A TERRA E SEUS MOVIMENTOS. A ESFERA CELESTE

Tamanho: px
Começar a partir da página:

Download "A TERRA E SEUS MOVIMENTOS. A ESFERA CELESTE"

Transcrição

1 17 A TERRA E SEUS MOVIMENTOS. A ESFERA CELESTE 17.1 A TERRA FORMA E DIMENSÕES. A ESFERA TERRESTRE Primeiramente, o homem imaginou a Terra como uma superfície plana, pois era assim que ele a via. Como mencionado no capítulo anterior, mesmo os babilônios, que eram avançados em Astronomia, tinham essa concepção. Com o correr dos tempos, descobriu-se que a Terra era aproximadamente esférica. Embora a natureza esférica da Terra seja de conhecimento do homem comum apenas por um período de tempo comparativamente curto, esse conceito já era aceito pelos astrônomos há cerca de 25 séculos. Figura 17.1 Forma da Terra Na realidade, a superfície que a Terra apresenta, com todas as suas irregularidades exteriores, é o que se denomina superfície topográfica da Terra e não tem representação matemática. Na tentativa de contornar esse problema, concebeu-se o geóide, que seria o sólido formado pela superfície do nível médio dos mares, supondo-o recobrindo toda a Terra, prolongando-se através dos continentes (figura 17.1). 569

2 O geóide, entretanto, ainda não é uma superfície geometricamente definida. Assim, medições geodésicas precisas, realizadas no século passado e no início deste, estabeleceram como a superfície teórica que mais se aproxima da forma real da Terra a do ELIPSÓIDE DE REVOLUÇÃO, que é o sólido gerado pela rotação de uma elipse em torno do eixo dos pólos (figura 17.2). Figura 17.2 Parâmetros do Elipsóide Internacional de Referência O ELIPSÓIDE INTERNACIONAL DE REFERÊNCIA tem os seguintes parâmetros: RAIO EQUATORIAL (SEMI-EIXO MAIOR) a = ,00 metros RAIO POLAR (SEMI-EIXO MENOR) b = ,52 metros ACHATAMENTO m = a b ,05 = = 0, = 1 a , EXCENTRIDADE e = a 2 b 2 a 2 = 0, Os parâmetros de outros elipsóides de referência podem ser encontrados no Apêndice C, no final do Volume III deste Manual. A diferença deste ELIPSÓIDE para uma SUPERFÍCIE ESFÉRICA é, porém, muito pequena e, assim, a ESFERA é adotada como SUPERFÍCIE TEÓRICA DA TER- RA nos cálculos da Navegação Astronômica e em muitos outros trabalhos astronômicos. A esfera terrestre pode ser considerada como possuindo um raio de ,019 metros, o que lhe confere uma circunferência de ,200 km, correspondentes exatamente a milhas náuticas. Assim, 1 grau de Latitude equivale a 60 milhas náuticas e 1 minuto de Latitude a 1 milha náutica, conforme se usa em navegação. 570

3 PRINCIPAIS LINHAS, PONTOS E PLANOS DO GLOBO TERRESTRE EIXO DA TERRA é a linha em torno da qual a Terra executa o seu movimento de rotação, de Oeste para Leste (o que produz nos outros astros um MOVIMENTO APARENTE de Leste para Oeste). PÓLOS são os pontos em que o eixo intercepta a superfície terrestre. O PÓLO NORTE é o que se situa na direção da Estrela Polar (a URSA MINORIS); o PÓLO SUL é o oposto. CÍRCULO MÁXIMO é a linha que resulta da interseção com a superfície terrestre de um plano que contenha o CENTRO DA TERRA. PLANO EQUATORIAL é o plano perpendicular ao eixo de rotação da Terra e que contém o seu centro (figura 17.3). Figura 17.3 Plano Equatorial e Equador da Terra - EQUADOR: CÍRCULO MÁXIMO A MEIO ENTRE OS PÓLOS EQUADOR DA TERRA é o círculo máximo resultante da interseção do plano equatorial com a superfície terrestre. O equador divide a Terra em dois hemisférios, o HEMISFÉRIO NORTE e o HEMISFÉRIO SUL. Figura 17.4 Círculo Máximo e Círculo Menor CÍRCULO MENOR é a linha que resulta da interseção com a superfície terrestre de um plano que não contenha o CENTRO DA TERRA (figura 17.4). PARALELOS são círculos menores paralelos ao Equador e, portanto, perpendiculares ao eixo da Terra. Seus raios são sempre menores que o do Equador (figura 17.5). Os paralelos materializam a direção E W. Entre os paralelos distinguem-se o Trópico de Câncer, o Trópico de Capricórnio, o Círculo Polar Ártico e o Círculo Polar Antártico. 571

4 Figura 17.5 Paralelo ou Paralelo de Latitude TRÓPICO DE CÂNCER paralelo de 23º27' de Latitude Norte, correspondente à Declinação máxima alcançada pelo Sol no Hemisfério Norte, no solstício de verão (no Hemisfério Norte), que ocorre a 21 de junho de cada ano. TRÓPICO DE CAPRICÓRNIO paralelo de 23º27' de Latitude Sul, correspondente à Declinação máxima alcançada pelo Sol no Hemisfério Sul, no solstício de inverno (para o Hemisfério Norte), que ocorre a 21/22 de dezembro de cada ano. CÍRCULO POLAR ÁRTICO E CÍRCULO POLAR ANTÁRTICO paralelos de 66º33' de Latitudes Norte e Sul, respectivamente, que contêm os pólos da eclítica (órbita descrita pelo Sol no seu movimento aparente de translação anual em torno da Terra). Em Latitudes superiores às dos círculos polares, o Sol permanece acima ou abaixo do horizonte por longos períodos, conforme a Latitude e a Declinação tenham o mesmo nome, ou nomes contrários, respectivamente. À medida que a Latitude cresce, tais períodos aumentam, até que, para um observador em um dos pólos (Latitude 90ºN ou 90ºS), o Sol permanece continuamente 6 meses acima e 6 meses abaixo do Horizonte. MERIDIANOS são os círculos máximos que passam pelos pólos da Terra (figura 17.6). Os meridianos marcam a direção N S. O plano de cada meridiano contém o eixo da Terra, sendo por ele dividido em duas metades: MERIDIANO SUPERIOR de um determinado lugar é a metade que contém os pólos e que passa pelo referido lugar (figura 17.7). Figura 17.6 Meridianos EIXO DA TERRA Figura 17.7 Meridiano Superior e Primeiro Meridiano Pn q ' q Ps 572

5 MERIDIANO INFERIOR é a metade que se encontra diametralmente oposta. Na realidade, o termo MERIDIANO é normalmente aplicado ao MERIDIANO SUPERIOR, sendo o MERIDIANO INFERIOR denominado ANTIMERIDIANO. PRIMEIRO MERIDIANO, MERIDIANO DE ORIGEM ou MERIDIANO DE REFERÊNCIA (figura 17.7) é o meridiano tomado como origem para contagem das Longitudes. Conforme mencionado no Capítulo 16, adota-se como primeiro meridiano, por acordo internacional firmado no final do século XIX, o meridiano de Greenwich A POSIÇÃO NA TERRA. SISTEMA DE COORDENADAS GEOGRÁFICAS Para localizar qualquer ponto na superfície da Terra, utiliza-se o Sistema de Coordenadas Geográficas (Latitude e Longitude), que tem como planos fundamentais de referência o do EQUADOR e o do MERIDIANO DE GREENWICH. Figura 17.8 Sistema de Coordenadas Geográficas LATITUDE DE UM LUGAR (o símbolo é a letra grega j) é o arco de meridiano compreendido entre o Equador e o paralelo do lugar. Conta-se de 0º a 90º para o Norte e para o Sul do Equador (figura 17.8). A Latitude deve ser sempre designada Norte (N) ou Sul (S), conforme o lugar esteja, respectivamente, ao Norte ou ao Sul do Equador. Na figura 17.8, por exemplo, a Latitude do ponto A deve ser designada N, pois o mesmo está ao Norte do Equador. AB: ORTODROMIA ENTRE OS PONTOS A E B A COLATITUDE, elemento muito usado nos cálculos de Navegação Astronômica, é o complemento da LATITUDE do lugar, isto é, COLATITUDE = 90º LATITUDE. LONGITUDE DE UM LUGAR (o símbolo é a letra grega l) é o arco do Equador, ou o ângulo no pólo, compreendido entre o MERIDIANO DE GREENWICH e o MERIDIANO DO LUGAR. Conta-se de 0º a 180º, para Leste ou para Oeste de Greenwich. A Longitude deve ser sempre designada Leste (E) ou Oeste (W), conforme o lugar esteja, respectivamente, a Leste ou a Oeste do meridiano de Greenwich. Na figura 17.8, a longitude do ponto A deve ser designada W, pois o mesmo está a Oeste do meridiano de Greenwich. O quadro abaixo ilustra o Sistema de Coordenadas Geográficas COORDENADAS GEOGRÁFICAS SÍMBOLOS ABREVIATURAS VALORES POSSÍVEIS SENTIDO DE CONTAGEM LATITUDE j Lat 0º a 90º DO EQUADOR PARA N/S LONGITUDE l Long 0º a 180º DO MERIDIANO DE GREENWICH PARA E/W 573

