Formatação de fonte. Teorema da amostragem
|
|
|
- Estela Madureira Lencastre
- 10 Há anos
- Visualizações:
Transcrição
1 Formatação de ote 1 Teorema da amotragem
2 Do aalógico para o digital A amotragem (itatâea) de um ial ou orma de oda aalógica é o proceo pelo qual o ial paa a er repreetado por um cojuto dicreto de úmero. Ete úmero, ou amotra, ão iguai ao valor do ial em itate bem determiado (o itate de amotragem). A amotra devem er obtida de maeira a que eja poível recotituir o ial com exactidão. Ou eja, a orma de oda origial, deiida em tempo cotíuo, paa a er repreetada em tempo dicreto por amotra obtida em itate de amotragem epaçado coveietemete. Ao itervalo de tempo etre amotra chama-e itervalo de amotragem, T. O eu ivero é a requêcia de amotragem, = 1/T amotra por egudo. Para que eja poível recotituir o ial origial é eceário que a requêcia de amotragem eja, o míimo, igual ao dobro da requêcia máxima cotida o ial aalógico é o que diz o teorema da amotragem. Cao cotrário produz-e um eómeo ideejável, deomiado de aliaig, que e traduz uma obrepoição de epectro que iviabiliza a correcta recuperação do ial (o auto erá ilutrado mai à rete). À requêcia de amotragem míima chama-e requêcia de Nyquit. Amotragem 2
3 Siai amotrado Exemplo com iuóide com a requêcia idicada: 1 ( = 250 Hz t (m) 1 ( = 750 Hz t (m) 1 ( = 1250 Hz t (m) Frequêcia de amotragem: 1 khz A mema equêcia de amotra oi obtida em trê iuóide dierete. Poderá ervir para recuperar ea trê iuóide? Claro que ão!! De acto, com eta amotra ó poderemo recuperar ielmete a primeira iuóide. Porquê? R.: Porque é a úica ituação que repeita o teorema da amotragem: a requêcia de amotragem deverá er, o míimo, igual ao dobro da requêcia máxima do ial a amotrar. Amotragem 3
4 Tipo de amotragem Amotragem itatâea (ou ideal) A ução amotradora é um trem de impulo de Dirac. A amotra ão itatâea (em duração). O eu epectro é compoto pelo epectro origial mai réplica idêtica. Amotragem atural A ução amotradora é um trem de impulo com uma certa largura. Cada amotra, de duração ão ula, toma a orma da ução amotrada. O epectro é compoto pelo epectro origial mai réplica cuja amplitude dimiui com eo cardial. Amotragem de topo plao Cada amotra tem um valor cotate em toda a ua duração ão ula. O epectro ore do eeito de abertura: a baixa requêcia o epectro origial vem multiplicado por um eo cardial. No receptor é precio compear o eeito de abertura com um iltro cuja ução de traerêcia é um eo cardial ivertido. Ete é o tipo de amotragem mai imple e vulgar. Também é deigado de ample-ad-hold. Amotragem 4
5 Amotragem itatâea Sial a amotrar: g( Fução de amotragem: trem de impulo de Dirac: = c ( = ( t T ) C ( ) = ( ) = Sial apó amotragem: g = ( = g( c( = g( ( t T ) = g( T ) ( t T = ) G ( ) = G( ) * C( ) = G( ) * ( = ) = = G( ) ito é, G ( ) = G( ) + G( ± ) + G( ± 2 ) + Cocluõe: o epectro é ormado por iguai réplica do epectro origial. A recuperação do ial origial az-e paado g ( por um iltro paa-baixo de requêcia de corte adequada. Amotragem 5
