais com o objetivo de promover o turismo espacial. Nesse caso, um foguete ou avião impulsiona o veículo, de modo que ele entre em órbita ao redor da Terra. Admitindo-se que o movimento orbital é um movimento circular uniforme em um referencial fixo na Terra, é correto afirmar que a) o peso de cada passageiro é nulo, quando esse passageiro está em órbita. b) uma força centrífuga atua sobre cada passageiro, formando um par ação-reação com a força gravitacional. c) o peso de cada passageiro atua como força centrípeta do movimento; por isso, os passageiros são acelerados em direção ao centro da Terra. d) o módulo da velocidade angular dos passageiros, medido em relação a um referencial fixo na Terra, depende do quadrado do módulo da velocidade tangencial deles. e) a aceleração de cada passageiro é nula. 3. (Enem 2013) Para serrar ossos e carnes congeladas, um açougueiro utiliza uma serra de fita que possui três polias e um motor. O equipamento pode ser montado de duas formas diferentes, P e Q. Por questão de segurança, é necessário que a serra possua menor velocidade linear. Por qual montagem o açougueiro deve optar e qual a justificativa desta opção? a) Q, pois as polias 1 e 3 giram com velocidades lineares iguais em pontos periféricos e a que tiver maior raio terá menor frequência. b) Q, pois as polias 1 e 3 giram com frequências iguais e a que tiver maior raio terá menor velocidade linear em um ponto periférico. c) P, pois as polias 2 e 3 giram com frequências diferentes e a que tiver maior raio terá menor velocidade linear em um ponto periférico. d) P, pois as polias 1 e 2 giram com diferentes velocidades lineares em pontos periféricos e a que tiver menor raio terá maior frequência. e) Q, pois as polias 2 e 3 giram com diferentes velocidades lineares em pontos periféricos e a que tiver maior raio terá menor frequência. TEXTO PARA A PRÓXIMA QUESTÃO: O Brasil prepara-se para construir e lançar um satélite geoestacionário que vai levar banda larga a todos os municípios do país. Além de comunicações estratégicas para as Forças Armadas, o satélite possibilitará o acesso à banda larga mais barata a todos os municípios brasileiros. O ministro da Ciência e Tecnologia está convidando a Índia que tem experiência neste campo, já tendo lançado 70 satélites a entrar na disputa internacional pelo projeto, que trará ganhos para o consumidor nas áreas de Internet e telefonia 3G. (Adaptado de: BERLINCK, D. Brasil vai construir satélite para levar banda larga para todo país. O Globo, Economia, mar Disponível em: < Acesso em: 16 abr ) 4. (Uel 2013) A posição média de um satélite geoestacionário em relação à superfície terrestre se mantém devido à a) sua velocidade angular ser igual à velocidade angular da superfície terrestre. b) sua velocidade tangencial ser igual à velocidade tangencial da superfície terrestre. c) sua aceleração centrípeta ser proporcional ao cubo da velocidade tangencial do satélite. d) força gravitacional terrestre ser igual à velocidade angular do satélite. e) força gravitacional terrestre ser nula no espaço, local em que a atmosfera é rarefeita. 5. (Uftm 2012) Boleadeira é o nome de um aparato composto por três esferas unidas por três cordas inextensíveis e de mesmo comprimento, presas entre si por uma das pontas. O comprimento de cada corda é 0,5 m e o conjunto é colocado em movimento circular uniforme, na horizontal, com velocidade angular ω de 6 rad/s, em disposição simétrica, conforme figura. Página 1

2 e) 50,0 rpm. Desprezando-se a resistência imposta pelo ar e considerando que o conjunto seja lançado com velocidade V (do ponto de junção das cordas em relação ao solo) de módulo 4 m/s, pode-se afirmar que o módulo da velocidade resultante da esfera A no momento indicado na figura, também em relação ao solo, é, em m/s, a) 3. b) 4. c) 5. d) 6. e) (Uerj 2012) Uma pequena pedra amarrada a uma das extremidades de um fio inextensível de 1 m de comprimento, preso a um galho de árvore pela outra extremidade, oscila sob ação do vento entre dois pontos equidistantes e próximos à vertical. Durante 10 s, observouse que a pedra foi de um extremo ao outro, retornando ao ponto de partida, 20 vezes. Calcule a frequência de oscilação desse pêndulo. 7. (Ufpr 2012) Um ciclista movimenta-se com sua bicicleta em linha reta a uma velocidade constante de 18 km/h. O pneu, devidamente montado na roda, possui diâmetro igual a 70 cm. No centro da roda traseira, presa ao eixo, há uma roda dentada de diâmetro 7,0 cm. Junto ao pedal e preso ao seu eixo há outra roda dentada de diâmetro 20 cm. As duas rodas dentadas estão unidas por uma corrente, conforme mostra a figura. Não há deslizamento entre a corrente e as rodas dentadas. Supondo que o ciclista imprima aos pedais um movimento circular uniforme, assinale a alternativa correta para o= número de voltas por minuto que ele impõe aos pedais durante esse movimento. Nesta questão, considere π= (Uem 2012) Sobre o movimento circular uniforme, assinale o que for correto. 01) Período é o intervalo de tempo que um móvel gasta para efetuar uma volta completa. 02) A frequência de rotação é dada pelo número de voltas que um móvel efetua por unidade de tempo. 04) A distância que um móvel em movimento circular uniforme percorre ao efetuar uma volta completa é diretamente proporcional ao raio de sua trajetória. 08) Quando um móvel efetua um movimento circular uniforme, sobre ele atua uma força centrípeta, a qual é responsável pela mudança na direção da velocidade do móvel. 16) O módulo da aceleração centrípeta é diretamente proporcional ao raio de sua trajetória. 9. (Uftm 2012) Foi divulgado pela imprensa que a ISS (sigla em inglês para Estação Espacial Internacional) retornará à Terra por volta de 2020 e afundará no mar, encerrando suas atividades, como ocorreu com a Estação Orbital MIR, em Atualmente, a ISS realiza sua órbita a 350 km da Terra e seu período orbital é de aproximadamente 90 minutos. Considerando o raio da Terra igual a km e π 3, pode-se afirmar que a) ao afundar no mar o peso da água deslocada pela estação espacial será igual ao seu próprio peso. b) a pressão total exercida pela água do mar é exatamente a mesma em todos os pontos da estação. c) a velocidade linear orbital da estação é, aproximadamente, 27 x 10 3 km/h. d) a velocidade angular orbital da estação é, aproximadamente, 0,25 rad/h. e) ao reingressar na atmosfera a aceleração resultante da estação espacial será radial e de módulo constante. 10. (Uespi 2012) A engrenagem da figura a seguir é parte do motor de um automóvel. Os discos 1 e 2, de diâmetros 40 cm e 60 cm, respectivamente, são conectados por uma correia inextensível e giram em movimento circular uniforme. Se a correia não desliza sobre os discos, a razão ω / ω entre as velocidades angulares dos discos vale 1 2 a) 0,25 rpm. b) 2,50 rpm. c) 5,00 rpm. d) 25,0 rpm. a) 1/3 b) 2/3 c) 1 d) 3/2 e) 3 Página 2