6 Associados aos conceitos de Latitude e Longitude, é oportuno recordar as seguintes definições: DIFERENÇA DE LATITUDE ENTRE DOIS LUGARES (símbolo Dj) é o arco de meridiano compreendido entre os paralelos que passam por esses lugares. Para se obter a DIFERENÇA DE LATITUDE entre dois pontos, deve-se subtrair ou somar os valores de suas Latitudes, conforme eles sejam, respectivamente, de mesmo nome ou de nomes contrários. Assim, por exemplo, a DIFERENÇA DE LATITUDE, entre o ponto A, situado sobre o paralelo de 30ºN, e o ponto B, situado sobre o paralelo de 45ºN, será de 15º. Ademais, costuma-se indicar, também, o SENTIDO da DIFERENÇA DE LATITUDE. Desta forma, dir-seia que a Dj de A para B é de 15ºN, ao passo que a Dj de B para A seria de 15ºS. LATITUDE MÉDIA ENTRE DOIS LUGARES (símbolo jm) é a Latitude correspondente ao paralelo médio entre os paralelos que passam pelos dois lugares. Seu valor é obtido pela semi-soma ou semidiferença das Latitudes dos dois lugares, conforme estejam eles no mesmo hemisfério ou em hemisférios diferentes (neste caso, terá o mesmo nome que o valor maior). No exemplo anterior, a LATITUDE MÉDIA entre os pontos A (Latitude 30ºN) e B (Latitude 45ºN) é: jm = 30o + 45 o 2 = 37,5º N = 37 o 30' N A LATITUDE MÉDIA entre o ponto C (Latitude 40ºN) e o ponto D (Latitude 12ºS) será: jm = 40 o _ 12º = 14º N 2 DIFERENÇA DE LONGITUDE ENTRE DOIS LUGARES (símbolo Dl) é o arco do Equador compreendido entre os meridianos que passam por esses lugares. A obtenção de seu valor é semelhante à da DIFERENÇA DE LATITUDE. Assim, por exemplo, a DIFERENÇA DE LONGITUDE entre G (Longitude 015ºW) e H (Longitude 010ºE) é de 025ºE. Figura 17.9 Apartamento e Diferença de Longitude EQUADOR 30 MILHAS NÁUTICAS 52 MILHAS NÁUTICAS 60 MILHAS NÁUTICAS APARTAMENTO (ap) apartamento entre dois pontos é a distância, em milhas náuticas, correspondente à diferença de Longitude entre os dois pontos. Em outras palavras, apartamento é o comprimento, em milhas náuticas, do arco de paralelo subtendido entre dois meridianos, ou a distância, em milhas náuticas, percorrida no sentido E W, quando se navega de um ponto para outro da superfície terrestre. Em virtude da forma esférica da Terra, os meridianos convergem, à medida que a Latitude cresce, conforme se verifica na figura A DIFE- RENÇA DE LONGITUDE entre os dois meridianos mostrados na figura é de 1º. No entanto, o apartamento entre eles é de 574

7 60 milhas náuticas no Equador, 52 milhas no paralelo de 30º e 30 milhas no paralelo de 60º. Assim, o comprimento de 1 grau de Longitude (medido ao longo de um paralelo) decresce de 60 milhas náuticas, no Equador, até zero, nos pólos. Enquanto isto, o comprimento de 1 grau de latitude (medido ao longo de um meridiano) é o mesmo em qualquer ponto da esfera terrestre, desde o Equador até os pólos. Como vimos, para os propósitos da navegação, tal comprimento corresponde a 60 milhas náuticas e, assim, 1 minuto de Latitude é igual a 1 milha náutica, em qualquer lugar da Terra. Conforme será demonstrado no Capítulo 33, o apartamento (para distâncias de até 600 milhas) é igual à DIFERENÇA DE LONGITUDE multiplicada pelo cosseno da LA- TITUDE MÉDIA entre os dois pontos, ou seja: ap = Dl. cos jm OS MOVIMENTOS DA TERRA MOVIMENTOS VERDADEIRO E APARENTE Figura Movimentos Principais da Terra A TERRA GIRA EM TORNO DO SEU EIXO DE ROTAÇÃO, UMA VEZ POR DIA, DE OESTE PARA LESTE. A TERRA DESCREVE, NO PERÍODO DE 1 ANO, UMA ÓRBITA ELÍTICA EM TORNO DO SOL, QUE OCUPA UM DOS FOCOS DA ELIPSE (PRIMEIRA LEI DE KEPLER). A VELOCIDADE ORBITAL DA TERRA VARIA, DE FORMA QUE ÁREAS IGUAIS SEJAM VARRIDAS EM TEMPOS IGUAIS (SEGUNDA LEI DE KEPLER). A VELOCIDADE ORBITAL É MÁXIMA NO PERIÉLIO E MÍNIMA NO AFÉLIO. Os movimentos principais da Terra (MOVIMENTOS VERDADEIROS) são os seguintes (figura 17.10): I ROTAÇÃO em torno da linha dos pólos (EIXO DA TERRA), uma vez por dia. A rotação da Terra se processa de Oeste para Leste; e II TRANSLAÇÃO (OU REVOLUÇÃO) ao redor do Sol, uma vez por ano. 575

8 Além desses movimentos principais, que nos interessam mais de perto em Navegação Astronômica, a Terra apresenta ainda os seguintes movimentos verdadeiros: III PRECESSÃO em torno do eixo da eclítica, com um período de anos; e IV MOVIMENTO NO ESPAÇO, ou movimento com o Sol, através do espaço sideral. O Sol não está fixo no espaço; desloca-se, arrastando consigo todo o sistema planetário, na direção de um ponto apex (q.v.) situado na constelação de Lira. A velocidade de rotação da Terra no Equador é de 900 nós (1.666,8 km/h), pois a esfera terrestre, com uma circunferência de milhas náuticas, completa um giro em torno do seu eixo em 24 horas. A velocidade orbital média da Terra, no seu movimento anual de translação (ou revolução) ao redor do Sol, é de cerca de nós (ou, aproximadamente, km/h). A velocidade do movimento solar no espaço, ou seja, a velocidade do Sol com relação às estrelas vizinhas, é de cerca de 19,5 km/s, ou nós ( km/h, aproximadamente). A Terra, girando de Oeste para Leste, move-se no SENTIDO DIRETO; o sentido contrário ao do movimento de rotação da Terra, isto é, o sentido Leste Oeste, é denominado SENTIDO INDIRETO ou RETRÓGRADO. O movimento verdadeiro de rotação da Terra faz com que os demais astros pareçam mover-se no firmamento de Leste para Oeste, nascendo no setor Leste, elevando-se através do céu até a passagem meridiana e se pondo no setor Oeste. Este movimento é denominado MOVIMENTO APARENTE. Em Navegação Astronômica é conveniente retornar à TEORIA GEOCÊNTRICA DE PTOLOMEU (ver o Capítulo 16). Assim, utiliza-se sempre a noção de movimento aparente, isto é, considera-se a Terra estacionária, fixa no espaço, e todos os outros astros dotados de um movimento aparente de Leste para Oeste EFEITOS DO MOVIMENTO APARENTE. A ESFERA CELESTE I A Esfera Celeste (figura 17.11) Figura A Esfera Celeste 576

9 As distâncias da Terra aos corpos celestes são tão grandes que podemos supô-los projetados na superfície interna de uma imensa esfera oca, de raio infinito, concêntrica com a Terra. Essa esfera aparente, de raio infinito, é denominada ESFERA CELESTE. Assim, em Navegação Astronômica, considera-se a Terra uma ESFERA PERFEITA, estacionária, suspensa, fixa no centro do Universo, e todos os corpos celestes localizados na superfície interna de uma imensa esfera oca, de RAIO INFINITO, centrada no centro da Terra: a ESFERA CELESTE. Esta esfera aparente é dotada de um movimento de rotação de Leste para Oeste, perfazendo uma volta completa a cada dia, com seu eixo de rotação coincidindo com o eixo da Terra. II Linhas, Pontos e Planos da Esfera Celeste (figura 17.12) Figura Linhas, Pontos e Planos da Esfera Celeste EIXO DE ROTAÇÃO DA ESFERA CELESTE é o eixo em torno do qual a Esfera Celeste executa o seu movimento aparente de rotação, de leste para oeste, perfazendo uma volta completa a cada dia. O eixo de rotação da Esfera Celeste coincide com o eixo da Terra. PÓLOS CELESTES são os pontos em que o eixo de rotação da Esfera Celeste intercepta sua superfície. Como o eixo de rotação da Esfera Celeste coincide com o eixo da Terra, os Pólos Celestes são as projeções dos Pólos Terrestres na superfície da Esfera Celeste. Então: PÓLO NORTE CELESTE é a projeção do Pólo Norte da Terra na Esfera Celeste. PÓLO SUL CELESTE é a projeção do Pólo Sul da Terra na Esfera Celeste. EQUADOR CELESTE E PARALELOS DE DECLINAÇÃO: EQUADOR CELESTE é o círculo máximo da Esfera Celeste perpendicular ao eixo dos Pólos Celestes. É o Equador da Terra projetado na Esfera Celeste. O Equador Celeste é a referência para medições Norte Sul na Esfera Celeste. Tal como no caso do 577

10 Equador da Terra, o Equador Celeste divide a Esfera Celeste em dois hemisférios, Hemisfério Norte Celeste e Hemisfério Sul Celeste. PARALELOS DE DECLINAÇÃO ou CÍRCULOS DIURNOS são círculos menores da Esfera Celeste, paralelos ao Equador Celeste. MERIDIANOS CELESTES E CÍRCULOS HORÁRIOS: MERIDIANO CELESTE é um círculo máximo da Esfera Celeste que contém os Pólos Celestes e o Zênite de um ponto da Terra. Os Meridianos Celestes representam as projeções dos meridianos da Terra na Esfera Celeste, sendo, então, círculos máximos perpendiculares ao Equador Celeste. CÍRCULO HORÁRIO é um círculo máximo da Esfera Celeste que contém os Pólos Celestes e o centro de um astro. Assim, os CÍRCULOS HORÁRIOS são, também, círculos máximos perpendiculares ao Equador Celeste. Desta forma, um CÍRCULO HO- RÁRIO e um MERIDIANO CELESTE têm a mesma definição, sendo os MERIDIANOS CELESTES usados para referência de locais (posições do observador) e os CÍRCULOS HORÁRIOS para astros. A única diferença é que os CÍRCULOS HORÁRIOS deslocamse com os astros, no seu movimento aparente em torno da Terra, enquanto os MERIDIANOS CELESTES permanecem fixos, formando uma espécie de gaiola, no interior da qual gira a Esfera Celeste, no seu movimento aparente de Leste para Oeste. Quando um observador se desloca, move-se de um meridiano para outro. III Movimento Diurno dos Astros Os astros, em seus movimentos aparentes em torno da Terra, descrevem CÍRCU- LOS DIURNOS paralelos ao EQUADOR CELESTE, movendo-se de Leste para Oeste, conforme mostrado na figura Figura Movimento Diurno dos Astros A B C D E Nessa figura, os astros A e B têm Declinação Norte (N); por isso, descrevem CÍRCULOS DIURNOS ao Norte do Equador Celeste, isto é, no Hemisfério Norte Celeste. O astro C tem Declinação igual a zero; assim, seu CÍRCULO DIURNO é o próprio Equador Celeste. Os astros D e E têm Declinação Sul (S); portanto, descrevem CÍRCULOS DIURNOS ao Sul do Equador Celeste, ou seja, no Hemisfério Sul Celeste. Como visto no item anterior, os CÍRCULOS DIURNOS são também denominados PARALELOS DE DECLINAÇÃO, pois são círculos menores da Esfera Celeste, 578