6 Amotragem itatâea: tempo e requêcia g( Tempo Sial origial F Frequêcia G() t -W W 1 c( Sial amotrador F C() =1/T -T 0 T 3T 5T t Apó amotragem g ( F G () g (0) g (T ) g (2T ) -T 0 T 3T 5T t -W 0 W 2 Amotragem 6
7 Amotragem itatâea: a requêcia Epectro de ial amotrado e recuperação do ial aalógico origial atravé de iltragem paa-baixo 1986 by Sieme AG Amotragem 7
8 Amotragem Frequêcia de amotragem demaiado baixa provoca aliaig 1986 by Sieme AG Amotragem 8
9 Amotragem atural 1986 by Sieme AG Amotragem 9
10 Amotragem atural Sial a amotrar: g( Fução de amotragem: trem de impulo com duração T e amplitude A: c = j2π t c( = e (érie de Fourier) Coeiciete da érie: c TAic( T ) = Sial apó amotragem: No tempo: ( = g( c( = g( c = e j2πt Na requêcia: S( ) F[ ( ] = = F g( ce = j2πt Em itema lieare podemo trocar a operaçõe de itegração e de adição: S( ) = j2π t c F j2π t [ g( e ] Ma F[ g( e ] = G( ) =, logo S( ) = cg( ) = TAic( TAG( ) + TAic( ± T ) G( ± T ) G( ) + ) = Amotragem 10
11 Amotragem atural Sial origial Sial amotrador (trem de impulo rectagulare) Sial amotrado Sial amotrador: j2 t π = ct () = TA ic( Te ) ( = 1 T) Sial amotrado: j2 t t () = ct () gt () = TAgt () ic( T ) e π = Epectro de requêca: S( ) = TA ic( mtg ) ( m ) m= Amotragem 11
12 Amotragem de topo plao t () = gt ( ) ht ( T) = = = g () t h() t (ial amotrado de topo plao) Impulo de amotragem ( é a covolução do ial amotrado itataeamete, g (, com o impulo de amotragem h( g () t = g( T ) ( t T ) = (Amotragem itatâea) j H( ) = Tic( T) e π T (Epectro do impulo de amotragem) () t = g () t h() t S( ) = G ( ) H( ) com G ( ) = G( m ) m= H ( ) G( = S ) = G ( ) H ( ) = ) ( Amotragem 12
13 Amotragem de topo plao: deevolvimeto Sial a amotrar: g( Sial apó amotragem: = ( = g( T ) h( t ) T h( é um (úico) impulo rectagular de amplitude uitária e duração T. O eu epectro é: H ( ) = Tic( T ) e jπt Vamo azer a covolução do ial amotrado itataeamete, (, com ete impulo h(: g g ( h( = g ( τ ) h( t τ ) dτ = Trocado a ordem da itegração e adição: g ( h( = g( T g( T ) ( τ T ) h( t τ ) dτ ) ( τ T h t τ ) ( ) dτ Ma, da propriedade da traormada de Fourier, t t ) h( dt = h( ), ( 0 t0 logo, g ( h( = g( T ) h( t ). T Ma ito é (, aial! Amotragem 13
14 Amotragem de topo plao: deevolvimeto Etão edo ( g ( h( = podemo ecrever: H ( ) G( = S ) = G ( ) H ( ) = ) ( ou aida S ( ) = H ( ) G( ) + H ( ) G( ± ) + Daqui e vê que toda a réplica epectrai ão aectada por H(). A ito dá-e o ome de eeito de abertura. O eeito de abertura é tato mai pericioo quato maior or a duração T da amotra (o lobo pricipal do eo cardial é mai apertado). Apó o iltro paa-baixo do receptor teremo H ( ) G( ). Como o que queremo recuperar é G ( ), teremo de uar um iltro compeador de ução de traerêcia 1 H ( ) = 1 T ic( T ) Amotragem 14
15 Amotragem Amotragem atural Amotragem de topo plao Amotragem 15