3 TEXTO PARA A PRÓXIMA QUESTÃO: Adote os conceitos da Mecânica Newtoniana e as seguintes convenções: 2 1. O valor da aceleração da gravidade: g= 10 m/s ; 2. A resistência do ar pode ser desconsiderada (Ufpb 2012) Em uma bicicleta, a transmissão do movimento das pedaladas se faz através de uma corrente, acoplando um disco dentado dianteiro (coroa) a um disco dentado traseiro (catraca), sem que haja deslizamento entre a corrente e os discos. A catraca, por sua vez, é acoplada à roda traseira de modo que as velocidades angulares da catraca e da roda sejam as mesmas (ver a seguir figura representativa de uma bicicleta). 13. (Uesc 2011) A figura representa uma parte de um tocadiscos que opera nas frequências de 33rpm, 45rpm e 78rpm. Uma peça metálica, cilíndrica C, apresentando três regiões I, II e III de raios, respectivamente, iguais a, R R1 2 e R 3, que gira no sentido indicado, acoplada ao eixo de um motor. Um disco rígido de borracha D, de raio, R D entra em contato com uma das regiões da peça C, adquirindo, assim, um movimento de rotação. Esse disco também está em contato com o prato P, sobre o qual é colocado o disco fonográfico. Quando se aciona o comando para passar de uma frequência para outra, o disco D desloca-se para cima ou para baixo, entrando em contato com outra região da peça C. Em uma corrida de bicicleta, o ciclista desloca-se com velocidade escalar constante, mantendo um ritmo estável de pedaladas, capaz de imprimir no disco dianteiro uma velocidade angular de 4 rad/s, para uma configuração em que o raio da coroa é 4R, o raio da catraca é R e o raio da roda é 0,5 m. Com base no exposto, conclui-se que a velocidade escalar do ciclista é: a) 2 m/s b) 4 m/s c) 8 m/s d) 12 m/s e) 16 m/s 12. (G1 - ifce 2011) Numa pista circular de diâmetro 200 m, duas pessoas se deslocam no mesmo sentido, partindo de pontos diametralmente opostos da pista. A primeira pessoa parte com velocidade angular constante de 0,010 rad/s, e a segunda parte, simultaneamente, com velocidade escalar constante de 0,8 m/s. As duas pessoas estarão emparelhadas após (use π com duas casas decimais) a) 18 minutos e 50 segundos. b) 19 minutos e 10 segundos. c) 20 minutos e 5 segundos. d) 25 minutos e 50 segundos. e) 26 minutos e 10 segundos. A análise da figura, com base nos conhecimentos sobre movimento circular uniforme, permite afirmar: a) A frequência do disco D é igual a 0,75R 2 / RD. b) Todos os pontos periféricos da peça C têm a mesma velocidade linear. c) O disco D e o prato P executam movimentos de rotação com a mesma frequência. d) A peça C e o disco D realizam movimentos de rotação com a mesma velocidade angular. e) A velocidade linear de um ponto periférico da região I, do cilindro C, é igual a 2,6πR1cm / s, com raio medido em cm. 14. (Pucmg 2010) Nada como um dia após o outro. Certamente esse dito popular está relacionado de alguma forma com a rotação da Terra em torno de seu próprio eixo, realizando uma rotação completa a cada 24 horas. Pode-se, então, dizer que cada hora corresponde a uma rotação de: a) 180º b) 360º c) 15º d) 90º 15. (G1 - cftsc 2010) Na figura abaixo, temos duas polias de raios R 1 e R 2, que giram no sentido horário, acopladas a uma correia que não desliza sobre as polias. Página 3

4 Com base no enunciado acima e na ilustração, é correto afirmar que: a) a velocidade angular da polia 1 é numericamente igual à velocidade angular da polia 2. b) a frequência da polia 1 é numericamente igual à frequência da polia 2. c) o módulo da velocidade na borda da polia 1 é numericamente igual ao módulo da velocidade na borda da polia 2. d) o período da polia 1 é numericamente igual ao período da polia 2. e) a velocidade da correia é diferente da velocidade da polia (Ufg 2010) A figura abaixo ilustra duas catracas fixas, cujos dentes têm o mesmo passo, da roda traseira de uma bicicleta de marchas que se desloca com velocidade constante, pela ação do ciclista. 16. (Uepg 2010) A figura a seguir ilustra três polias A, B e C executando um movimento circular uniforme. A polia B está fixada à polia C e estas ligadas à polia A por meio de uma correia que faz o sistema girar sem deslizar. Sobre o assunto, assinale o que for correto. 01) A velocidade escalar do ponto 1 é maior que a do ponto 2. 02) A velocidade angular da polia B é igual a da polia C. 04) A velocidade escalar do ponto 3 é maior que a velocidade escalar do ponto 1. 08) A velocidade angular da polia C é maior do que a velocidade angular da polia A. Os dentes P e Q estão sempre alinhados e localizados a distâncias R P e R Q (R P > R Q ) em relação ao eixo da roda. As grandezas ù, v, á, e a, representam, respectivamente, a velocidade angular, a velocidade tangencial, a aceleração angular e a aceleração centrípeta. As duas grandezas físicas que variam linearmente com o raio e a razão de cada uma delas entre as posições Q e P são: a) v, ù e 0,7 b) a, v e 1,4 c) á, v e 1,4 d) v, a e 0,7 e) ù, á e 1,4 19. (Pucrs 2010) O acoplamento de engrenagens por correia C, como o que é encontrado nas bicicletas, pode ser esquematicamente representado por: 17. (Ufpe 2010) Uma bicicleta possui duas catracas, uma de raio 6,0 cm, e outra de raio 4,5 cm. Um ciclista move-se com velocidade uniforme de 12 km/h usando a catraca de 6,0 cm. Com o objetivo de aumentar a sua velocidade, o ciclista muda para a catraca de 4,5 cm mantendo a mesma velocidade angular dos pedais. Determine a velocidade final da bicicleta, em km/h. Considerando-se que a correia em movimento não deslize em relação às rodas A e B, enquanto elas giram, é correto afirmar que a) a velocidade angular das duas rodas é a mesma. b) o módulo da aceleração centrípeta dos pontos periféricos de ambas as rodas tem o mesmo valor. Página 4

5 c) a frequência do movimento de cada polia é inversamente proporcional ao seu raio. d) as duas rodas executam o mesmo número de voltas no mesmo intervalo de tempo. e) o módulo da velocidade dos pontos periféricos das rodas é diferente do módulo da velocidade da correia. 20. (Ufg 2010) O funcionamento de um dispositivo seletor de velocidade consiste em soltar uma esfera de uma altura h para passar por um dos orifícios superiores (O 1, O 2, O 3, O 4 ) e, sucessivamente, por um dos orifícios inferiores (P 1, P 2, P 3, P 4 ) conforme ilustrado a seguir. a) Determine R n em função de n. b) Mostre que ù n+1 = 3ù n para todo n. 22. (Udesc 2010) O velódromo, nome dado à pista onde são realizadas as provas de ciclismo, tem forma oval e possui uma circunferência entre 250,0 m e 330,0 m, com duas curvas inclinadas a 41 o. Na prova de velocidade o percurso de três voltas tem 1.000,0 m, mas somente os 60 π últimos metros são cronometrados. Determine a frequência de rotação das rodas de uma bicicleta, necessária para que um ciclista percorra uma distância inicial de 24πmetros em 30 segundos, considerando o movimento uniforme. (O raio da bicicleta é igual a 30,0 cm.) Assinale a alternativa correta em relação à frequência. a) 80 rpm b) 0,8πrpm c) 40 rpm d) 24πrpm e) 40πrpm 23. (Ufrgs 2010) Levando-se em conta unicamente o movimento de rotação da Terra em torno de seu eixo imaginário, qual é aproximadamente a velocidade tangencial de um ponto na superfície da Terra, localizado sobre o equador terrestre? Os orifícios superiores e inferiores mantêm-se alinhados, e o sistema gira com velocidade angular constante ω. Desprezando a resistência do ar e considerando que a esfera é liberada do repouso, calcule a altura máxima h para que a esfera atravesse o dispositivo. 21. (Ueg 2010) Observe a figura. (Considere π=3,14; raio da Terra R T = km.) a) 440 km/h. b) 800 km/h. c) 880 km/h. d) km/h. e) km/h. 24. (Ufc 2009) Uma partícula de massa m gira em um plano vertical, presa a uma corda de massa desprezível, conforme a figura a seguir. No instante indicado na figura, a corda se parte, de modo que a partícula passa a se mover livremente. A aceleração da gravidade local é constante e apresenta módulo igual a g. Assinale a alternativa que descreve o movimento da partícula após a corda ter se rompido. Nessa figura, está representada uma máquina hipotética constituída de uma sequência infinita de engrenagens circulares E 1, E 2, E 3... que tangenciam as retas s e t. Cada engrenagem E n tangencia a próxima engrenagem E n+1. Para todo número natural positivo n, R n e ù n são, respectivamente, o raio e a velocidade angular do circuito E n. Considerando estas informações e que R 1 = 1,0u. Página 5