11 paralelos ao Equador Celeste, correspondendo, na Terra, aos PARALELOS ou PARA- LELOS DE LATITUDE. Da mesma forma, conforme será explicado no próximo capítulo, a Declinação de um astro na Esfera Celeste é a sua distância angular ao Norte ou ao Sul do Equador Celeste, correspondendo, assim, à Latitude na Terra (distância angular ao Equador Terrestre). O aspecto do movimento aparente (movimento diurno) dos astros altera-se com a posição do observador na superfície da Terra, pois, à medida que este se desloca, o seu Horizonte Verdadeiro (círculo máximo da Esfera Celeste perpendicular à vertical do lugar, ou seja, à linha Zênite Nadir) varia, modificando o aspecto do movimento diurno dos astros. Examinemos, então, como o fenômeno seria observado de três posições diferentes do nosso planeta. a. Observador em uma Latitude Qualquer (do Hemisfério Norte ou do Hemisfério Sul) Figura Esfera Oblíqua PÔR Na figura 17.14, o observador em uma Latitude (j) qualquer do Hemisfério Norte, voltado para o Norte, veria os astros nascerem no setor Leste, à sua direita, elevarem-se no céu até alcançar a altura máxima, na passagem meridiana e se porem no setor Oeste, à sua esquerda. A altura do pólo elevado (Pólo Norte) seria igual à Latitude do observador. O círculo diurno ou PARALELO DE DECLINAÇÃO descrito por qualquer astro, paralelo ao Equador Celeste, estaria inclinado em relação ao Horizonte de um ângulo igual a 90º _ j. O arco diurno seria diferente do arco noturno para todos os astros que tivessem nascer e pôr e cuja Declinação fosse diferente de zero. A Esfera Celeste denominar-se-ia ESFERA OBLÍQUA. Assim, denomina-se esfera oblíqua ao aspecto da Esfera Celeste quando observada de um ponto na superfície terrestre situado entre o Equador e os pólos. Da figura deduz-se que quanto mais próximo do pólo elevado estiver o astro, mais tempo será ele visível ao observador. No círculo diurno ou PARALELO DE DE- CLINAÇÃO descrito pelo astro A, estão marcados os pontos onde o mesmo nasce e onde se põe. Verifica-se, assim, que o arco diurno da estrela A (ou seja, a porção do seu paralelo de declinação que está acima do Horizonte) é maior que o arco noturno (parte que está abaixo do Horizonte). Certas estrelas, como a Polar, estão tão próximas do pólo elevado que nunca se põem, permanecendo sempre acima do Horizonte (só não sendo vistas durante o dia por causa da ausência de contraste, devida ao excesso de luminosidade). São as chamadas Estrelas Circumpolares. A estrela B, na figura 17.14, é um astro circumpolar. Para que um astro tenha esta condição, é necessário que sua Declinação (d) seja de mesmo nome que a Latitude (j) do observador e que tenha um valor igual ou maior que 90º _ j, isto é, d> 90º _ j. 579

12 Assim como há estrelas que nunca se põem, há outras que nunca aparecem sobre o horizonte, como se pode ver na figura A estrela POLAR, por exemplo, nunca é visível para os observadores situados no Hemisfério Sul. Para que um astro permaneça sempre abaixo do Horizonte, é necessário que sua Declinação (d) tenha o nome contrário à Latitude (j) do observador e seja de valor absoluto igual ou maior que 90º _ j, conforme ocorre com o astro C na figura b. Observador no Equador Neste caso, a Latitude do observador seria nula. Todas as estrelas, conforme se vê na figura 17.15, descreveriam paralelos de declinação (ou círculos diurnos) perpendiculares ao Horizonte local, pois o Equador Celeste seria perpendicular ao Horizonte Verdadeiro. Para cada estrela, o arco diurno seria igual ao arco noturno, isto é, qualquer estrela permaneceria 12 horas acima e 12 horas abaixo do Horizonte. Figura Esfera Reta CELESTE LESTE PÓLO NORTE EQUADOR OESTE HORIZONTE PÓLO SUL Não haveria estrela invisível, pois todas nasceriam e se poriam diariamente, com movimentos perpendiculares ao Horizonte. O Pólo Norte coincidiria com o ponto N do Horizonte e o Pólo Sul com o ponto S. A Esfera Celeste seria denominada ESFERA RETA. Assim, denomina-se esfera reta ao aspecto da Esfera Celeste quando observada de um ponto do Equador Terrestre. Nessa situação, os círculos diurnos aparentes dos astros estão em planos verticais perpendiculares ao plano do meridiano. c. Observador no Pólo O Zênite (Z) do observador coincidiria com o pólo elevado (N ou S) e sua Latitude seria igual a 90ºN ou 90ºS. O Horizonte do observador coincidiria com o Equador Celeste e, assim, todos os astros descreveriam círculos diurnos (ou paralelos de declinação) paralelos ao Horizonte, conforme mostrado na figura Do Pólo Norte, seriam avistadas continuamente todas as estrelas com Declinação Norte, como os astros A e B. Para o observador no Pólo Sul, as estrelas com Declinação Sul permaneceriam sempre acima do Horizonte, como os astros D e E mostrados na figura. A Esfera Celeste seria denominada ESFERA PARALELA. 580

13 Figura Esfera Paralela PÓLO NORTE EQUADOR CELESTE HORIZONTE PÓLO SUL EFEITOS APARENTES DO MOVIMENTO DE TRANSLAÇÃO DA TERRA. A ECLÍTICA I O Caso Especial do Sol. A Eclítica Os dois movimentos verdadeiros principais da Terra, a rotação diária em torno do seu eixo e a translação (ou revolução) anual ao redor do Sol, fazem com que o movimento aparente do Sol tenha, além do seu componente diurno, um componente anual. Assim, o Sol, ao mesmo tempo que descreve seu círculo diurno (como conseqüência da rotação da Terra), nascendo a Leste e se pondo a Oeste, também percorre uma órbita aparente anual ao redor do nosso planeta, como efeito do movimento de translação da Terra. Desta forma, enquanto todas as outras estrelas descrevem sempre aproximadamente o mesmo CÍRCULO DIURNO, o caso do SOL é diferente, pois sua Declinação se altera ao longo do ano. Figura A Eclítica Como o plano da órbita da Terra, no seu movimento de translação em torno do Sol, é inclinado com relação ao seu plano equatorial, no período de um ano a órbita aparente do Sol em torno da Terra também será inclinada. Esta órbita aparente é denominada Eclítica (figura 17.17). OBLIQÜIDADE DA ECLÍTICA Portanto, Eclítica é o círculo máximo da Esfera Celeste descrito pelo centro do Sol, em seu movimento aparente em torno da Terra (1 revolução = 1 ano). A Eclítica é inclinada em relação ao Equador Celeste. O valor desta inclinação é 23º 27' (ou, aproximadamente, 23,5º). 581

14 , A Terra e seus Movimentos. A Esfera Celeste II Pontos da Eclítica A Eclítica tem dois pólos: o pólo norte (p ) e o pólo sul (p '). Além destes, a Eclítica tem mais quatro pontos e dois diâmetros importantes: PONTO VERNAL (Primeiro Ponto de Aries ou Equinócio de Março): é o ponto do Equador Celeste ocupado pelo Sol quando passa do Hemisfério Sul para o Hemisfério Norte Celeste (isto ocorre a 20 de março, aproximadamente). PRIMEIRO PONTO DA LIBRA (Equinócio de Setembro): é o ponto do Equador Celeste ocupado pelo Sol quando passa do Hemisfério Norte para o Hemisfério Sul Celeste (isto ocorre 6 meses após a passagem do Sol pelo Ponto Vernal, aproximadamente a 23 de setembro). Esses dois pontos da Eclítica, representados, respectivamente, por g e W, estão defasados de 180º e a linha que os une (representando a interseção do plano do Equador Celeste com o plano da Eclítica) é denominada LINHA DOS EQUINÓCIOS. SOLSTÍCIO DE VERÃO (para o Hemisfério Norte): assinala o ponto da Eclítica ocupado pelo Sol quando está mais ao Norte do Equador Celeste (isto ocorre, aproximadamente, a 21/22 de junho, quando o Sol alcança uma Declinação de cerca de 23,5º ao Norte do Equador). Representado pelo ponto S1 na figura SOLSTÍCIO DE INVERNO (para o Hemisfério Norte): assinala o ponto da Eclítica ocupado pelo Sol quando está mais ao Sul do Equador Celeste (isto ocorre a 21/22 de dezembro, aproximadamente, quando o Sol alcança uma Declinação de cerca de 23,5º ao Sul do Equador). Representado pelo ponto S2 na figura A linha que une S1 e S2 denomina-se LINHA DOS SOLSTÍCIOS. Os solstícios estão a 90º dos equinócios e assinalam os pontos mais ao Norte e ao Sul alcançados pelo Sol em sua trajetória aparente ao redor da Terra. III Trópicos e Círculos Polares na Esfera Celeste Figura Trópicos e Círculos Polares ^ 23,5º (OBLIQÜIDADE DA ECLÍTICA), A Esfera Celeste, conforme se verifica na figura 17.18, está dividida por 5 importantes círculos paralelos, dos quais um é círculo máximo, o Equador Celeste; os outros 4 são círculos menores e recebem as seguintes denominações (do Norte para o Sul): Círculo Polar Ártico, Trópico de Câncer, Trópico de Capricórnio e Círculo Polar Antártico. Os Círculos Polares Ártico e Antártico contêm, respectivamente, os pólos p e p' da Eclítica. O Trópico de Câncer contém o solstício de verão (verão no Hemisfério Norte) e o Trópico de Capricórnio contém o solstício do inverno (inverno no Hemisfério Norte). Assim,, 582