16 Amotrage: reumo de equaçõe g( - ial origial a amotrar c( - ução amotradora h( - impulo rectagular com H ( ) = TicT e jπt O ial amotrado vale: Amotragem itatâea Tempo: ( = g ( = g( T ) ( t ) T Frequêcia: S ) = G ( ) = G( ) ( Amotragem atural Tempo: ( = g( c( = TAg( ic( e j2πt Frequêcia: S ( ) = TA ic( T ) G( ) Amotragem de topo plao (PAM) Tempo: ( = g( c( h( = g( T ) h( t T ) g ( Frequêcia: S ) = G ( ) H ( ) = H ( ) G( ) ( Amotragem 16
17 Modulação de impulo Além da modulação de amplitude de impulo (PAM) podemo também coiderar a modulação de duração e modulação de poição de impulo: Sial modulador Portadora PDM PPM PDM Pule Duratio Modulatio PPM Pule Poitio Modulatio Amotragem 17
CONHECIMENTOS BÁSICOS MATEMÁTICA
CONHECIENTOS BÁSICOS ATEÁTICA Para repoder à quetõe de o e, utilize o dado da tabela abaixo, que apreeta a freqüêcia acumulada da idade de 0 jove etre 4 e 0 ao. Idade (ao) Freqüêcia Acumulada 4 5 4 6 9
Determinação do factor correctivo da potência de ruído em sistemas de transmissão por cabo coaxial com igualação
Determiação do actor correctivo da potêcia de ruído em itema de tramião por cabo coaxial com igualação A ução de traerêcia do igualador é dada por I ( V e y( ( H ( em que y ( é a traormada de Fourier da
Amostragem de Sinais
UNIVERSIDADE FEDERAL DA PARAÍBA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Amotragem de Sinai Prof. Juan Moie Mauricio Villanueva [email protected] 1 Amotragem (Sampling) Para um inal em tempo
Análise da Resposta Transitória
Uiveridade Etadual do Oete do Paraá Programa de Pó-graduação em Egeharia de Sitema Diâmico e Eergético Tema da Aula: Aálie da Repota Traitória Prof. Dr. Carlo Herique Faria do Sato 1 Etrutura da aula 1
Grupo I (5 valores) Grupo II (5 valores)
Duração: 3h. Jutifique a ua repota. ISCTE Lieiatura em Eeharia de Teleomuiaçõe e Iformátia Sitema de Teleomuiaçõe Guiado Exame de ª époa, o letivo 07/08, /0/008 Grupo I (5 valore) Uma rede telefóia utiliza
EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N
EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.
INTRODUÇÃO A TEORIA DE CONJUNTOS
INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome
onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas.
!"$# &%$" ')( * +-,$. /-0 3$4 5 6$7 8:9)$;$< =8:< > Deomiaremos equação diofatia (em homeagem ao matemático grego Diofato de Aleadria) uma equação em úmeros iteiros. Nosso objetivo será estudar dois tipos
AVALIAÇÃO DE DESEMPENHO
AVALIAÇÃO DE DESEMPENHO Itrodução Aálie o domíio do tempo Repota ao degrau Repota à rampa Repota à parábola Aálie o domíio da freqüêcia Diagrama de Bode Diagrama de Nyquit Diagrama de Nichol Eta aula EM
Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s).
2 CONTROLADORES PID Introdução Etrutura geral de um itema com realimentação unitária negativa, com um compenador (G c () em érie com a planta G p (). 2 Controladore PID 2. Acção proporcional (P) G c ()
Compensadores. Controle 1 - DAELN - UTFPR. Os compensadores são utilizados para alterar alguma característica do sistema em malha fechada.