6 25. (Ufc 2009) Um relógio analógico possui um ponteiro A, que marca as horas e um ponteiro B, que marca os minutos. Assinale a alternativa que contém o tempo em que os ponteiros A e B se encontram pela primeira vez após as três horas. a) 15 min 16 (81/90) s. b) 15 min 21 (81/99) s. c) 16 min 16 (81/99) s. d) 16 min 21 (81/99) s. e) 16 min 21 (81/90) s. 26. (Ufg 2009) Sabe-se que a razão entre o período da Terra (T T ) e o mercúrio (T M ), em torno do Sol, é da ordem de 4. Considere que os planetas Terra e Mercúrio estão em órbitas circulares em torno do Sol, em um mesmo plano. Nessas condições, a) qual é, em meses, o tempo mínimo entre dois alinhamentos consecutivos desses dois planetas com Sol? b) Qual é, em graus, o ângulo que a Terra terá percorrido nesse intervalo de tempo? 27. (Fgv 2009) Uma grande manivela, quatro engrenagens pequenas de 10 dentes e outra de 24 dentes, tudo associado a três cilindros de 8 cm de diâmetro, constituem este pequeno moedor manual de cana. O mecanismo apresentado na figura anterior é utilizado para enrolar mangueiras após terem sido usadas no combate a incêndios. A mangueira é enrolada sobre si mesma, camada sobre camada, formando um carretel cada vez mais espesso. Considerando ser o diâmetro da polia A maior que o diâmetro da polia B, quando giramos a manivela M com velocidade constante, verificamos que a polia B gira que a polia A, enquanto a extremidade P da mangueira sobe com o movimento. Preenche corretamente as lacunas anteriores a opção: a) mais rapidamente - acelerado. b) mais rapidamente - uniforme. c) com a mesma velocidade - uniforme. d) mais lentamente - uniforme. e) mais lentamente - acelerado. 29. (Uel 1999) Um antigo relógio de bolso tem a forma mostrada na figura a seguir, com o ponteiro dos segundos separado dos outros dois. Ao produzir caldo de cana, uma pessoa gira a manivela fazendo-a completar uma volta a cada meio minuto. Supondo que a vara de cana colocada entre os cilindros seja esmagada sem escorregamento, a velocidade escalar com que a máquina puxa a cana para seu interior, em cm/s, é, aproximadamente, Dado: Se necessário use ð = 3. a) 0,20. b) 0,35. c) 0,70. d) 1,25. e) 1,50. A velocidade angular do ponteiro dos segundos, cujo comprimento é 0,50cm, em rad/s, e a velocidade linear de um ponto na extremidade de tal ponteiro, em cm/s, são respectivamente, iguais a a) 2ð e ð b) 2ð e 4ð c) 30 π e 15 π d) 30 π e 60 π e) 60 π e 2ð 28. (Unirio 1999) Página 6

7 Parte II 1. (Unifesp 2006) Pai e filho passeiam de bicicleta e andam lado a lado com a mesma velocidade. Sabe-se que o diâmetro das rodas da bicicleta do pai é o dobro do diâmetro das rodas da bicicleta do filho. Pode-se afirmar que as rodas da bicicleta do pai giram com a) a metade da frequência e da velocidade angular com que giram as rodas da bicicleta do filho. b) a mesma frequência e velocidade angular com que giram as rodas da bicicleta do filho. c) o dobro da frequência e da velocidade angular com que giram as rodas da bicicleta do filho. d) a mesma frequência das rodas da bicicleta do filho, mas com metade da velocidade angular. e) a mesma frequência das rodas da bicicleta do filho, mas com o dobro da velocidade angular. 2. (Unifesp 2002) Três corpos estão em repouso em relação ao solo, situados em três cidades: Macapá, localizada na linha do Equador, São Paulo, no trópico de Capricórnio, e Selekhard, na Rússia, localizada no círculo Polar Ártico. Pode-se afirmar que esses três corpos giram em torno do eixo da Terra descrevendo movimentos circulares uniformes, com a) as mesmas frequência e velocidade angular, mas o corpo localizado em Macapá tem a maior velocidade tangencial. b) as mesmas frequência e velocidade angular, mas o corpo localizado em São Paulo tem a maior velocidade tangencial. c) as mesmas frequência e velocidade angular, mas o corpo localizado em Selekhard tem a maior velocidade tangencial. d) as mesmas frequência, velocidade angular e velocidade tangencial, em qualquer cidade. e) frequência, velocidade angular e velocidade tangencial diferentes entre si, em cada cidade. Parte III 1. (Unesp 2009) Admita que em um trator semelhante ao da foto a relação entre o raio dos pneus de trás ( rt) e o raio dos pneus da frente ( ) F r é r T = 1,5 r F. Chamando de v T e v F os módulos das velocidades de pontos desses pneus em contato com o solo e de f T e f F as suas respectivas frequências de rotação, pode-se afirmar que, quando esse trator se movimenta, sem derrapar, são válidas as relações: a) vt = v F e ft = f F. v = v e 1,5 f = f. b) T F T F c) v T = v F e f T = 1,5 f F. d) T = F T = F e) 1,5 v T = v F e f T = f F. v 1,5 v e f f. 2. (Unesp 2008) Pesquisadores têm observado que a capacidade de fertilização dos espermatozoides é reduzida quando estas células reprodutoras são submetidas a situações de intenso campo gravitacional, que podem ser simuladas usando centrífugas. Em geral, uma centrífuga faz girar diversos tubos de ensaio ao mesmo tempo; a figura representa uma centrífuga em alta rotação, vista de cima, com quatro tubos de ensaio praticamente no plano horizontal. As amostras são acomodadas no fundo de cada um dos tubos de ensaio e a distância do eixo da centrífuga até os extremos dos tubos em rotação é 9,0 cm. Considerando g = 10 m/s 2, calcule a velocidade angular da centrífuga para gerar o efeito de uma aceleração gravitacional de 8,1 g. 3. (Unesp 2007) Satélites de órbita polar giram numa órbita que passa sobre os polos terrestres e que permanece sempre em um plano fixo em relação às estrelas. Pesquisadores de estações oceanográficas, preocupados com os efeitos do aquecimento global, utilizam satélites desse tipo para detectar regularmente pequenas variações de temperatura e medir o espectro da radiação térmica de diferentes regiões do planeta. Considere o satélite a km acima da superfície da Terra, deslocando-se com velocidade de m/s em uma órbita circular. Estime quantas passagens o satélite fará pela linha do equador em cada período de 24 horas. Utilize a aproximação ð = 3,0 e suponha a Terra esférica, com raio de 6400 km. Página 7