15 TRÓPICO DE CÂNCER: é o PARALELO DE DECLINAÇÃO ou CÍRCULO DIURNO descrito pelo Sol quando este se encontra no SOLSTÍCIO DE VERÃO (ou, é o PARALELO DE DECLINAÇÃO de 23,5ºN, aproximadamente). TRÓPICO DE CAPRICÓRNIO: é o PARALELO DE DECLINAÇÃO ou CÍR- CULO DIURNO descrito pelo Sol quando este se encontra no SOLSTÍCIO DE INVER- NO (ou, é o PARALELO DE DECLINAÇÃO de 23,5ºS, aproximadamente). CÍRCULO POLAR ÁRTICO: é o PARALELO DE DECLINAÇÃO de 66,5ºN, aproximadamente, que contém o pólo norte (p) da Eclítica. CÍRCULO POLAR ANTÁRTICO: é o PARALELO DE DECLINAÇÃO de 66,5ºS, aproximadamente, que contém o pólo sul (p') da Eclítica CONSEQÜÊNCIAS DA PRECESSÃO TERRESTRE A precessão terrestre é um movimento cônico do eixo da Terra em torno da linha dos pólos da eclítica. A Terra completa um ciclo precessional em cada anos, aproximadamente, ou seja, o Pólo se move cerca de 50,28'' por ano. Este movimento não é completamente circular. Variações na posição da Lua com relação ao Equador Terrestre e o efeito menor de outros astros causam ligeiras alterações no movimento precessional. O efeito combinado destas variações recebe o nome de NUTAÇÃO. Podemos também definir NUTAÇÃO como sendo a parte irregular do movimento precessional. Como conseqüências principais desses movimentos de precessão e nutação, podemos, então, mencionar: Figura Movimento Aparente e Precessão dos Equinócios a) Deslocamento do Ponto Vernal O Ponto Vernal desloca-se sobre a Eclítica, no sentido retrógrado, de cerca de 50,28'' por ano (figura 17.19). b) Deslocamento dos planos fundamentais g : POSIÇÃO DO PONTO VERNAL NO INÍCIO DO ANO TRÓPICO g 1 : POSIÇÃO DO PONTO VERNAL NO FINAL DO ANO TRÓPICO Os planos do Equador e da Eclítica estão sempre em movimento lento no espaço; em conseqüência, variam as coordenadas equatoriais e eclíticas de todos os astros, em geral. c) Diferença entre o ano sideral e o ano trópico Denomina-se ANO SIDERAL o tempo gasto pelo Sol, no seu movimento aparente, para dar uma volta completa em torno da Terra. ANO TRÓPICO é o intervalo de tempo que decorre entre duas passagens consecutivas do centro do Sol pelo Ponto Vernal. Em conseqüência da retrogradação do Ponto Vernal, o ANO TRÓPICO é mais curto que o ANO SIDERAL de cerca de 20,4 minutos. 583

16 d) Deslocamento dos pólos entre as estrelas O movimento do pólo acarretará, com o decorrer do tempo, a substituição de uma estrela polar por outra. Atualmente, a estrela a da URSA MENOR (figura 17.20) encontra-se a menos de 1º do Pólo Norte Celeste, sendo conhecida por ESTRELA POLAR. Por volta do ano 2102, esta distância angular ficará reduzida a aproximadamente 28', e passará a aumentar desta data em diante. Portanto, a atual estrela polar norte continuará a sê-la por vários séculos, até que seja substituída, por exemplo, por g do CEPHEUS no ano Já cerca do ano 14000, a polar será a estrela VEGA (figura 17.21), e assim por diante. Figura Deslocamento dos Pólos entre as Estrelas (Conseqüência da Precessão Terrestre) Figura Precessão e Nutação I I e) Deslocamento do Ponto Vernal nos signos do Zodíaco Será explicado no item que se segue (17.2.5). f) Variação da duração das estações Será abordada no item ZODÍACO O Zodíaco é uma faixa do céu que se estende 8º para cada lado da Eclítica (figura 17.22). É importante porque delimita as órbitas do Sol, da Lua e dos planetas usados em Navegação. Vênus, contudo, ocasionalmente se aventura além dos limites do Zodíaco. 584

17 Figura O Zodíaco O Zodíaco está dividido em 12 partes iguais, de 30º de Longitude, sendo uma para cada mês. Cada uma de suas seções recebe o nome de uma constelação; são os chamados 12 signos do Zodíaco. Os antigos, ao denominarem as seções do Zodíaco, usaram o nome das constelações que, na época, se encontravam parcial ou completamente dentro de cada seção. Entretanto, em virtude da precessão terrestre, o equinócio de março tem retrogradado sobre a eclítica de cerca de 50,28'' por ano, o que faz com que o Ponto Vernal, já decorridos anos, encontre-se presentemente na constelação de PISCES. Para manter os signos originais, diz-se que o Sol atinge o primeiro ponto de ARIES quando cruza o equador a 20 de março, muito embora ele esteja realmente entrando em PISCES nesta época. Desta forma, todos os signos do Zodíaco se encontram atualmente deslocados de sua verdadeira posição. O Ponto Vernal (g), que há anos se encontrava na constelação de ARIES, somente dentro de anos, a contar daquela época, terá completado seu deslocamento através de todos os signos do Zodíaco e voltado, assim, a coincidir com o signo de ARIES ESTAÇÕES DO ANO E ZONAS CLIMÁTICAS I Estações do Ano O Sol está mais próximo da Terra durante o inverno no Hemisfério Norte. Assim, não é a distância Terra Sol a responsável pelas diferenças de temperaturas entre as diversas estações. No periélio a quantidade de energia solar que alcança a Terra é, naturalmente, maior que quando o nosso planeta está no afélio. Entretanto, por causa da pequena excentricidade da órbita (0,0167), o Sol está situado muito próximo do seu centro e, assim, a distância da Terra ao Sol varia muito pouco. Desta forma, a quantidade total diária de energia solar incidente sobre a Terra também varia pouco (até, no máximo, + 3,33% da média diária do ano); o máximo diário de energia incidente sobre a Terra (cerca do dia 2 de janeiro, com a Terra no periélio) é apenas 1,07 vez a quantidade mínima, que ocorre com a Terra no afélio (no dia 5 de julho). 585

18 Figura Inclinação da Órbita da Terra Na realidade, o clima na Terra apresenta diferentes estações por causa da OBLIQÜIDADE DA ECLÍTICA, isto é, devido à inclinação de cerca de 23º27' (aproximadamente 23,5º) do PLANO EQUATORI- AL com relação ao PLANO DA ÓR- BITA da Terra (figura 17.23). Se o EIXO DA TERRA fosse perpendicular ao plano de sua órbita, não existiriam as diferentes estações, havendo um clima uniforme, muito quente no Equador (onde os raios do Sol incidiriam sempre perpendicularmente) e muito frio nos pólos e nas altas Latitudes (onde os raios do Sol incidiriam sempre muito inclinados). Em virtude da inclinação do plano equatorial com relação ao plano da órbita da Terra, a altura do Sol no céu e o seu período de permanência acima do Horizonte variam durante o ano. Figura 17.24a Raios do Sol no Verão COMPARE AS SUPERFÍCIES COBERTAS PELA MESMA QUANTIDADE DE RAIOS INCIDENTES, NAS DUAS DIFERENTES ÉPOCAS a No verão (figura 17.24a), o Sol alcança uma altura mais elevada no céu, seus raios incidem mais na vertical (na zona tropical chegam a incidir perpendicularmente) e, portanto, de uma forma mais concentrada. Além disso, como o Sol permanece mais tempo acima do Horizonte, é transmitido calor à Terra (por absorção) durante um período maior do que ela perde calor (por radiação). Por isso, as temperaturas são mais elevadas. Figura 17.24b Raios do Sol no Inverno No inverno (figura 17.24b), as alturas atingidas pelo Sol são mais baixas, seus raios incidem mais inclinados, de uma forma menos concentrada (isto é, a mesma quantidade de raios do Sol cobre uma área maior da superfície da Terra). Ademais, como a permanência do Sol acima do Horizonte diminui, a Terra perde mais calor por radiação do que ganha por absorção. SUPERFÍCIE JUNHO (INVERNO) b Esta é uma explicação sucinta das diferenças entre as estações do ano. Astronomicamente, as estações começam nos equinócios e solstícios. 586

19 Figura A Velocidade Orbital da Terra é Máxima no Periélio e Mínima no Afélio Pela segunda Lei de Kepler, a velocidade orbital da Terra é maior próxima do periélio do que quando o nosso planeta está mais perto do afélio, a fim de que áreas iguais sejam varridas em tempos iguais (figura 17.25). Assim, o verão (astronômico) do Hemisfério Sul, que começa no dia 22 de dezembro, cerca de 2 semanas antes do periélio, é mais curto que o seu inverno, sendo a diferença de aproximadamente 4,5 dias. Além disso, em virtude da retrogradação dos equinócios, as estações do ano não são mais iguais, duas a duas. Figura Estações do Ano no Hemisfério Sul Na figura estão representados o movimento aparente do Sol ao redor da Terra e as estações do ano no Hemisfério Sul. O centro do nosso planeta, neste caso, ocupa um dos focos da elipse descrita pelo centro do Sol. O eixo maior, AP, desta elipse denomina-se LINHA DOS ÁPSIDES. Sua extremidade P, mais próxima do centro da Terra, denomina-se PERIGEU, e a outra extremidade, A, mais afastada, APOGEU. O vetor TS (Terra Sol) denomina-se RAIO VETOR DO SOL. Como vimos, a velocidade angular do Sol, no seu movimento aparente ao redor da Terra, é variável no decorrer do ano; é menor quando o Sol está no apogeu e maior quando ele passa pelo perigeu, para atender à segunda Lei de Kepler. Há anos, quando o ponto g coincidia com o signo de ARIES, a linha dos solstícios (S1 S2) coincidia com a linha dos ápsides (A P), fazendo com que a superfície limitada pela órbita aparente do Sol se apresentasse dividida em 4 áreas, iguais duas a duas, isto é, verão igual à primavera e outono igual ao inverno, no Hemisfério Sul. Como a cada uma destas áreas corresponde uma estação climática sobre a superfície do Globo Terrestre, e como a duração de cada estação corresponde ao tempo que o raio vetor do Sol gasta para descrever cada uma das quatro áreas acima mencionadas, segue-se que, há anos, no Hemisfério Sul, por exemplo, o outono tinha a mesma duração do inverno e a primavera a mesma duração do verão. Hoje em dia, entretanto, devido à retrogradação do Ponto Vernal (g) sobre a Eclítica, já não há mais coincidência entre a linha dos ápsides (A P) e a linha dos solstícios (S1 S2), conforme mostrado na figura 17.26, daí resultando que as estações não têm mais durações iguais, duas a duas. 587