Compenadore 0.1 Introdução Controle 1 - DAELN - UTFPR Prof. Paulo Roberto Brero de Campo O compenadore ão utilizado para alterar alguma caracterítica do itema em malha fechada. 1. Avanço de fae (lead):
CAPÍTULO 7 - Intervalos de confiança
INF 16 CAPÍTULO 7 - Itervalo de cofiaça É uma maeira de calcularmo uma etimativa de um parâmetro decohecido. Muita veze também fucioa como um tete de hipótee. A idéia é cotruir um itervalo de cofiaça para
INTERPOLAÇÃO. Interpolação
INTERPOLAÇÃO Profa. Luciaa Motera [email protected] Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação
Equações Diferenciais (ED) Resumo
Equações Difereciais (ED) Resumo Equações Difereciais é uma equação que evolve derivadas(diferecial) Por eemplo: dy ) 5 ( y: variável depedete, : variável idepedete) d y dy ) 3 0 y ( y: variável depedete,
Cap. 8 - Controlador P-I-D
CONTROLADOR ID Metrado Integrado em Engenharia Electrotécnica e de Comptadore (MEEC) Departamento de Engenharia Electrotécnica e de Comptadore (DEEC) CONTROLO º emetre 7/8 Tranparência de apoio à ala teórica
Síntese de Transformadores de Quarto de Onda
. Sítese de rasforadores de Quarto de Oda. Itrodução rasforadores de guia de oda são aplaete epregados o projeto de copoetes e oda guiada e são ecotrados e praticaete todas as cadeias alietadoras de ateas
ESTABILIDADE. Pólos Zeros Estabilidade
ESTABILIDADE Pólo Zero Etbilidde Itrodução Um crcterític importte pr um item de cotrole é que ele ej etável. Se um etrd fiit é plicd o item de cotrole, etão íd deverá er fiit e ão ifiit, ito é, umetr em
INTERVALO DE CONFIANÇA
INTERVALO DE CONFIANÇA Supoha que etejamo itereado um parâmetro populacioal verdadeiro (ma decohecido) θ. Podemo etimar o parâmetro θ uado iformação de oa amotra. Chamamo o úico úmero que repreeta o valor
Prova 3 Física. N ọ DE INSCRIÇÃO:
Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REAIIZAÇÃO DA PROVA. Coira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coorme o que costa a etiqueta
ERROS ERRO DE ARREDONDAMENTO
ERROS Seja o valor aproimado do valor eacto. O erro de deie-se por ε ε erro absoluto de Aálise N um érica 4 ERRO DE ARREDONDAENTO Seja o valor aproimado do valor eacto tedo eactamete k dígitos após o poto
Exemplos de I.C. (1 ) 100% para a mådia (e para diferença entre mådias)
Exemplo de I.C. ( )% para a mådia (e para difereça etre mådia) Exemplo : Tete de compreão foram aplicado em dua marca de cimeto para avaliar a reitêcia em cocreto. Foram produzido 5 corpo de prova de cada
Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida.
. EQUAÇÕES DIFERENCIAIS.. Coceito e Classificação Equação iferecial é uma equação que apreseta erivaas ou ifereciais e uma fução escohecia. Seja uma fução e e um iteiro positivo, etão uma relação e igualae
ActivALEA. ative e atualize a sua literacia
ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto
1 2 9, i n c i s o I I, d a C F ; e a r t i g o 5 º, i n c i s o V, a l í n e a s a e
P O R T A R I A n 2 0 1, d e 1 8 d e j u l h o d e 2 0 1 3. A P r o c u r a d o r a d a R e p ú b l i c a q u e e s t a s u b s c r e v e, e m e x e r c í c i o n a P r o c u r a d o r i a d a R e p ú
Amostragem e PCM. Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento
Amostragem e PCM Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Roteiro 1 Amostragem 2 Introdução O processo
Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x.