8 4. (Unesp 2004) Um cilindro oco de 3,0 m de comprimento, cujas bases são tampadas com papel fino, gira rapidamente em torno de seu eixo com velocidade angular constante. Uma bala disparada com velocidade de 600 m/s, paralelamente ao eixo do cilindro, perfura suas bases em dois pontos, P na primeira base e Q na segunda. Os efeitos da gravidade e da resistência do ar podem ser desprezados. a) Quanto tempo a bala levou para atravessar o cilindro? b) Examinando as duas bases de papel, verifica-se que entre P e Q há um deslocamento angular de 9. Qual é a frequência de rotação do cilindro, em hertz, sabendo que não houve mais do que uma rotação do cilindro durante o tempo que a bala levou para atravessá-lo? 5. (Unesp 2003) Dois atletas estão correndo numa pista de atletismo com velocidades constantes, mas diferentes. O primeiro atleta locomove-se com velocidade v e percorre a faixa mais interna da pista, que na parte circular tem raio R. O segundo atleta percorre a faixa mais externa, que tem raio 3R/2. Num mesmo instante, os dois atletas entram no trecho circular da pista, completando-o depois de algum tempo. Se ambos deixam este trecho simultaneamente, podemos afirmar que a velocidade do segundo atleta é a) 3v. b) 3v/2. c) v. d) 2v/3. e) v/3. 6. (Unesp 2000) O comprimento da banda de rodagem (circunferência externa) do pneu de uma bicicleta é de aproximadamente 2m. a) Determine o número N de voltas (rotações) dadas pela roda da bicicleta, quando o ciclista percorre uma distância de 6,0km. b) Supondo que esta distância tenha sido percorrida com velocidade constante de 18km/h, determine, em hertz, a frequência de rotação da roda durante o percurso. ser, no restante da corrida, a razão entre a velocidade média v B do piloto B e a velocidade média v A do piloto A, para que cheguem juntos ao final dessa corrida? 9. (Unesp 1990) Um farol marítimo projeta um facho de luz contínuo, enquanto gira em torno do seu eixo à razão de 10 rotações por minuto. Um navio, com o costado perpendicular ao facho, está parado a 6 km do farol. Com que velocidade um raio luminoso varre o costado do navio? a) 60 m/s b) 60 km/s c) 6,3 km/s d) 630 m/s e) 1,0 km/s 10. (Unesp 1990) Quem está na Terra vê sempre a mesma face da Lua. Isto ocorre porque: a) a Lua não efetua rotação nem translação. b) a Lua não efetua rotação, apenas translação. c) os períodos de rotação e translação da Lua são iguais. d) as oportunidades para se observar a face desconhecida coincidem com o período diurno da Terra. e) enquanto a Lua dá uma volta em torno da Terra, esta dá uma volta em torno de seu eixo. 11. (Unesp 1989) Duas polias, A e B, de raios R e R', com R < R', podem girar em torno de dois eixos fixos e distintos, interligadas por uma correia. As duas polias estão girando e a correia não escorrega sobre elas. Então pode-se afirmar que a(s) velocidade(s) a) angular de A é menor que a de B, porque a velocidade tangencial de B é maior que a de A. b) angular de A é maior que a de B, porque a velocidade tangencial de B é menor que a de A. c) tangenciais de A e de B são iguais, porém a velocidade angular de A é menor que a velocidade angular de B. d) angulares de A e de B são iguais, porém a velocidade tangencial de A é maior que a velocidade tangencial de B. e) angular de A é maior que a velocidade angular de B, porém ambas têm a mesma velocidade tangencial. 7. (Unesp 1994) Sejam ù 1 e ù 2 as velocidades angulares dos ponteiros das horas de um relógio da torre de uma igreja e de um relógio de pulso, respectivamente, e v 1 e v 2 as velocidades escalares das extremidades desses ponteiros. Se os dois relógios fornecem a hora certa, pode-se afirmar que: a) ù 1 = ù 2 e v 1 = v 2. b) ù 1 = ù 2 e v 1 > v 2. c) ù 1 > ù 2 e v 1 = v 2. d) ù 1 > ù 2 e v 1 > v 2. e) ù 1 < ù 2 e v 1 < v (Unesp 1993) Numa corrida de motos (motociclismo), o piloto A completa 45 voltas, das 70 previstas, ao mesmo tempo em que o piloto B completa 44 voltas. Qual deverá Parte IV 1. (Uerj 2012) Uma pequena pedra amarrada a uma das extremidades de um fio inextensível de 1 m de comprimento, preso a um galho de árvore pela outra extremidade, oscila sob ação do vento entre dois pontos equidistantes e próximos à vertical. Durante 10 s, observouse que a pedra foi de um extremo ao outro, retornando ao ponto de partida, 20 vezes. Calcule a frequência de oscilação desse pêndulo. 2. (Uerj 2009) Segundo o modelo simplificado de Bohr, o elétron do átomo de hidrogênio executa um movimento circular uniforme, de raio igual a 5, m, em torno do próton, com período igual a s. Página 8

9 Com o mesmo valor da velocidade orbital no átomo, a distância, em quilômetros, que esse elétron percorreria no espaço livre, em linha reta, durante 10 minutos, seria da ordem de: a) 10 2 b) 10 3 c) 10 4 d) 10 5 forma de trapézios circulares de mesma área, como ilustrados a seguir. 3. (Uerj 2009) Dois móveis, A e B, percorrem uma pista circular em movimento uniforme. Os dois móveis partiram do mesmo ponto e no mesmo sentido com as velocidades de 1,5 rad/s e 3,0 rad/s, respectivamente; o móvel B, porém, partiu 4 segundos após o A. Calcule o intervalo de tempo decorrido, após a partida de A, no qual o móvel B alcançou o móvel A pela primeira vez. 4. (Uerj 2009) Uma pequena planta é colocada no centro P de um círculo, em um ambiente cuja única iluminação é feita por uma lâmpada L. A lâmpada é mantida sempre acesa e percorre o perímetro desse círculo, no sentido horário, em velocidade constante, retornando a um mesmo ponto a cada período de 12 horas. Observe o esquema. No interior desse círculo, em um ponto O, há um obstáculo que projeta sua sombra sobre a planta nos momentos em que P, O e L estão alinhados, e o ponto O está entre P e L. Nessas condições, mediu-se, continuamente, o quociente entre as taxas de emissão de O 2 e de CO 2 da planta. Os resultados do experimento são mostrados no gráfico, no qual a hora zero corresponde ao momento em que a lâmpada passa por um ponto A. Se as pás executam 3 voltas completas por segundo, o intervalo de tempo entre o início e o fim de cada pulso de luz é igual, em segundos, ao inverso de: a) 3 b) 6 c) 12 d) 18 Parte V 1. (Fuvest 2008) As medidas, em graus, dos ângulos formados entre as retas AP e PO são, aproximadamente, iguais a: a) 20 e 160 b) 30 e 150 c) 60 e 120 d) 90 e (Uerj 2008) Um feixe de raios paralelos de luz é interrompido pelo movimento das três pás de um ventilador. Essa interrupção gera uma série de pulsos luminosos. Admita que as pás e as aberturas entre elas tenham a Uma regra prática para orientação no hemisfério Sul, em uma noite estrelada, consiste em identificar a constelação do Cruzeiro do Sul e prolongar três vezes e meia o braço maior da cruz, obtendo-se assim o chamado Polo Sul Celeste, que indica a direção Sul. Suponha que, em determinada hora da noite, a constelação seja observada na Posição I. Nessa mesma noite, a constelação foi/será observada na Posição II, cerca de a) duas horas antes. b) duas horas depois. c) quatro horas antes. d) quatro horas depois. e) seis horas depois. 2. (Fuvest 2002) Em uma estrada, dois carros, A e B, entram simultaneamente em curvas paralelas, com raios R A Página 9

10 e R B. Os velocímetros de ambos os carros indicam, ao longo de todo o trecho curvo, valores constantes V A e V B. Parte VI 1. (Unicamp 2012) Em 2011 o Atlantis realizou a última missão dos ônibus espaciais, levando quatro astronautas à Estação Espacial Internacional. a) A Estação Espacial Internacional gira em torno da Terra numa órbita aproximadamente circular de raio R = 6800 km e completa 16 voltas por dia. Qual é a velocidade escalar média da Estação Espacial Internacional? b) Próximo da reentrada na atmosfera, na viagem de volta, o ônibus espacial tem velocidade de cerca de 8000 m/s, e sua massa é de aproximadamente 90 toneladas. Qual é a sua energia cinética? Se os carros saem das curvas ao mesmo tempo, a relação entre V A e V B é a) V A = V B b) V A /V B = R A /R B c) V A /V B = (R A /R B ) 2 d) V A /V B = R B /R A e) V A /V B =(R B /R A ) 2 3. (Fuvest 1999) Um disco de raio r gira com velocidade angular w constante. Na borda do disco, está presa uma placa fina de material facilmente perfurável. Um projétil é disparado com velocidade v em direção ao eixo do disco, conforme mostra a figura, e fura a placa no ponto A. Enquanto o projétil prossegue sua trajetória sobre o disco, a placa gira meia circunferência, de forma que o projétil atravessa mais uma vez o mesmo orifício que havia perfurado. Considere a velocidade do projétil constante e sua trajetória retilínea. O módulo da velocidade v do projétil é: 2. (Unicamp 2010) Quando uma pessoa idosa passa a conviver com seus filhos e netos, o convívio de diferentes gerações no mesmo ambiente altera a rotina diária da família de diversas maneiras. a) O acesso do idoso a todos os locais da casa deve ser facilitado para diminuir o risco de uma queda ou fratura durante sua locomoção. Pesquisas recentes sugerem que uma estrutura óssea periférica de um indivíduo jovem suporta uma pressão máxima P 1 = 1, N/m 2, enquanto a de um indivíduo idoso suporta uma pressão máxima P 2 = 2, N/m 2. Considere que em um indivíduo jovem essa estrutura óssea suporta uma força máxima F 1 = 24 N aplicada sob uma área A 1 e que essa área sob a ação da força diminui com a idade, de forma que A 2 = 0,8A 1 para o indivíduo idoso. Calcule a força máxima que a estrutura óssea periférica do indivíduo idoso pode suportar. b) Na brincadeira Serra, serra, serrador. Serra o papo do vovô. Serra, serra, serrador. Quantas tábuas já serrou?, o avô realiza certo número de oscilações com seu neto conforme representado na figura a seguir. Em uma oscilação completa (A-O-A) a cabeça do menino se desloca em uma trajetória circular do ponto A para o ponto O e de volta para o ponto A. Considerando um caso em que o tempo total de duração da brincadeira é t = 10 s e a velocidade escalar média da cabeça do menino em cada oscilação (A-O-A) vale v = 0,6 m/s, obtenha o número total de oscilações (A-O-A) que o avô realizou com o neto durante a brincadeira. Use h = 50 cm e π = 3. a) wr π b) 2wr π c) wr 2π d) wr πw e) r Página 10