20 Com o decorrer do tempo, continuará a variar a duração das estações e somente se repetirão as igualdades verificadas há dois mil anos quando a linha dos equinócios (g W) vier a coincidir com a linha dos ápsides (A P). II Zonas Climáticas A parte da superfície do Globo Terrestre compreendida entre o TRÓPICO DE CÂNCER e o TRÓPICO DE CAPRICÓRNIO é denominada ZONA TROPICAL ou ZONA TÓRRIDA. A zona limitada pelo CÍRCULO POLAR ÁRTICO e o PÓLO NORTE é denominada ZONA POLAR NORTE ou ZONA ÁRTICA. A zona limitada pelo CÍRCULO POLAR ANTÁRTICO e o PÓLO SUL é denominada ZONA POLAR SUL ou ZONA ANTÁRTICA. Entre as ZONAS TROPICAL e POLAR, estende-se a ZONA TEMPERADA. Na ZONA TROPICAL os dias pouco divergem das noites em duração, sendo rigorosamente iguais na linha do Equador (esfera reta). O Sol culmina no Zênite todas as vezes em que a Declinação e a Latitude são de nomes iguais e de iguais valores numéricos. As estações pouco se diferenciam. Nas ZONAS TEMPERADAS o Sol não culmina no Zênite em nenhum dia do ano, porque jamais a Declinação e a Latitude poderão ter valores numéricos iguais. As estações são bem caracterizadas. A diferença de duração do dia e da noite pode ser considerável. Nas ZONAS POLARES o Sol torna-se periodicamente um astro circumpolar visível ou invisível. O período durante o qual o Sol permanece acima do Horizonte chama-se DIA POLAR. No Pólo Norte ou Sul, o dia polar deveria durar 6 meses e a noite polar os outros 6 meses. Em conseqüência do fenômeno do crepúsculo, a noite polar completa reduz-se a cerca de 4 meses somente, ficando o período em que há luminosidade (dia polar + duração do crepúsculo) com os 8 meses restantes. O Sol, para um observador no Pólo Sul, aparece no Horizonte no primeiro dia da primavera (23 de setembro, aproximadamente), permanecendo visível até o primeiro dia do outono (20 de março, aproximadamente), quando, então, desaparece abaixo do Horizonte, por um período de 6 meses. 588

SISTEMAS DE 18 COORDENADAS UTILIZADOS EM ASTRONOMIA NÁUTICA E NAVEGAÇÃO ASTRONÔMICA

SISTEMAS DE 18 COORDENADAS UTILIZADOS EM ASTRONOMIA NÁUTICA E NAVEGAÇÃO ASTRONÔMICA SISTEMAS DE 18 COORDENADAS UTILIZADOS EM ASTRONOMIA NÁUTICA E NAVEGAÇÃO ASTRONÔMICA 18.1 CONCEITOS FUNDAMENTAIS Conforme visto no capítulo anterior, para determinar a posição de qualquer ponto na superfície

Leia mais

Movimentos da Terra e suas consequências

Movimentos da Terra e suas consequências Movimentos da Terra e suas consequências Movimentos da Terra A Terra descreve, como todos os outros planetas principais do Sistema Solar: Movimento de rotação movimento em torno de si própria, em volta

Leia mais

Introdução À Astronomia e Astrofísica 2010

Introdução À Astronomia e Astrofísica 2010 CAPÍTULO 1 ESFERA CELESTE E O SISTEMA DE COORDENADAS Esfera Celeste. Sistema de Coordenadas. Coordenadas Astronómicas. Sistema Horizontal. Sistema Equatorial Celeste. Sistema Equatorial Horário. Tempo

Leia mais

Movimento Annual do Sol, Fases da Lua e Eclipses

Movimento Annual do Sol, Fases da Lua e Eclipses Movimento Annual do Sol, Fases da Lua e Eclipses FIS02010 Professora Ana Chies Santos IF/UFRGS https://anachiessantos.wordpress.com/ensino/fis02010/ Facebook #AstroUFRGS Relembrando... Sistemas de Coordenadas

Leia mais

ENSINO MÉDIO 01 - PLANETA TERRA FORMA E MOVIMENTO

ENSINO MÉDIO 01 - PLANETA TERRA FORMA E MOVIMENTO ENSINO MÉDIO 01 - PLANETA TERRA FORMA E MOVIMENTO QUESTÃO 01 - Sobre as características gerais dos movimentos terrestres, julgue os itens: a) É incorreto dizer que o Sol nasce a leste e se põe a oeste,

Leia mais

Introdução À Astronomia e Astrofísica 2010

Introdução À Astronomia e Astrofísica 2010 CAPÍTULO 3 ESTAÇÕES DO ANO E INSOLAÇÃO SOLAR. Movimento Anual do Sol e as Estações do Ano. Estação em diferentes latitudes. Insolação Solar. Recapitulando a aula anterior: Capítulo 2 Trigonometria Esférica

Leia mais

Movimentos da Terra PPGCC FCT/UNESP. Aulas EGL 2016 João Francisco Galera Monico unesp

Movimentos da Terra PPGCC FCT/UNESP. Aulas EGL 2016 João Francisco Galera Monico unesp Movimentos da Terra PPGCC FCT/UNESP Aulas EGL 2016 João Francisco Galera Monico Terra Movimentos da Terra Cientificamente falando, a Terra possui um único movimento. Dependendo de suas causas, pode ser

Leia mais

Movimento Anual do Sol, Fases da Lua e Eclipses

Movimento Anual do Sol, Fases da Lua e Eclipses Elementos de Astronomia Movimento Anual do Sol, Fases da Lua e Eclipses Rogemar A. Riffel Sol, Terra e Lua Movimento Diurno do Sol Relembrando a aula passada De leste para oeste; O círculo diurno do Sol

Leia mais

Sistema Sol-Terra-Lua

Sistema Sol-Terra-Lua Sistema Sol-Terra-Lua Parte 1 As estações do ano Parte 2 As fases da Lua Parte 3 Eclipses Parte 4 - Marés 1 Parte 1 As estações do ano A latitudes medianas (como a nossa) há variações significativas de

Leia mais

Sistemas de coordenadas e tempo. 1 Sistema de coordenadas horizontal local

Sistemas de coordenadas e tempo. 1 Sistema de coordenadas horizontal local José Laurindo Sobrinho Grupo de Astronomia da Universidade da Madeira Fevereiro 2014 Sistemas de coordenadas e tempo 1 Sistema de coordenadas horizontal local O sistema de coordenadas horizontal local

Leia mais

Estações do Ano e Fases da Lua

Estações do Ano e Fases da Lua ESPECIALIZAÇAO EM CIÊNCIAS E TECNOLOGIAS NA EDUCAÇÃO Estações do Ano e Fases da Lua Prof. Nelson Luiz Reyes Marques Movimentos da Terra Quais são os movimentos da Terra? 1. Rotação 2. Revolução 3. Precessão

Leia mais

Leis de Newton e Forças Gravitacionais

Leis de Newton e Forças Gravitacionais Introdução à Astronomia Leis de Newton e Forças Gravitacionais Rogério Riffel Leis de Newton http://www.astro.ufrgs.br/bib/newton.htm Newton era adepto das ideias de Galileo. Galileo: Um corpo que se move,

Leia mais

Para ajudá-los nos estudos, após resolver o exercício de revisão faça a correção a partir deste documento. Bons Estudos!

Para ajudá-los nos estudos, após resolver o exercício de revisão faça a correção a partir deste documento. Bons Estudos! EXERCÍCIO DE REVISÃO - GEOGRAFIA 6º ano Profª. Ms. Graziella Fernandes de Castro Queridos alunos, Para ajudá-los nos estudos, após resolver o exercício de revisão faça a correção a partir deste documento.

Leia mais

Questão 01) A linha imaginária que circula a Terra a 23 27 de latitude norte denomina-se:

Questão 01) A linha imaginária que circula a Terra a 23 27 de latitude norte denomina-se: Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Anderson José Soares Série: 1º Disciplina: GEOGRAFIA Data da prova: 22/02/14 Questão 01) A linha imaginária que circula a Terra

Leia mais

RESUMO O trabalho apresenta resultados de um estudo sobre o texto A Geometria do Globo Terrestre

RESUMO O trabalho apresenta resultados de um estudo sobre o texto A Geometria do Globo Terrestre Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 43 O ÂNGULO DE ELEVAÇÃO DO SOL E A ENERGIA SOLAR Antonio da Silva Gomes Júnior 1, José Paulo Rodrigues da Silveira,

Leia mais

RADIAÇÃO SOLAR E TERRESTRE. Capítulo 3 Meteorologia Básica e Aplicações (Vianello e Alves)

RADIAÇÃO SOLAR E TERRESTRE. Capítulo 3 Meteorologia Básica e Aplicações (Vianello e Alves) RADIAÇÃO SOLAR E TERRESTRE Capítulo 3 Meteorologia Básica e Aplicações (Vianello e Alves) INTRODUÇÃO A Radiação Solar é a maior fonte de energia para a Terra, sendo o principal elemento meteorológico,

Leia mais

ÓRBITA ILUMINADA HU F 152/ NT4091

ÓRBITA ILUMINADA HU F 152/ NT4091 ÓRBITA ILUMINADA HU F 152/ NT4091 INTRODUÇÃO Trata-se de um modelo científico de trabalho, representando o Sol, a Terra e a Lua, e mostrando como estes se relacionam entre si. Foi concebido para mostrar

Leia mais

Prof. Franco Augusto

Prof. Franco Augusto Prof. Franco Augusto Astros São corpos que giram no espaço, classificados de acordo com a luminosidade. Iluminados ou opacos não possuem luz própria, recebendo luz das estrelas. São os planetas, asteroides,

Leia mais

Planetário de pobre. Introdução. Materiais Necessários. Vamos simular e entender o movimento da abóbada celeste com uma montagem simples e barata.

Planetário de pobre. Introdução. Materiais Necessários. Vamos simular e entender o movimento da abóbada celeste com uma montagem simples e barata. dução Vamos simular e entender o movimento da abóbada celeste com uma montagem simples e barata. Retirado de Rodolfo Caniato, O Céu, ed. Ática, 1990. Cadastrada por Lucas Assis Material - onde encontrar

Leia mais

Qual o motivo das estações do ano?