4. EQUAÇÕES DIFERENCIAIS 4.: Defiição e coceitos básicos Defiição.: Uma equação diferecial ordiária é uma dy d y equação da forma f,,,, y = 0 ou d d ( ) f (, y, y,, y ) = 0, evolvedo uma fução icógita
VII Equações Diferenciais Ordinárias de Primeira Ordem
VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,
Laboratório de Sistemas e Sinais Equações Diferenciais
Laboratório e Sitema e Sinai Equaçõe Diferenciai Luí Cala e Oliveira Abril 2009 O objectivo ete trabalho e laboratório é o e realizar experiência com moelo e itema em tempo contínuo ecrito por equaçõe
Modulação por Pulsos
Modulação por Pulsos Propriedades Amostragem de sinais Modulação por amplitude de pulso (PAM) Modulação por pulso codificado (PCM) Modulação por largura de pulso (PWM) Modulação por posição de pulso (PPM)
FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE
FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM SEPARÁVEIS, HOMOGÊNEAS, EXATAS, FATORES
CAPÍTULO 10 Modelagem e resposta de sistemas discretos
CAPÍTULO 10 Modelagem e repota de itema dicreto 10.1 Introdução O itema dicreto podem er repreentado, do memo modo que o itema contínuo, no domínio do tempo atravé de uma tranformação, nete cao a tranformada
Confrontando Resultados Experimentais e de Simulação
Confrontando Reultado Experimentai e de Simulação Jorge A. W. Gut Departamento de Engenharia Química Ecola Politécnica da Univeridade de São Paulo E mail: [email protected] Um modelo de imulação é uma repreentação
Resistência dos Materiais SUMÁRIO 1. TENSÕES DE CISALHAMENTO... 1 1.1 DIMENSIONAMENTO... 2 1.2 EXEMPLOS... 2
Reitência do Materiai SUMÁRIO 1. TESÕES DE CISLHMETO... 1 1.1 DIMESIOMETO... 1. EXEMPLOS... Cialhamento 0 Prof. Joé Carlo Morilla Reitência do Materiai 1. Tenõe de Cialhamento Quando dua força cortante
CAP. I ERROS EM CÁLCULO NUMÉRICO
CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução
Introdução ao Estudo de Sistemas Lineares
Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes
Matemática para Engenharia
Matemática para Engenharia Profa. Grace S. Deaecto Faculdade de Engenharia Mecânica / UNICAMP 13083-860, Campinas, SP, Brasil. [email protected] Segundo Semestre de 2013 Profa. Grace S. Deaecto ES401
Sumário: 6.3.3. Intervalo de confiança para a diferença entre duas médias de. populações independentes com variâncias conhecidas...
0 Sumário: 6. Itervalo de Cofiaça...0 6.. etimação por itervalo...0 6.. Itervalo de cofiaça para a média...0 6... Itervalo de cofiaça para a média com variâcia cohecida...0 6... Itervalo de cofiaça para
INF1383 -Bancos de Dados
INF1383 -Bacos de Dados Prof. Sérgio Lifschitz DI PUC-Rio Eg. Computação, Sistemas de Iformação e Ciêcia da Computação PROJETO DE BANCOS DE DADOS MODELAGEM CONCEITUAL: ABORDAGEM ENTIDADES E RELACIONAMENTOS
REDES DE NOVA GERAÇÃO. m a i o r q u a l i d a d e, m a i s r a p i d e z, mais inovação;
R E D E S D E N O V A G E R A Ç Ã O D E S A F I O e O P O R T U N I D A D E A P D C, 3 1 D E M A R Ç O D E 2 0 0 9 A S O N A E C O M A C R E D I T A Q U E A S R d N G S Ã O U M A O P O R T U N I D A D
Apostila de SINAIS E SISTEMAS
Apotila de SINAIS E SISTEMAS Álvaro Luiz Stelle (PhD) DAELN CPGEI CEFET PR Março de 5 I PREFÁCIO Eta apotila tem como objetivo dar ao leitor um embaamento teórico da Tranformada de Laplace, de Fourier
CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS
60 Sumário CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 5.1. Itrodução... 62 5.2. Tabelas de trasição dos flip-flops... 63 5.2.1. Tabela de trasição do flip-flop JK... 63 5.2.2. Tabela de
Computação Científica - Departamento de Informática Folha Prática 1
1. Costrua os algoritmos para resolver os problemas que se seguem e determie as respetivas ordes de complexidade. a) Elaborar um algoritmo para determiar o maior elemeto em cada liha de uma matriz A de
ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013
ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0
Capítulo I Tensões. Seja um corpo sob a ação de esforços externos em equilíbrio, como mostra a figura I-1:
apítuo I Seja um corpo ob a ação de eforço externo em equiíbrio, como motra a figura I-1: Figura I-3 Eforço que atuam na eção para equiibrar o corpo Tome-e, agora, uma pequena área que contém o ponto,
ARMAZÉNS GERAIS ASPECTOS LEGAIS, VANTAGENS E SERVIÇOS
ARMAZÉNS GERAIS ASPECTOS LEGAIS, VANTAGENS E SERVIÇOS D i r e t o r E x e c u t i v o d a T O P L O G P o r R o d o l p h o C a r i b e A r m a z é n s g e r a i s s ã o e s t a b e l e c i m e n t o s
BLOCO Nº 2 JORNAIS, BOLETINS, PANFLETOS D a N º 1. H i n o N a c i o n a l e H i n o d a I n t e r n a c i o n a l? 0 1 C U T N a c i o n a l 2. M o d i f i c a ç õ e s d o E s t a t u t o p r o p o s
Circuitos Elétricos II Experimento 2
Experimeto : Frequêcia Complexa Própria. Objetivo: Determiação da frequêcia complexa própria de um circuito RLC utilizado o traitório repetitivo.. Itrodução Seja y( a repota de um circuito liear, de parâmetro
Comunicação de Dados. Aula 5 Transmissão Analógica
Comunicação de Dados Aula 5 Transmissão Analógica Sumário Modulação de sinais digitais Tipos de Modulação Taxa de transmissão x Taxa de modulação Modulação por amplitude Modulação por freqüência Modulação
CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA
CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas
Suporte à Execução. Compiladores. Procedimentos. Árvores de Ativação. Exemplo: o Quicksort. Procedimentos em ação (ativação)
Supote à Execução Compiladoe Ambiente de upote à execução O Compilado gea código executável. Ma nem tudo etá conhecido ante que o pogama eja executado! Valoe de paâmeto e funçõe, Memóia dinamicamente alocada,
Vestibular 2013 2 a fase Gabarito Física
etibular 203 2 a fae Gabarito Fíica Quetão 0 (alor: 5 ponto) Cálculo da variação da quantidade de movimento A velocidade inicial no momento do impacto erá a velocidade final da queda Aplicando conervação
U N I V E R S I D A D E F E D E R A L D A P A R A Í B A C E N T R O D E C I Ê N C I A S D A S A Ú D E
U N I V E R S I D A D E F E D E R A L D A P A R A Í B A C E N T R O D E C I Ê N C I A S D A S A Ú D E D E P A R T A M E N T O D E C I Ê N C I A S F A R M A C Ê U T I C A S C U R S O D E F A R M Á C I A
Capitulo 6 Resolução de Exercícios
FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial
ESTUDOS EXPERIMENTAIS SOBRE A AVALIAÇÃO DAS PROPRIEDADES DE FLUIDOS DE PERFURAÇÃO EM MEIOS POROSOS ANISOTRÓPICOS
3 a 6 de outubro de 0 Univeridade Federal Rural do Rio de Janeiro Univeridade Severino Sombra aoura RJ ESTUDOS EXPERIMENTIS SOBRE LIÇÃO DS PROPRIEDDES DE FLUIDOS DE PERFURÇÃO EM MEIOS POROSOS NISOTRÓPICOS.
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR DA UNICAMP-FASE PROFA MARIA ANTÔNIA C GOUVEIA O velocíetro é u istrueto que idica a velocidade de u veículo A figura abaio ostra o velocíetro de u carro que
Quantas equações existem?