11 3. (Unicamp 2005) Em 1885, Michaux lançou o biciclo com uma roda dianteira diretamente acionada por pedais (Fig. A). Através do emprego da roda dentada, que já tinha sido concebida por Leonardo da Vinci, obteve-se melhor aproveitamento da força nos pedais (Fig. B). Considere que um ciclista consiga pedalar 40 voltas por minuto em ambas as bicicletas. a) Qual a velocidade de translação do biciclo de Michaux para um diâmetro da roda de 1,20 m? b) Qual a velocidade de translação para a bicicleta padrão aro 60 (Fig. B)? Página 11

MCU Movimento Circular Uniforme Sem transmissão de movimento

MCU Movimento Circular Uniforme Sem transmissão de movimento MCU Movimento Circular Uniforme Sem transmissão de movimento 1. (Pucrj 2013) A Lua leva 28 dias para dar uma volta completa ao redor da Terra. Aproximando a órbita como circular, sua distância ao centro

Leia mais

Exercícios 3 Movimentos em 2 Dimensões, Movimento Circular e Aplicações

Exercícios 3 Movimentos em 2 Dimensões, Movimento Circular e Aplicações Exercícios 3 Movimentos em 2 Dimensões, Movimento Circular e Aplicações Movimentos em 2D 1) Você está operando um modelo de carro com controle remoto em um campo de tênis vazio. Sua posição é a origem

Leia mais

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2 F128-Lista 11 1) Como parte de uma inspeção de manutenção, a turbina de um motor a jato é posta a girar de acordo com o gráfico mostrado na Fig. 15. Quantas revoluções esta turbina realizou durante o teste?

Leia mais

b) Qual deve ser a aceleração centrípeta, para que com esta velocidade, ele faça uma trajetória circular com raio igual a 2m?

b) Qual deve ser a aceleração centrípeta, para que com esta velocidade, ele faça uma trajetória circular com raio igual a 2m? 1 - Dadas as medidas da bicicleta abaixo: a) Sabendo que um ciclista pedala com velocidade constante de tal forma que o pedal dá duas voltas em um segundo. Qual a velocidade linear, em km/h da bicicleta?

Leia mais

Assinale a alternativa que representa o esboço dos gráficos em relação à velocidade tempo e à aceleração tempo, respectivamente.

Assinale a alternativa que representa o esboço dos gráficos em relação à velocidade tempo e à aceleração tempo, respectivamente. 1. (Uerj 015) Uma ave marinha costuma mergulhar de uma altura de 0 m para buscar alimento no mar. Suponha que um desses mergulhos tenha sido feito em sentido vertical, a partir do repouso e exclusivamente

Leia mais

www.enemdescomplicado.com.br

www.enemdescomplicado.com.br Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

Vestibulando Web Page www.vestibulandoweb.com.br

Vestibulando Web Page www.vestibulandoweb.com.br 1. (Ufv 2000) Um aluno, sentado na carteira da sala, observa os colegas, também sentados nas respectivas carteiras, bem como um mosquito que voa perseguindo o professor que fiscaliza a prova da turma.

Leia mais

Lançamento Horizontal

Lançamento Horizontal Lançamento Horizontal 1. (Ufsm 2013) Um trem de passageiros passa em frente a uma estação, com velocidade constante em relação a um referencial fixo no solo. Nesse instante, um passageiro deixa cair sua

Leia mais

MOVIMENTO CIRCULAR. Fonte da imagem: Física e Vestibular

MOVIMENTO CIRCULAR. Fonte da imagem: Física e Vestibular MOVIMENTO CIRCULAR 1. (ADAPTADO) Clodoaldo é lenhador mas também, é muito imaginativo e criativo. Ele criou uma máquina para cortar troncos de Jacarandá. O tronco de um Jacarandá é cortado, por Clodoaldo,

Leia mais

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de

Leia mais

Lista de exercícios comitê. (Professor BOB)

Lista de exercícios comitê. (Professor BOB) Lista de exercícios comitê (Professor BOB) 1. (Fuvest) Dois carros, A e B, movem-se no mesmo sentido, em uma estrada reta, com velocidades constantes VÛ=l00km/h e V½=80km/h, respectivamente. a) Qual é,

Leia mais

FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE

FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE Como pode cair no enem? celeração de 5 g (ou 50 m/s²), ocorrendo o enrijecimento dos músculos devido a força que o sangue exerce na volta

Leia mais

MCU Movimento Circular Uniforme

MCU Movimento Circular Uniforme MCU Movimento Circular Uniforme 1. (Ufrgs 2013) A figura apresenta esquematicamente o sistema de transmissão de uma bicicleta convencional. Na bicicleta, a coroa A conecta-se à catraca B através da correia

Leia mais

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t. CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,

Leia mais

Série 1º ANO. Colégio da Polícia Militar de Goiás - Hugo. MAT Disciplina: FISICA Professor: JEFFERSON. Aluno (a): Nº

Série 1º ANO. Colégio da Polícia Militar de Goiás - Hugo. MAT Disciplina: FISICA Professor: JEFFERSON. Aluno (a): Nº Polícia Militar do Estado de Goiás CPMG Hugo de Carvalho Ramos Ano Letivo - 2015 Série 1º ANO Lista de Exercícios 4º Bim TURMA (S) ABC Valor da Lista R$ MAT Disciplina: FISICA Professor: JEFFERSON Data:

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS FQA Ficha 3 - Forças fundamentais, leis de Newton e Lei da gravitação universal 11.º Ano Turma A e B 1 outubro 2014 NOME Nº Turma 1. Associe um número da coluna 1 a uma

Leia mais

EXERCÍCIOS UERJ 2014 MOVIMENTO CIRCULAR

EXERCÍCIOS UERJ 2014 MOVIMENTO CIRCULAR 1. (Fgv 2009) Uma grande manivela, quatro engrenagens pequenas de 10 dentes e outra de 24 dentes, tudo associado a três cilindros de 8 cm de diâmetro, constituem este pequeno moedor manual de cana. Ao

Leia mais

ESCOLA ESTADUAL JOÃO XXIII A

ESCOLA ESTADUAL JOÃO XXIII A Educando para a Modernidade desde 1967 ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! NATUREZA DA ATIVIDADE: EXERCÍCIOS DE FIXAÇÃO 2 DISCIPLINA: FÍSICA ASSUNTO: MOVIMENTO

Leia mais

Resolução Comentada UFTM - VESTIBULAR DE INVERNO 2013

Resolução Comentada UFTM - VESTIBULAR DE INVERNO 2013 Resolução Comentada UFTM - VESTIBULAR DE INVERNO 2013 01 - A figura mostra uma série de fotografias estroboscópicas de duas esferas, A e B, de massas diferentes. A esfera A foi abandonada em queda livre

Leia mais

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE Nome: Nº Série: 2º EM Data: / /2015 Professores Gladstone e Gromov Assuntos a serem estudados - Movimento Uniforme. Movimento Uniformemente Variado. Leis

Leia mais

ESSA AULA ESTÁ NO YOUTUBE COM O NOME: Física Total aula 11 Introdução à cinemática angular RESUMO RESUMIDÍSSIMO

ESSA AULA ESTÁ NO YOUTUBE COM O NOME: Física Total aula 11 Introdução à cinemática angular RESUMO RESUMIDÍSSIMO Fala, FERA! Chegamos a nossa aula 11, lembrando que até o final do ano além das aulas, com as Pílulas Enem abordaremos todos os principais conteúdos abordados nos exames. Cinemática angular é um conteúdo

Leia mais

(S.I.) = 10 + 6 3) (FP) O

(S.I.) = 10 + 6 3) (FP) O Lista Cinemática 1) (FP) Um motorista pretende realizar uma viagem com velocidade média de 90 km/h. A primeira terça parte do percurso é realizada à 50km/h e os próximos 3/5 do restante é realizado à 80

Leia mais

Trabalho e potência. 1º caso: a força F não é paralela a d. 2º caso: a força F é paralela a d. 3º caso: a força F é perpendicular a d

Trabalho e potência. 1º caso: a força F não é paralela a d. 2º caso: a força F é paralela a d. 3º caso: a força F é perpendicular a d Trabalho e potência Trabalho mecânico Realizar trabalho, em Física, implica a transferência de energia de um sistema para outro e, para que isso ocorra, são necessários uma força e um deslocamento adequados.