Qual o motivo das estações do ano? Qual o motivo das estações do ano? Estações do Ano: W Início da Primavera 23 set Hemisfério Sul Início do Inverno 22 jun Início do Verão 22 dez g Início do Outono 21 mar Estações do Ano: Hemisfério Norte

Leia mais

Faculdade de Administração e Negócios de Sergipe

Faculdade de Administração e Negócios de Sergipe Faculdade de Administração e Negócios de Sergipe Disciplina: Física Geral e Experimental III Curso: Engenharia de Produção Assunto: Gravitação Prof. Dr. Marcos A. P. Chagas 1. Introdução Na gravitação

Leia mais

Elementos de Astronomia

Elementos de Astronomia Elementos de Astronomia Astronomia Antiga, Esfera Celeste, Coordenadas e Movimento Diurno dos Astros Rogemar A. Riffel Sala 1316 e-mail: rogemar@ufsm.br http://www.ufsm.br/rogemar/ensino.html Por que estudar

Leia mais

Unidade IX: Gravitação Universal

Unidade IX: Gravitação Universal Página 1 de 5 Unidade IX: Gravitação Universal 9.1 Introdução: Até o século XV, o homem concebia o Universo como um conjunto de esferas de cristal, com a Terra no centro. Essa concepção do Universo, denominada

Leia mais

Introdução À Astronomia e Astrofísica 2010

Introdução À Astronomia e Astrofísica 2010 CAPÍTULO 7 ÓRBITA DOS PLANETAS. LEIS DE KEPLER E DE NEWTON. Movimento dos Planetas. O Modelo Geocêntrico. O Modelo Heliocêntrico. Leis de Kepler. Isaac Newton e Suas Leis. Recapitulando as aulas anteriores:

Leia mais

Astronomia/Kepler. As hipóteses de Kepler [editar] Colaborações com Tycho Brahe [editar]

Astronomia/Kepler. As hipóteses de Kepler [editar] Colaborações com Tycho Brahe [editar] Astronomia/Kepler < Astronomia Astronomia Uma das importantes personagens da Astronomia foi Johannes Kepler.. Como muitos astrônomos de sua época, Kepler era também um astrólogo e uma de suas crenças fundamentais

Leia mais

As estações do ano acontecem por causa da inclinação do eixo da Terra em relação ao Sol. O movimento do nosso planeta em torno do Sol, dura um ano.

As estações do ano acontecem por causa da inclinação do eixo da Terra em relação ao Sol. O movimento do nosso planeta em torno do Sol, dura um ano. PROFESSORA NAIANE As estações do ano acontecem por causa da inclinação do eixo da Terra em relação ao Sol. O movimento do nosso planeta em torno do Sol, dura um ano. A este movimento dá-se o nome de movimento

Leia mais

www.google.com.br/search?q=gabarito

www.google.com.br/search?q=gabarito COLEGIO MÓDULO ALUNO (A) série 6 ano PROFESSOR GABARITO DA REVISÃO DE GEOGRAFIA www.google.com.br/search?q=gabarito QUESTÃO 01. a) Espaço Geográfico RESPOSTA: representa aquele espaço construído ou produzido

Leia mais

NASCER E PÔR-DO-SOL E DA LUA. CREPÚSCULOS

NASCER E PÔR-DO-SOL E DA LUA. CREPÚSCULOS 24 NASCER E PÔR-DO-SOL E DA LUA. CREPÚSCULOS 24.1 IMPORTÂNCIA DO CONHECIMENTO DOS INSTANTES DO NASCER E DO PÔR-DO-SOL E DA LUA, E DA DURAÇÃO DOS CREPÚSCULOS Em Navegação Astronômica, é importante conhecer

Leia mais

www.enemdescomplicado.com.br

www.enemdescomplicado.com.br Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

Unidade IX: Gravitação Universal

Unidade IX: Gravitação Universal Colégio Santa Catarina Unidade IX: Gravitação Universal 143 Unidade IX: Gravitação Universal 9.1 Introdução: Até o século XV, o homem concebia o Universo como um conjunto de esferas de cristal, com a Terra

Leia mais

SESSÃO 5: DECLINAÇÃO SOLAR AO LONGO DO ANO

SESSÃO 5: DECLINAÇÃO SOLAR AO LONGO DO ANO SESSÃO 5: DECLINAÇÃO SOLAR AO LONGO DO ANO Respostas breves: 1.1) 9,063 N 1.2) norte, pois é positiva. 1.3) São José (Costa Rica). 2) Não, porque Santa Maria não está localizada sobre ou entre os dois

Leia mais

Relações Astronômicas Terra - Sol

Relações Astronômicas Terra - Sol Universidade de São Paulo Departamento de Geografia FLG 0253 - Climatologia I Relações Astronômicas Terra - Sol Prof. Dr. Emerson Galvani Laboratório de Climatologia e Biogeografia LCB Radiação Solar -

Leia mais

Respostas - Exercícios de rotação e translação

Respostas - Exercícios de rotação e translação Respostas - Exercícios de rotação e translação 1) "Durante a minha vida inteira me fiz essas perguntas: Existe vida além da Terra? Se existe, como se parece? De que é feita? Os seres de outros mundos se

Leia mais

I Seminário SIGCidades: Cadastro Territorial Multifinalitário. Fundamentos de Cartografia aplicados aos SIGs

I Seminário SIGCidades: Cadastro Territorial Multifinalitário. Fundamentos de Cartografia aplicados aos SIGs I Seminário SIGCidades: Cadastro Territorial Multifinalitário Fundamentos de Cartografia aplicados aos SIGs 1. FORMA DA TERRA Geóide Elipsóide Esfera Modelos de representação da Terra O modelo que mais

Leia mais

Aula 1. O Sistema Solar e o Planeta Terra. Disciplina: Geografia A Profª.: Tamara Régis

Aula 1. O Sistema Solar e o Planeta Terra. Disciplina: Geografia A Profª.: Tamara Régis Aula 1. O Sistema Solar e o Planeta Terra. Disciplina: Geografia A Profª.: Tamara Régis A origem do Universo A teoria do Big Bang foi anunciada em 1948 pelo cientista russo naturalizado estadunidense,

Leia mais

COLÉGIO SÃO JOSÉ PROF. JOÃO PAULO PACHECO GEOGRAFIA 1 EM 2011

COLÉGIO SÃO JOSÉ PROF. JOÃO PAULO PACHECO GEOGRAFIA 1 EM 2011 COLÉGIO SÃO JOSÉ PROF. JOÃO PAULO PACHECO GEOGRAFIA 1 EM 2011 O Sol e a dinâmica da natureza. O Sol e a dinâmica da natureza. Cap. II - Os climas do planeta Tempo e Clima são a mesma coisa ou não? O que

Leia mais

Figura 1 - O movimento da Lua em torno da Terra e as diferentes fases da Lua

Figura 1 - O movimento da Lua em torno da Terra e as diferentes fases da Lua Estudo do Meio Físico e Natural I Movimentos reais e aparentes dos astros J. L. G. Sobrinho Centro de Ciências Exactas e da Engenharia Universidade da Madeira A Lua e a Terra A Lua está a sempre visível

Leia mais

COLÉGIO JOÃO PAULO I GEOGRAFIA - EXERCÍCIOS 1ª PARCIAL V2 1ª SÉRIE

COLÉGIO JOÃO PAULO I GEOGRAFIA - EXERCÍCIOS 1ª PARCIAL V2 1ª SÉRIE COLÉGIO JOÃO PAULO I GEOGRAFIA - EXERCÍCIOS 1ª PARCIAL V2 1ª SÉRIE Professor(a): Richard QUESTÃO 1 Considere a reprodução da obra intitulada La Escuela del Sur de autoria de Joaquin Torres García, artista

Leia mais

O PROBLEMA GERAL DA NAVEGAÇÃO

O PROBLEMA GERAL DA NAVEGAÇÃO 1 O PROBLEMA GERAL DA NAVEGAÇÃO 1.1 DEFINIÇÃO; FORMAS; SEQÜÊNCIA BÁSICA DAS ATIVIDADES Entre as várias definições de navegação, uma que apresenta com precisão os principais aspectos envolvidos na questão

Leia mais

Hoje adota novas tecnologias no posicionamento geodésico, como por exemplo o Sistema de Posicionamento Global (GPS)

Hoje adota novas tecnologias no posicionamento geodésico, como por exemplo o Sistema de Posicionamento Global (GPS) Geodésia A Geodésia é uma ciência que se ocupa do estudo da forma e tamanho da Terra no aspecto geométrico e com o estudo de certos fenômenos físicos relativos ao campo gravitacional terrestre, visando

Leia mais

NOÇÕES DE COSMOGRAFIA RELAÇÕES ASTRONÔMICAS ENTRE A TERRA E O SOL

NOÇÕES DE COSMOGRAFIA RELAÇÕES ASTRONÔMICAS ENTRE A TERRA E O SOL UIVERIDADE FEDERAL DE LAVRA DEPARTAMETO DE EGEHARIA ÚCLEO DE AGROMETEOROLOGIA E CLIMATOLOGIA GE109 Agrometeorologia OÇÕE DE COMOGRAFIA RELAÇÕE ATROÔMICA ETRE A TERRA E O OL Prof. Antônio Augusto Aguilar

Leia mais

COMBINAÇÃO DOS SISTEMAS DE COORDENADAS UTILIZADOS EM NAVEGAÇÃO ASTRONÔMICA. O TRIÂNGULO ASTRONÔMICO OU TRIÂNGULO DE POSIÇÃO

COMBINAÇÃO DOS SISTEMAS DE COORDENADAS UTILIZADOS EM NAVEGAÇÃO ASTRONÔMICA. O TRIÂNGULO ASTRONÔMICO OU TRIÂNGULO DE POSIÇÃO COMBINAÇÃO DOS SISTEMAS DE COORDENADAS UTILIZADOS EM NAVEGAÇÃO ASTRONÔMICA. O TRIÂNGULO ASTRONÔMICO OU TRIÂNGULO DE POSIÇÃO 20 20.1 PROCESSO DE OBTENÇÃO DE LINHAS DE POSIÇÃO (LDP) E DE UMA POSIÇÃO ASTRONÔMICA

Leia mais

Coordenadas Geográficas

Coordenadas Geográficas Orientação A rosa-dos-ventos possibilita encontrar a direção de qualquer ponto da linha do horizonte. Por convenção internacional, a língua inglesa é utilizada como padrão, portanto o Leste muitas vezes

Leia mais

A Geometria no Globo Terrestre.