www2.jatai.ufg.br/oj/index.php/matematica Quanta equaçõe exitem? Rogério Céar do Santo Profeor da UnB - FUP [email protected] Reumo O trabalho conite em denir a altura de uma equação polinomial
Equações Diferenciais Lineares de Ordem n
PUCRS Faculdade de Matemática Equações Difereciais - Prof. Eliete Equações Difereciais Lieares de Ordem Cosideremos a equação diferecial ordiária liear de ordem escrita a forma 1 d y d y dy L( y( x ))
PG Progressão Geométrica
PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características
Fundamentos de Telecomunicações
Fundamentos de Fundamentos de Introdução às s Noção de informação, mensagem e sinal Informação A informação é um conceito fundamental das comunicações. No entanto édifícil de definir com precisão o que
Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace
Reolução de Equaçõe Diferenciai Ordinária por Série de Potência e Tranformada de Laplace Roberto Tocano Couto [email protected] Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,
LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão
LCE Etatítca Aplcada à Cêca Soca e Ambeta 00/0 Eemplo de revão Varável Aleatóra Cotíua Eemplo: Para e etudar o comportameto de uma plata típca de dua, a Hydrocotlle p., quato ao eu deevolvmeto, medu-e
ENGENHARIA ECONÔMICA AVANÇADA
ENGENHARIA ECONÔMICA AVANÇADA INTRODUÇÃO MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO [email protected] 1 1 Itrodução à Egeharia Ecoômica A egeharia, iserida detro do cotexto de escassez de recursos, pode aplicar
Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas.
Equação Difereial Uma equação difereial é uma epressão que relaioa uma fução desoheida (iógita) om suas derivadas É útil lassifiar os diferetes tipos de equações para um desevolvimeto sistemátio da Teoria
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP
Diciplina: Mecânica do Fluido Aplicada Lita de Exercício Reolvido Profeor: 1 de 11 Data: 13/0/08 Caruo 1. Um menino, na tentativa de melhor conhecer o fundo do mar, pretende chegar a uma profundidade de
MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA
MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA 1. (2,5) Um provedor de acesso à iteret está moitorado a duração do tempo das coexões
Técnicas Econométricas para Avaliação de Impacto. Problemas de Contaminação na Validação Interna
Técnica Econométrica para Avaliação e Impacto Problema e Contaminação na Valiação Interna Rafael Perez Riba Centro Internacional e Pobreza Braília, 18 e junho e 28 Introução Valiação Interna é quano um
Até que tamanho podemos brincar de esconde-esconde?
Até que tamaho podemos bricar de escode-escode? Carlos Shie Sejam K e L dois subcojutos covexos e compactos de R. Supoha que K sempre cosiga se escoder atrás de L. Em termos mais precisos, para todo vetor
Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço
4 Matemática Alexader dos Satos Dutra Igrid Regia Pellii Valeço Professor SUMÁRIO Reprodução proibida. Art. 84 do Código Peal e Lei 9.60 de 9 de fevereiro de 998. Módulo 0 Progressão aritmérica.................................
Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6
Aula 6 Eletrodiâmica III Geradores, Receptores Ideais e Medidores Elétricos setido arbitrário. A ddp obtida deve ser IGUAL a ZERO, pois os potos de partida e chegada são os mesmos!!! Gerador Ideal Todo
Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace
Equaçõe Diferenciai GMA Reolução de Equaçõe Diferenciai por Série e Tranformada de Laplace Roberto Tocano Couto [email protected] Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,
Matemática Ficha de Trabalho
Matemática Ficha de Trabalho Probabilidades 12º ao FT4 Arrajos completos (arrajos com repetição) Na liguagem dos computadores usa-se o código biário que é caracterizado pela utilização de apeas dois algarismos,
Design de aplicativos moveis
Design de aplicativos moveis Os dispositivos móveis mais comuns : S m a r t p h o n e ; P D A ; Te l e m ó v e l ( pt) / C e l u l a r ( br); C o n s o l e p o r t á t i l ; U l t r a M o b i l e P C ;
somente um valor da variável y para cada valor de variável x.