Leia mais

ESTUDO GRÁFICO DOS MOVIMENTOS. Gráfico posição x tempo (x x t)

ESTUDO GRÁFICO DOS MOVIMENTOS. Gráfico posição x tempo (x x t) ESTUDO GRÁFICO DOS MOVIMENTOS No estudo do movimento é bastante útil o emprego de gráficos. A descrição de um movimento a partir da utilização dos gráficos (posição x tempo; velocidade x tempo e aceleração

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão II 1. Um carro está viajando numa estrada retilínea com velocidade de 72 km/h. Vendo adiante um congestionamento

Leia mais

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I Lista de Exercícios para Recuperação Final Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física Data: 04/12/2014 Professor(a): SANDRA HELENA LISTA DE EXERCÍCIOS RECUPERAÇÃO - I 1. Dois móveis

Leia mais

Intensivo 2015.2. Trabalho, potência e Energia mecânica. Obs: cada andar do edifício tem aproximadamente 2,5m.

Intensivo 2015.2. Trabalho, potência e Energia mecânica. Obs: cada andar do edifício tem aproximadamente 2,5m. Intensivo 2015.2 Trabalho, potência e Energia mecânica 01 - (PUC PR) Uma motocicleta de massa 100kg se desloca a uma velocidade constante de 10m/s. A energia cinética desse veículo é equivalente ao trabalho

Leia mais

FÍSICA FENÔMENOS ONDULATÓRIOS E MAGNETISMO FÍSICA 1

FÍSICA FENÔMENOS ONDULATÓRIOS E MAGNETISMO FÍSICA 1 20_Física_2 ano FÍSICA Prof. Bruno Roberto FENÔMENOS ONDULATÓRIOS E MAGNETISMO FÍSICA 1 1. (Ufg 20) O princípio de funcionamento do forno de micro-ondas é a excitação ressonante das vibrações das moléculas

Leia mais

Velocidade Média. Se um

Velocidade Média. Se um Velocidade Média 1. (Unicamp 2013) Para fins de registros de recordes mundiais, nas provas de 100 metros rasos não são consideradas as marcas em competições em que houver vento favorável (mesmo sentido

Leia mais

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica. Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia

Leia mais

Qual gráfico expressa as intensidades das forças que a Terra exerce sobre cada satélite em função do tempo?

Qual gráfico expressa as intensidades das forças que a Terra exerce sobre cada satélite em função do tempo? 1. (Enem 2013) A Lei da Gravitação Universal, de Isaac Newton, estabelece a intensidade da força de atração entre duas massas. Ela é representada pela expressão: F G mm d 1 2 2 onde m1 e m2 correspondem

Leia mais

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS Como pode cair no enem (UERJ) Pardal é a denominação popular do dispositivo óptico-eletrônico utilizado para fotografar veículos

Leia mais

FÍSICA - 1 o ANO MÓDULO 16 GRÁFICOS DA CINEMÁTICA REVISÃO

FÍSICA - 1 o ANO MÓDULO 16 GRÁFICOS DA CINEMÁTICA REVISÃO FÍSICA - 1 o ANO MÓDULO 16 GRÁFICOS DA CINEMÁTICA REVISÃO Como pode cair no enem? O estudo dos movimentos (Uniforme e Uniformemente Variado) é a aplicação física do estudo das funções em Matemática. As

Leia mais

Mecânica 2007/2008. 3ª Série

Mecânica 2007/2008. 3ª Série Mecânica 2007/2008 3ª Série Questões: 1. Se o ouro fosse vendido a peso, preferia comprá-lo na serra da Estrela ou em Lisboa? Se fosse vendido pela massa em qual das duas localidades preferia comprá-lo?

Leia mais

LISTA 10 INDUÇÃO ELETROMAGNÉTICA

LISTA 10 INDUÇÃO ELETROMAGNÉTICA 1. (Ufmg 95) Esta figura mostra uma espira retangular, de lados a = 0,20 m e b = 0,50 m, sendo empurrada, com velocidade constante v = 0,50 m/s, para uma região onde existe um campo magnético uniforme

Leia mais

Força Magnética. www.soexatas.com Página 1

Força Magnética. www.soexatas.com Página 1 Força Magnética 1. (Fuvest 2014) Partículas com carga elétrica positiva penetram em uma câmara em vácuo, onde há, em todo seu interior, um campo elétrico de módulo E e um campo magnético de módulo B, ambos

Leia mais

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 1. Uma ave marinha costuma mergulhar de uma altura de 20 m para buscar alimento no mar. Suponha que um desses mergulhos tenha sido feito em sentido

Leia mais

PROVA DE FÍSICA QUESTÃO 01 UFMG

PROVA DE FÍSICA QUESTÃO 01 UFMG QUESTÃO 01 Em uma corrida de Fórmula 1, o piloto Miguel Sapateiro passa, com seu carro, pela linha de chegada e avança em linha reta, mantendo velocidade constante Antes do fim da reta, porém, acaba a

Leia mais

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA:

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA: NOME: Nº 1 o ano do Ensino Médio TURMA: Data: 11/ 12/ 12 DISCIPLINA: Física PROF. : Petrônio L. de Freitas ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA: INSTRUÇÕES (Leia com atenção!)

Leia mais

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO ATENÇÃO VERIFIQUE SE ESTÃO IMPRESSOS EIXOS DE GRÁFICOS OU ESQUEMAS, NAS FOLHAS DE RESPOSTAS DAS QUESTÕES 1, 2, 4, 9 e 10. Se notar a falta de uma delas, peça ao fiscal de sua sala a substituição da folha.

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios Eletromagnetismo

Exercícios Eletromagnetismo Exercícios Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte e norte, ou

Leia mais

Força Eletromotriz Induzida

Força Eletromotriz Induzida Força Eletromotriz Induzida 1. (Uerj 2013) Um transformador que fornece energia elétrica a um computador está conectado a uma rede elétrica de tensão eficaz igual a 120 V. A tensão eficaz no enrolamento

Leia mais

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2 Trabalho Mecânico 1. (G1 - ifce 2012) Uma pessoa sobe um lance de escada, com velocidade constante, em 1,0 min. Se a mesma pessoa subisse o mesmo lance, também com velocidade constante em 2,0 min, ela

Leia mais

Lista 13: Gravitação. Lista 13: Gravitação

Lista 13: Gravitação. Lista 13: Gravitação Lista 13: Gravitação NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

1 a QUESTÃO Valor 1,0

1 a QUESTÃO Valor 1,0 1 a QUESTÃO Valor 1,0 Um esquimó aguarda a passagem de um peixe sob um platô de gelo, como mostra a figura abaixo. Ao avistá-lo, ele dispara sua lança, que viaja com uma velocidade constante de 50 m/s,

Leia mais

Fichas de sistemas de partículas

Fichas de sistemas de partículas Capítulo 3 Fichas de sistemas de partículas 1. (Alonso, pg 247) Um tubo de secção transversal a lança um fluxo de gás contra uma parede com uma velocidade v muito maior que a agitação térmica das moléculas.