A Geometria no Globo Terrestre. A Geometria no Globo Terrestre. 1. Introdução. Neste trabalho pretendemos desenvolver o estudo da esfera e seus elementos explorando sua associação com o globo terrestre. O estudo da posição relativa de

Leia mais

Podemos considerar a elipse como uma circunferência achatada. Para indicar o maior ou menor achatamento, definimos a excentricidade:

Podemos considerar a elipse como uma circunferência achatada. Para indicar o maior ou menor achatamento, definimos a excentricidade: Leis de Kepler Considerando um referencial fixo no Sol, por efeito da lei da gravitação universal, o movimento dos planetas ao redor do Sol acontece segundo as três leis de Kepler. Na verdade, as leis

Leia mais

Aula 04 Medidas de tempo

Aula 04 Medidas de tempo Aula 04 Medidas de tempo O que é tempo? Os fenômenos astronômicos são periódicos e regulares: tornaram-se os primeiros relógios. E foram os relógios mais precisos até a construção dos relógios atômicos

Leia mais

Ano: 6º Turma: 6.1 / 6.2

Ano: 6º Turma: 6.1 / 6.2 COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 2ª Etapa 2014 Disciplina: Geografia Professor (a): Fernando Parente Ano: 6º Turma: 6.1 / 6.2 Caro aluno, você está recebendo o conteúdo

Leia mais

Desempenho Térmico de edificações Aula 5: Orientação e Diagrama Solar

Desempenho Térmico de edificações Aula 5: Orientação e Diagrama Solar Desempenho Térmico de edificações Aula 5: Orientação e Diagrama Solar PROFESSOR Roberto Lamberts ECV 5161 UFSC FLORIANÓPOLIS estrutura Introdução Movimentos da terra Diagramas solares Análises de proteções

Leia mais

Introdução à Astrofísica. As Leis de Kepler. eclipse.txt. Rogemar A. Riffel

Introdução à Astrofísica. As Leis de Kepler. eclipse.txt. Rogemar A. Riffel Introdução à Astrofísica As Leis de Kepler Rogemar A. Riffel Teoria heliocêntrica A Teoria Heliocêntrica conseguiu dar explicações mais simples e naturais para os fenômenos observados Movimento retrógrado

Leia mais

Encontrando o seu lugar na Terra

Encontrando o seu lugar na Terra Encontrando o seu lugar na Terra A UU L AL A Nesta aula vamos aprender que a Terra tem a forma de uma esfera, e que é possível indicar e localizar qualquer lugar em sua superfície utilizando suas coordenadas

Leia mais

A Escola e o Relógio de Sol Resumo

A Escola e o Relógio de Sol Resumo Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática A Escola e o Relógio de Sol Resumo Autora: Raquel Duarte de Souza Orientador: Prof. Dr. José Antônio

Leia mais

Aula 18 Elipse. Objetivos

Aula 18 Elipse. Objetivos MÓDULO 1 - AULA 18 Aula 18 Elipse Objetivos Descrever a elipse como um lugar geométrico. Determinar a equação reduzida da elipse no sistema de coordenadas com origem no ponto médio entre os focos e eixo

Leia mais

SISTEMA SOLAR TERRA, SOL E LUA

SISTEMA SOLAR TERRA, SOL E LUA SISTEMA SOLAR TERRA, SOL E LUA Apresentado por Thays Barreto Março de 2014 TERRA TERRA Terceiro planeta do Sistema Solar, pela ordem de afastamento do Sol; Diâmetro equatorial: 12.756 Km; Diâmetro polar:

Leia mais

ASTRO 3D: UMA FERRAMENTA PARA O ENSINO DE ASTRONOMIA

ASTRO 3D: UMA FERRAMENTA PARA O ENSINO DE ASTRONOMIA 0 ASTRO 3D: UMA FERRAMENTA PARA O ENSINO DE ASTRONOMIA Eliza M. Silva 1, Rafael B. Botelho, Artur Justiniano, Paulo A. Bresan. Universidade Federal de Alfenas UNIFAL-MG Resumo O Ensino de Astronomia está

Leia mais

ORIENTAÇÃO E LOCALIZAÇÃO

ORIENTAÇÃO E LOCALIZAÇÃO ORIENTAÇÃO E LOCALIZAÇÃO Para se orientar o homem teve de desenvolver sua capacidade de observação. Observando a natureza o homem percebeu que o Sol aparece todas as manhãs aproximadamente, num mesmo lado

Leia mais

Aula 1. Atividades. V. A cartografia é a arte que tem o interesse de explicar a origem do planeta Terra. Estão corretas: e) II, IV e V.

Aula 1. Atividades. V. A cartografia é a arte que tem o interesse de explicar a origem do planeta Terra. Estão corretas: e) II, IV e V. Aula 1 1. Atividades A palavra cartografia é relativamente nova, sendo utilizada pela primeira vez em 8 de dezembro de 1839. Seu uso aconteceu na carta escrita em Paris, enviada pelo português Visconde

Leia mais

As Fases da Lua iluminado pela luz do Sol A fase da lua representa o quanto dessa face iluminada pelo Sol está voltada também para a Terra

As Fases da Lua iluminado pela luz do Sol A fase da lua representa o quanto dessa face iluminada pelo Sol está voltada também para a Terra As Fases da Lua À medida que a Lua viaja ao redor da Terra ao longo do mês, ela passa por um ciclo de fases, durante o qual sua forma parece variar gradualmente. O ciclo completo dura aproximadamente 29,5

Leia mais

Plataforma Equatorial

Plataforma Equatorial Projecto Com a Cabeça na Lua OASA - Observatório Astronómico de Santana Açores Plataforma Equatorial Princípios fundamentais Utilização das Coordenadas Astronómicas Em geometria, sabemos que um sistema

Leia mais

ASTRONOMIA NO DIA-A-DIA Dr. André Milone

ASTRONOMIA NO DIA-A-DIA Dr. André Milone ASTRONOMIA NO DIA-A-DIA Dr. André Milone Divisão de Astrofísica (DAS) Curso de Introdução à Astronomia e Astrofísica 2009 ROTEIRO GERAL Fenômenos astronômicos no dia-a-dia Movimentos da Terra heliocentrismo

Leia mais

Conteúdo: Aula 1: Movimentos da Terra: movimento de Translação e as estações do ano. Aula 2: Solstícios e Equinócios FORTALECENDO SABERES

Conteúdo: Aula 1: Movimentos da Terra: movimento de Translação e as estações do ano. Aula 2: Solstícios e Equinócios FORTALECENDO SABERES A Conteúdo: Aula 1: Movimentos da Terra: movimento de Translação e as estações do ano. Aula 2: Solstícios e Equinócios 2 A Habilidades: Aula 1: Entender como ocorre o movimento de Translação da Terra e

Leia mais

Introdução À Astronomia e Astrofísica 2010

Introdução À Astronomia e Astrofísica 2010 CAPÍTULO 5 LUA E SUAS FASES. ECLIPSES. Lua. Fases da Lua. Sombra de um Corpo Extenso. Linha dos Nodos. Eclipses do Sol. Eclipses da Lua. Temporada de Eclipses. Saros. Recapitulando a aula anterior: Capítulo

Leia mais

A HORA PELO MUNDO. Inicial

A HORA PELO MUNDO. Inicial Inicial Até o final do século XIX, cada cidade utilizava um sistema de horas exclusivo, baseado no momento em que o Sol atingia o ponto mais alto no céu. Nesse instante, era meio-dia na cidade. A marcação

Leia mais

Apostila de Física 28 Gravitação Universal

Apostila de Física 28 Gravitação Universal Apostila de Física 28 Gravitação Universal 1.0 História Astrônomo grego Cláudio Ptolomeu (87-150): Sistema planetário geocêntrico A Terra é o centro do universo. A Lua e o Sol descreveriam órbitas circulares

Leia mais

MOVIMENTOS DA TERRA e FUSOS HORÁRIOS

MOVIMENTOS DA TERRA e FUSOS HORÁRIOS MOVIMENTOS DA TERRA e FUSOS HORÁRIOS MOVIMENTO DE ROTAÇÃO Movimento que a Terra realiza ao redor do seu próprio eixo de oeste para leste com duração aproximada de 24 horas (23h, 56 e 4 ). MOVIMENTO DE

Leia mais

27 Tolerância geométrica

27 Tolerância geométrica A U A UL LA Tolerância geométrica de posição Um problema Como se determina a tolerância de posição de peças conjugadas para que a montagem possa ser feita sem a necessidade de ajustes? Essa questão é abordada

Leia mais

A figura da Terra. Da esfera ao Geóide (passando pelo elipsóide)

A figura da Terra. Da esfera ao Geóide (passando pelo elipsóide) A figura da Terra Da esfera ao Geóide (passando pelo elipsóide) Uma primeira aproximação: a Terra esférica Esfera: Superfície curva fechada cujos pontos se encontram todos a igual distância, R, de um ponto

Leia mais

Atividade Geografia 5º ano Unidade 1

Atividade Geografia 5º ano Unidade 1 1. Encontre no caça palavras alguns astros do sistema solar. A S D F G B N J R M E R C U R I O E W G Y U I O P W T E R R A H X Z Y O C A D G H J E W T Y U E R T Y U I S P A F E R B A R A I E D S F R G

Leia mais

Engenharia Civil Topografia e Geodésia. Curso Técnico em Edificações Topografia GEODÉSIA

Engenharia Civil Topografia e Geodésia. Curso Técnico em Edificações Topografia GEODÉSIA e Geodésia GEODÉSIA e Geodésia GEODÉSIA O termo Geodésia, em grego Geo = terra, désia = 'divisões' ou 'eu divido', foi usado, pela primeira vez, por Aristóteles (384-322 a.c.), e pode significar tanto

Leia mais

PAUTA DO DIA. Acolhida Revisão Interatividades Intervalo Avaliação

PAUTA DO DIA. Acolhida Revisão Interatividades Intervalo Avaliação PAUTA DO DIA Acolhida Revisão Interatividades Intervalo Avaliação REVISÃO 1 Astronomia Ciência que estuda os astros e os fenômenos relacionados a eles. REVISÃO 1 Relaciona os fenômenos celestes aos fatos

Leia mais

APOSTILA DE GRAVITAÇÃO. Johannes Kepler (1571-1630)

APOSTILA DE GRAVITAÇÃO. Johannes Kepler (1571-1630) APOSTILA DE GRAVITAÇÃO Johannes Kepler (1571-1630) Astrônomo alemão, publicou sua primeira obra, "Mysterium Cosmographicum", em 1596, na qual se manifesta pela primeira vez a favor da teoria heliocêntrica

Leia mais

Material de apoio para o exame final

Material de apoio para o exame final Professor Rui Piassini Geografia 1ºEM Material de apoio para o exame final Questão 01) Um transatlântico, navegando pelo Oceano Índico, cruza o Trópico de Capricórnio e segue do Sul para o Norte. Observando

Leia mais

Exercícios de Física Gravitação Universal

Exercícios de Física Gravitação Universal Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

CONSTRUIR E UTILIZAR UM ASTROLÁBIO SIMPLES

CONSTRUIR E UTILIZAR UM ASTROLÁBIO SIMPLES CONSTRUIR E UTILIZAR UM ASTROLÁBIO SIMPLES INTRODUÇÃO O astrolábio é um instrumento que serve para medir ângulos. Foi bastante utilizado no passado por exemplo pelos navegadores do tempo dos Descobrimentos

Leia mais

1. Completa os espaços em branco de forma a obter afirmações verdadeiras.

1. Completa os espaços em branco de forma a obter afirmações verdadeiras. Agrupamento de Escolas Anselmo de Andrade Teste de Ciências Físico - Químicas 7.º Ano Ano Lectivo 08/09 Duração do Teste: 70 minutos Data: 05 / 01 / 09 Prof. Dulce Godinho Nome N.º Turma Prof. Classificação

Leia mais

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem.