Notas de Aula: Revisão de fuções e geometria aalítica REVISÃO DE FUNÇÕES Fução como regra ou correspodêcia Defiição : Uma fução f é uma regra ou uma correspodêcia que faz associar um e somete um valor
A letra x representa números reais, portanto
Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da
RAIOS E FRENTES DE ONDA
RAIOS E FRENTES DE ONDA 17. 1, ONDAS SONORAS ONDAS SONORAS SÃO ONDAS DE PRESSÃO 1 ONDAS SONORAS s Onda sonora harmônica progressiva Deslocamento das partículas do ar: s (x,t) s( x, t) = s cos( kx ωt) m
Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace
Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do
A C T A N. º I X / 2 0 0 8
1 A C T A N. º I X / 2 0 0 8 - - - - - - A o s d e z a s s e i s d i a s d o m ê s d e A b r i l d o a n o d e d o i s m i l e o i t o, n e s t a V i l a d e M o n c h i q u e, n o e d i f í c i o d o
UFRGS 2007 - MATEMÁTICA
- MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas
P RO J E T O E S P E C I A L : A R E S T / F AZ E N D A S E N H O R J E S U S
P RO J E T O E S P E C I A L : A R E S T / F AZ E N D A S E N H O R J E S U S P ET A g r o n o m i a U n i v e r s i d a d e F e d e r a l d e L a v r a s U F L A / M G 1 R e s u m o J a m a i s c o n
Elementos de Análise Financeira Descontos Profa. Patricia Maria Bortolon
Elemetos de Aálise Fiaceira Descotos Aplicações de Juros Simples Descotos Valor Nomial = valor de resgate = valor de um título o seu vecimeto Ao liquidar um título ates do vecimeto há uma recompesa pelo
Nestas notas será analisado o comportamento deste motor em regime permanente.
MOTO DE INDUÇÃO TIFÁSICO 8/0/006 Ivan Camargo Introdução O motor de indução trifáico correponde a, aproximadamente, 5 % da carga elétrica do Brail, ou eja, 50 % da carga indutrial que, por ua vez, correponde
APLICAÇÃO DO MÉTODO DE INTEGRAÇÃO TRAPEZOIDAL EM SISTEMAS ELÉTRICOS
AT49-07 - CD 6-07 - PÁG.: APLICAÇÃO DO MÉTODO DE INTEGAÇÃO TAPEZOIDAL EM SISTEMAS ELÉTICOS J.. Cogo A.. C. de Oliveira IEE - EFEI Uiv. Taubaté Artigo apresetado o Semiário de Pesquisa EFEI 983 ESUMO Este
Cálculo Diferencial e Integral II. Lista 8 - Exercícios/ Resumo da Teoria
Cálculo Diferencial e Integral II Lita 8 - Exercício/ Reumo da Teoria Derivada Direcionai Definição Derivada Direcional. A derivada da função f x, no ponto P x, na direção do veror u u 1, u é o número
COMPOSIÇÕES DE FUNÇÕES GERATRIZES E A FÓRMULA EXPONENCIAL
COMPOSIÇÕES DE FUNÇÕES GERATRIZES E A FÓRMULA EXPONENCIAL Grade parte do poder de fuções geratrizes vêm de composição delas! Observação. Sejam F (x) = 0 G(x) = 0 f x g x duas séries formais. A composição
V (t) = A sen 2π f t + A/3[sen 3 (2π f t)] + A/5[sen 5 ( 2π f t)] + A/7[sen 7 (2π f t)] + A/9[sen 9 (2π f t)]+
Teoria de Fourier Domínio da Freqüência e Domínio do Tempo A teoria de Fourier estabelece que uma forma de onda periódica pode ser decomposta em harmônicos relacionados; senos ou cossenos em diferentes
EA616B Análise Linear de Sistemas Resposta em Frequência
EA616B Análise Linear de Sistemas Resposta em Frequência Prof. Pedro L. D. Peres Faculdade de Engenharia Elétrica e de Computação Universidade Estadual de Campinas 2 o Semestre 2013 Resposta em Frequência
A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma
Introdução A tranformada de Laplace pode er uada para reolver equaçõe diferencia lineare com coeficiente contante, ou eja, equaçõe da forma ay + by + cy = ft), para a, b, c R Para io, a equação diferencial
1- REFRAÇÃO LUMINOSA é a variação de velocidade da luz devido à mudança do meio de propagação. refração do meio em que o raio se encontra.
REFRAÇÃO - LENTES - REFRAÇÃO LUMINOSA é a variação de velocidade da luz devido à mudaça do meio de propagação. - Ídice de refração absoluto: é uma relação etre a velocidade da luz em um determiado meio