Leia mais

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO Pré Vestibular ísica / / luno: Nº: Turma: LEIS DE NEWTON 01. (TEC daptada) Dois blocos e de massas 10 kg e 20 kg, respectivamente, unidos por um fio de massa desprezível, estão em repouso sobre um plano

Leia mais

DATA: 17/12/2015 VALOR: 20,0 NOTA: NOME COMPLETO:

DATA: 17/12/2015 VALOR: 20,0 NOTA: NOME COMPLETO: DISCIPLINA: FÍSICA PROFESSORES: Erich/ André NOME COMPLETO: I N S T R U Ç Õ E S DATA: 17/12/2015 VALOR: 20,0 NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 1 a EM Circule a sua turma: Funcionários:

Leia mais

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial. INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas

Leia mais

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida. Exercícios: Energia 01. (UEPI) Assinale a alternativa que preenche corretamente as lacunas das frases abaixo. O trabalho realizado por uma força conservativa, ao deslocar um corpo entre dois pontos é da

Leia mais

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média

Leia mais

ORIENTAÇÕES IMPORTANTES!

ORIENTAÇÕES IMPORTANTES! COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA AVALIAÇÃO: EXERCÍCIOS COMPLEMENTARES III DISCIPLINA: FÍSICA PROFESSOR(A): HUDSON DE AGUIAR ALUNO(A) DATA: / / TURMA: M SÉRIE:2º ANO DATA PARA ENTREGA: / / ORIENTAÇÕES

Leia mais

Mecânica 2007/2008. 6ª Série

Mecânica 2007/2008. 6ª Série Mecânica 2007/2008 6ª Série Questões: 1. Suponha a=b e M>m no sistema de partículas representado na figura 6.1. Em torno de que eixo (x, y ou z) é que o momento de inércia tem o menor valor? e o maior

Leia mais

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO 1. (Fuvest 96) A figura esquematiza um ímã permanente, em forma de cruz de pequena espessura, e oito pequenas bússolas, colocadas sobre uma mesa. As letras N e S representam, respectivamente, pólos norte

Leia mais

Interbits SuperPro Web Física XI Paulo Bahiense, Naldo, Wilson e Ausgusto

Interbits SuperPro Web Física XI Paulo Bahiense, Naldo, Wilson e Ausgusto 1. (Enem 2014) Um professor utiliza essa história em quadrinhos para discutir com os estudantes o movimento de satélites. Nesse sentido, pede a eles que analisem o movimento do coelhinho, considerando

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Medeiros EXERCÍCIOS NOTA DE AULA IV Goiânia - 2014 EXERCÍCIOS 1. Uma partícula eletrizada positivamente é

Leia mais

a) Um dos fatores que explicam esse fenômeno é a diferença da velocidade da água nos dois rios, cerca de vn

a) Um dos fatores que explicam esse fenômeno é a diferença da velocidade da água nos dois rios, cerca de vn 1. (Unicamp 014) Correr uma maratona requer preparo físico e determinação. A uma pessoa comum se recomenda, para o treino de um dia, repetir 8 vezes a seguinte sequência: correr a distância de 1 km à velocidade

Leia mais

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Física 3º Trimestre 1- A casa de Dona Maria fica no alto de uma ladeira. O desnível entre sua

Leia mais

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315.

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315. SISTEMAS DE BLOCOS E FIOS PROF. BIGA 1. (G1 - cftmg 01) Na figura, os blocos A e B, com massas iguais a 5 e 0 kg, respectivamente, são ligados por meio de um cordão inextensível. Desprezando-se as massas

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Colégio Santa Catarina Unidade III: Movimento Uniformemente Variado (M.U.V.) 17 Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

FÍSICA. Prof. Fracalossi

FÍSICA. Prof. Fracalossi FÍSICA Prof. Fracalossi 1. O cérebro humano demora cerca de 0,6 segundos para responder a um estímulo. Por exemplo, se um motorista decide parar o carro, levará no mínimo esse tempo de resposta para acionar

Leia mais

3a. prova Simulado 5 Dissertativo 27.09.06 FÍSICA INSTRUÇÕES PARA REALIZAÇÃO DO SIMULADO

3a. prova Simulado 5 Dissertativo 27.09.06 FÍSICA INSTRUÇÕES PARA REALIZAÇÃO DO SIMULADO Simulado 5 Padrão FUVEST Aluno: N o do Cursinho: Sala: FÍSICA INSTRUÇÕES PARA REALIZAÇÃO DO SIMULADO 1. Aguarde a autorização do fiscal para abrir o caderno de questões e iniciar a prova. 2. Duração da

Leia mais

TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor

TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor 1. (Ita) Considere as afirmações a seguir: I. Em equilíbrio eletrostático, uma superfície metálica é equipotencial. II. Um objeto eletrostaticamente carregado induz uma carga uniformemente distribuída

Leia mais

Dinâmica do movimento de Rotação

Dinâmica do movimento de Rotação Dinâmica do movimento de Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o torque produzido por uma força;

Leia mais

Lista de Exercícios - Unidade 8 Eu tenho a força!

Lista de Exercícios - Unidade 8 Eu tenho a força! Lista de Exercícios - Unidade 8 Eu tenho a força! Forças 1. (UFSM 2013) O uso de hélices para propulsão de aviões ainda é muito frequente. Quando em movimento, essas hélices empurram o ar para trás; por

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

FÍSICA PRIMEIRA ETAPA - 1998

FÍSICA PRIMEIRA ETAPA - 1998 FÍSICA PRIMEIRA ETAPA - 1998 QUESTÃO 01 Este gráfico, velocidade versus tempo, representa o movimento de um automóvel ao longo de uma estrada reta A distância percorrida pelo automóvel nos primeiros 1

Leia mais

TC 2 UECE 2012 FASE 1 PROF. : Célio Normando

TC 2 UECE 2012 FASE 1 PROF. : Célio Normando TC UECE 01 FASE 1 PROF. : Célio Normando Conteúdo: Cinemática - MRUV 1. Um avião vai decolar em uma pista retilínea. Ele inicia seu movimento na cabeceira da pista com velocidade nula e corre por ela com

Leia mais

Física. Questão 1. Questão 2. Avaliação: Aluno: Data: Ano: Turma: Professor:

Física. Questão 1. Questão 2. Avaliação: Aluno: Data: Ano: Turma: Professor: Avaliação: Aluno: Data: Ano: Turma: Professor: Física Questão 1 (Unirio 2000) Um aluno pegou um fina placa metálica e nela recortou um disco de raio r. Em seguida, fez um anel também de raio r com um fio

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

Exercícios: Lançamento Vertical e Queda Livre

Exercícios: Lançamento Vertical e Queda Livre Exercícios: Lançamento Vertical e Queda Livre Cursinho da ETEC Prof. Fernando Buglia 1. (Unifesp) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após

Leia mais

FUNCIONAMENTO DO SISTEMA DE TRANSMISSÃO:

FUNCIONAMENTO DO SISTEMA DE TRANSMISSÃO: FUNCIONAMENTO DO SISTEMA DE TRANSMISSÃO: 1 - EMBREAGEM 2 - CÂMBIO 3 - DIFERENCIAL 4 - REDUÇÃO FINAL Luiz Atilio Padovan Prof. Eng. Agrônomo 1 EMBREAGEM LOCALIZAÇÃO 1 EMBREAGEM LOCALIZAÇÃO 1 EMBREAGEM LOCALIZAÇÃO

Leia mais

Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA.

Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA. Motores elétricos Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA. Para melhor entender o funcionamento desse

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

Agrupamento de Escolas Anselmo de Andrade Avaliação Sumativa - Ciências Físico - Químicas 11.º Ano - Ano Lectivo 09/10

Agrupamento de Escolas Anselmo de Andrade Avaliação Sumativa - Ciências Físico - Químicas 11.º Ano - Ano Lectivo 09/10 Agrupamento de Escolas Anselmo de Andrade Avaliação Sumativa - Ciências Físico - Químicas 11.º Ano - Ano ectivo 09/10 Duração da Actividade: 90 minutos Data: 04/ 12 / 09 Responda com clareza às questões

Leia mais

FÍSICA CADERNO DE QUESTÕES

FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2015 1 a QUESTÃO Valor: 1,00 Uma mola comprimida por uma deformação x está em contato com um corpo de massa m, que se encontra

Leia mais

= F cp. mv 2. G M m G M. b) A velocidade escalar V também é dada por: V = = 4π 2 R 2 = R T 2 =. R 3. Sendo T 2 = K R 3, vem: K = G M V = R.