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. TRIDIMENSIONALIDADE O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. As formas tridimensionais são aquelas que têm

Leia mais

LATITUDE, LONGITUDE E GPS

LATITUDE, LONGITUDE E GPS LATITUDE, LONGITUDE E GPS Anselmo Lazaro Branco* ENTENDA O QUE É LATITUDE, LONGITUDE, E COMO FUNCIONA UM APARELHO DE GPS. GPS O GPS é um aparelho digital de localização, que determinada a posição exata

Leia mais

Exercícios de Física Gravitação Universal

Exercícios de Física Gravitação Universal Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

2. (UFRN) Analise a figura abaixo e assinale a opção que corresponde, respectivamente, às coordenadas geográficas dos pontos X e Z.

2. (UFRN) Analise a figura abaixo e assinale a opção que corresponde, respectivamente, às coordenadas geográficas dos pontos X e Z. Lista de exercícios de Coordenadas Geográficas Professor: Jair Henrique 1.Examine atentamente as sentenças a seguir e assinale o grupo das que lhe parecerem corretas. 1 - Paralelamente ao Equador ficam

Leia mais

Cap. 2 Mecânica do Sistema Solar I

Cap. 2 Mecânica do Sistema Solar I Cap. 2 Mecânica do Sistema Solar I Nosso Lugar no Universo 1 min luz = 1,798 x 10 7 km 1 ano-luz = 9.460.800.000.000.00 Km ~10 12 km 100.000 a.l. = 946073047258080000 km = 9.46 x 10 17 km Observando o

Leia mais

ASTRONOMIA NO DIA A DIA

ASTRONOMIA NO DIA A DIA ASTRONOMIA NO DIA A DIA Dr. André Milone Divisão de Astrofísica (DAS) Curso de Introdução à Astronomia e Astrofísica 2013 Astronomia no dia a dia Qual é a forma e movimentos da Terra? O Metro e o Segundo

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

Os Movimentos da Terra

Os Movimentos da Terra Os Movimentos da Terra Terra Diâmetro Não é uma esfera perfeita erra 12.756 km Na linha do Equador Achatada nos polos que são atravessados pelo eixo imaginário da Terra. Nas imagens de satélite, mal se

Leia mais

Centro Educacional Juscelino Kubitschek

Centro Educacional Juscelino Kubitschek Centro Educacional Juscelino Kubitschek ALUNO: N.º: DATA: / /2011 ENSINO FUNDAMENTAL SÉRIE: 5ª SÉRIE / 6º ANO DISCIPLINA: GEOGRAFIA PROFESSOR: Equipe de Geografia CAROS ALUNOS (AS): Roteiro de Estudos

Leia mais

A NAVEGAÇÃO ASTRONÔMICA É SIMPLES?

A NAVEGAÇÃO ASTRONÔMICA É SIMPLES? A NAVEGAÇÃO ASTRONÔMICA É SIMPLES? 2005 Curso de Capitão o Amador: PROGRAMA E INSTRUÇÕES GERAIS PARA O EXAME DE CAPITÃO O exame para a categoria de Capitão Amador constará de uma prova escrita, com duração

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

Insígnia de Competência de Astrónomo Alguns apontamentos para Exploradores

Insígnia de Competência de Astrónomo Alguns apontamentos para Exploradores Insígnia de Competência de Astrónomo Alguns apontamentos para Exploradores 1 Conhecer a influência do sol, terra e lua nas estações do ano (exs: culturas, flores, frutos, árvores, entre outros) 2 Conhecer

Leia mais

EngEnhArIA CaRToGRáFiCa Cartografia I 2º ano Esferas celeste e terrestre e seus elementos astronômicos e cartográficos

EngEnhArIA CaRToGRáFiCa Cartografia I 2º ano Esferas celeste e terrestre e seus elementos astronômicos e cartográficos EngEnhArIA CaRToGRáFiCa Cartografia I 2º ano Esferas celeste e terrestre e seus elementos astronômicos e cartográficos Prof. João Fernando Custodio da Silva Departamento de Cartografia www2.fct.unesp.br/docentes/carto/joaofernando

Leia mais

Sugestões de avaliação. Geografia 6 o ano Unidade 2

Sugestões de avaliação. Geografia 6 o ano Unidade 2 Sugestões de avaliação Geografia 6 o ano Unidade 2 5 Unidade 2 Nome: Data: 1. Preencha o quadro com as principais características do planeta Terra. Localização no Sistema Solar Formato Elementos presentes

Leia mais

Docente: Prof. Doutor Ricardo Cunha Teixeira Discentes: Carlos Silva Sara Teixeira Vera Pimentel

Docente: Prof. Doutor Ricardo Cunha Teixeira Discentes: Carlos Silva Sara Teixeira Vera Pimentel Docente: Prof. Doutor Ricardo Cunha Teixeira Discentes: Carlos Silva Sara Teixeira Vera Pimentel Sem a Matemática, não poderia haver Astronomia; sem os recursos maravilhosos da Astronomia, seria completamente

Leia mais

15 O sistema solar e seus planetas

15 O sistema solar e seus planetas A U A UL LA Atenção O sistema solar e seus planetas Leia com atenção as notícias abaixo, que apareceram em jornais de diferentes épocas. ANO DE 1781 CIENTISTAS DESCOBREM NOVO PLANETA De há quase 2.000

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 4 de junho de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 4 de junho de 2013 GRAVITAÇÃO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 4 de junho de 2013 Roteiro 1 Lei da Universal Roteiro Lei da Universal 1 Lei da Universal Motivação Lei da Universal Movimento

Leia mais

CORREÇÃO GEOGRAFIA - PROVA 1 1ª ETAPA 6º ANO

CORREÇÃO GEOGRAFIA - PROVA 1 1ª ETAPA 6º ANO CORREÇÃO GEOGRAFIA - PROVA 1 1ª ETAPA 6º ANO 1) Observe o quadro O Pescador (1931), de Tarsila do Amaral, e responda: a) A paisagem retratada pela artista é uma paisagem transformada ou preservada. Justifique

Leia mais

GABARITO DA PROVA OLÍMPICA DO NÍVEL II DA II OBA

GABARITO DA PROVA OLÍMPICA DO NÍVEL II DA II OBA 1. A astronomia estuda tudo que está fora da Terra, como por exemplo, os planetas, as estrelas, os cometas, as galáxias, as constelações, os movimentos destes corpos, etc. Para observar estes corpos basta

Leia mais

Forças Gravitacionais Diferenciais e Sistema Solar

Forças Gravitacionais Diferenciais e Sistema Solar Introdução à Astrofísica Forças Gravitacionais Diferenciais e Sistema Solar Rogemar A. Riffel Derivação da força diferencial A força gravitacional diferencial é a diferença entre as forcas exercidas em

Leia mais

Estações do ano e Ritmos da vida

Estações do ano e Ritmos da vida Estações do ano e Ritmos da vida Ana Paula Souto 2013 1) Você pretende se mudar para Cuiabá (MT) e, para isso, vai alugar uma casa de 1 (um) dormitório nessa cidade, conhecida pelo seu clima quente. Depois

Leia mais

Iluminação Natural. Construção de Diagramas Solares. Maio de 2007

Iluminação Natural. Construção de Diagramas Solares. Maio de 2007 Iluminação Natural Construção de Diagramas Solares Maio de 2007 arquitectura e artes do espectáculo lda. Rua Julião Quintinha, 1A tel: +351 217 157 502 email: etu@etu.pt 1500-381 Lisboa fax: +351 217 157

Leia mais

Mecânica do Sistema Solar

Mecânica do Sistema Solar Mecânica do Sistema Solar IFSP Vicente Barros Mais informações em Click to edit Masterhttp://astro.if.ufrgs.br/index.htm subtitle style Curiosidades - Posição da ISS http://spotthestation.nasa.gov/ Nosso

Leia mais

1- Durante o dia conseguimos ver apenas o brilho do Sol e não conseguimos ver o brilho de outras estrelas. Explique por que isso acontece.

1- Durante o dia conseguimos ver apenas o brilho do Sol e não conseguimos ver o brilho de outras estrelas. Explique por que isso acontece. Atividade de Estudo - Ciências 5º ano Nome: 1- Durante o dia conseguimos ver apenas o brilho do Sol e não conseguimos ver o brilho de outras estrelas. Explique por que isso acontece. 2- Cite uma semelhança

Leia mais

O céu. Aquela semana tinha sido uma trabalheira! www.interaulaclube.com.br

O céu. Aquela semana tinha sido uma trabalheira! www.interaulaclube.com.br A U A UL LA O céu Atenção Aquela semana tinha sido uma trabalheira! Na gráfica em que Júlio ganhava a vida como encadernador, as coisas iam bem e nunca faltava serviço. Ele gostava do trabalho, mas ficava

Leia mais

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU Movimento Retilíneo Uniforme (MRU) velocímetro do automóvel da figura abaixo marca sempre a mesma velocidade. Quando um móvel possui sempre a mesma velocidade e se movimenta sobre uma reta dizemos que

Leia mais