= F cp. mv 2. G M m G M. b) A velocidade escalar V também é dada por: V = = 4π 2 R 2 = R T 2 =. R 3. Sendo T 2 = K R 3, vem: K = G M V = R. FÍSICA Um satélite com massa m gira em torno da Terra com velocidade constante, em uma órbita circular de raio R, em relação ao centro da Terra. Represente a massa da Terra por M e a constante gravitacional

Leia mais

Escolha sua melhor opção e estude para concursos sem gastar nada

Escolha sua melhor opção e estude para concursos sem gastar nada Escolha sua melhor opção e estude para concursos sem gastar nada VALORES DE CONSTANTES E GRANDEZAS FÍSICAS - aceleração da gravidade g = 10 m/s 2 - calor específico da água c = 1,0 cal/(g o C) = 4,2 x

Leia mais

Gráficos Cinemáticos (2) v (m/s) (1)

Gráficos Cinemáticos (2) v (m/s) (1) Gráficos Cinemáticos 1- Na figura estão representados os diagramas de velocidade de dois móveis em função do tempo. Esses móveis partem de um mesmo ponto, a partir do repouso, e percorrem a mesma trajetória

Leia mais

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Durante um voo, um avião lança uma caixa presa a um paraquedas. Após esse lançamento, o paraquedas abre-se e uma força F,

Leia mais

TIPO-A FÍSICA. x v média. t t. x x

TIPO-A FÍSICA. x v média. t t. x x 12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos

Leia mais

Aluno (a): Nº. Professor: Fabrízio Gentil Série: 3 o ano. Disciplina: Física Corrente elétrica e Leis de Ohm. Pré Universitário Uni-Anhanguera

Aluno (a): Nº. Professor: Fabrízio Gentil Série: 3 o ano. Disciplina: Física Corrente elétrica e Leis de Ohm. Pré Universitário Uni-Anhanguera Lista de Exercícios Aluno (a): Nº. Pré Universitário Uni-Anhanguera Professor: Fabrízio Gentil Série: 3 o ano. Disciplina: Física Corrente elétrica e Leis de Ohm 01 - (UEL PR) As baterias de íon-lítio

Leia mais

Cinemática UFRGS de 1998-2012

Cinemática UFRGS de 1998-2012 Cinemática UFRGS de 1998-2012 (UFRGS 1998) A tabela registra dados do deslocamento x em função do tempo t, referentes ao movimento retilíneo uniforme de um móvel. Qual é a velocidade desse móvel? t(s)

Leia mais

Exercícios Tensão e Corrente

Exercícios Tensão e Corrente Exercícios Tensão e Corrente TEXTO PARA A PRÓXIMA QUESTÃO: Atualmente há um número cada vez maior de equipamentos elétricos portáteis e isto tem levado a grandes esforços no desenvolvimento de baterias

Leia mais

LISTA DE EXERCÍCIOS M.H.S. 3 ano FÍSICA Prof. Hernando

LISTA DE EXERCÍCIOS M.H.S. 3 ano FÍSICA Prof. Hernando LISTA DE EXERCÍCIOS M.H.S. 3 ano FÍSICA Prof. Hernando 1. (Ufg) O gráfico abaixo mostra a posição em função do tempo de uma partícula em movimento harmônico simples (MHS) no intervalo de tempo entre 0

Leia mais

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA NOME LEGÇVEL: Gabarito TURMA: ASSINATURA: MATRÇCULA N o : QUESTÉO VALOR GRAU REVISÉO 1 1,0 2 1,0 3 4,0 4 4,0 TOTAL 10,0 Dados: r/ t = (v + v 0 )/2; v v

Leia mais

4. A função horária do espaço de um móvel é S = 10 + 5t (SI). Qual a posição desse móvel no instante t = 2 s? a) 10 m b) 15 m c) 20 m d) 30 m e) 40 m

4. A função horária do espaço de um móvel é S = 10 + 5t (SI). Qual a posição desse móvel no instante t = 2 s? a) 10 m b) 15 m c) 20 m d) 30 m e) 40 m 1. A distância entre duas cidades A e B, de 546 km, é percorrida por um ônibus em 8 h. O primeiro trecho de 120 km é percorrido com velocidade constante de 50 km/h e o segundo trecho de 156km com velocidade

Leia mais

Questão 01 O dono do circo anuncia o início do espetáculo usando uma sirene.

Questão 01 O dono do circo anuncia o início do espetáculo usando uma sirene. As questões apresentadas nesta prova relacionam-se ao ambiente e às situações encontradas em um circo. Sempre que necessário, utilize, em seus cálculos, g = 10 m/s 2. Questão 01 O dono do circo anuncia

Leia mais

FÍSICA I LISTA 5 DIVERSOS EXERCÍCIOS GABARITO Orientação para V2 e VS 1. Um ônibus passa pelo km 30 de uma rodovia às 6 h, e às 9 h 30 min passa

FÍSICA I LISTA 5 DIVERSOS EXERCÍCIOS GABARITO Orientação para V2 e VS 1. Um ônibus passa pelo km 30 de uma rodovia às 6 h, e às 9 h 30 min passa FÍSICA I LISTA 5 DIVERSOS EXERCÍCIOS GABARITO Orientação para V2 e VS. Um ônibus passa pelo km 30 de uma rodovia às 6 h, e às 9 h 30 min passa pelo km 240. Determine: a) a velocidade escalar média desenvolvida

Leia mais

CORTESIA Prof. Renato Brito www.vestseller.com.br Espaço

CORTESIA Prof. Renato Brito www.vestseller.com.br Espaço INSTITUTO TECNOLÓGICO DE AERONÁUTICA ESTIBULAR 983/984 PROA DE FÍSICA 0. (ITA-84) Colocou-se uma certa quantidade de bolinhas de chumbo numa seringa plástica e o volume lido na própria escala da seringa

Leia mais

CINEMÁTICA SUPER-REVISÃO REVISÃO

CINEMÁTICA SUPER-REVISÃO REVISÃO Física Aula 10/10 Prof. Oromar Baglioli UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

GABARITO DO SIMULADO DISCURSIVO

GABARITO DO SIMULADO DISCURSIVO GABARITO DO SIMULADO DISCURSIVO 1. (Unifesp 013) O atleta húngaro Krisztian Pars conquistou medalha de ouro na olimpíada de Londres no lançamento de martelo. Após girar sobre si próprio, o atleta lança

Leia mais

Física setor F 01 unidade 01

Física setor F 01 unidade 01 Vale relembrar três casos particulares: ) a r e b r tem mesma direção e mesmo sentido: a b s = a+ b s ) a r e b r têm mesma direção e sentidos opostos: a s = a b s b a r e b r têm direções perpendiculares

Leia mais

Problemas de Mecânica e Ondas

Problemas de Mecânica e Ondas Problemas de Mecânica e Ondas (LEMat, LQ, MEiol, MEmbi, MEQ) Tópicos: olisões: onservação do momento linear total, conservação de energia cinética nas colisões elásticas. onservação do momento angular

Leia mais

Associação Catarinense das Fundações Educacionais ACAFE PARECER RECURSO DISCIPLINA FÍSICA

Associação Catarinense das Fundações Educacionais ACAFE PARECER RECURSO DISCIPLINA FÍSICA 26) Sejam as seguintes grandezas físicas: 1 Massa 2 Energia Cinética 3 Frequência I4 Temperatura alternativa correta que indica as grandezas cuja definição depende do tempo, é: 1 e 3 B 1 e 4 C 3 e 4 D

Leia mais

Interbits SuperPro Web Física XIII Paulo Bahiense, Naldo, Wilson e Ausgusto

Interbits SuperPro Web Física XIII Paulo Bahiense, Naldo, Wilson e Ausgusto 1. (Unesp 015) Em um experimento de eletrostática, um estudante dispunha de três esferas metálicas idênticas, A, B e C, eletrizadas, no ar, com cargas elétricas 5Q, 3Q e Q, respectivamente. Utilizando

Leia mais