Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x.

Tamanho: px
Começar a partir da página:

Download "Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x."

Transcrição

1 4. EQUAÇÕES DIFERENCIAIS 4.: Defiição e coceitos básicos Defiição.: Uma equação diferecial ordiária é uma dy d y equação da forma f,,,, y = 0 ou d d ( ) f (, y, y,, y ) = 0, evolvedo uma fução icógita y = y( ) e algumas das suas derivadas em ordem a. Eemplos.: dy ) + y = 0; ) y + y = d ; 3) ( y ) d ( + y ) dy = 0. Defiição.3: Chama-se ordem da equação diferecial à maior das ordes das derivadas que ela aparecem. Por eemplo, - a equação diferecial y + = e é de primeira ordem; - a equação diferecial ( 9) y y = é de oa ordem; - a equação diferecial d dt s ds 3 + s = t é de seguda ordem. dt "Resolver" a equação diferecial cosiste em ecotrar fuções ( ) y = y que a satisfaçam.

2 Defiição.4: Chama-se solução de uma equação diferecial de ordem o itervalo I a uma fução g( ) y = defiida esse itervalo, jutamete com as suas derivadas, até à ordem, que satisfaz a equação diferecial, ou seja, f ( (, g( ), g ( ),, g ) ( ) ) = 0, I. Eemplo.5: Mostre que y = Ce é uma solução da equação y y = 0. Resolução: De y = Ce resulta que y = Ce. Substituido a equação dada as epressões de y e y, obtém-se Ce Ce = 0, pelo que a fução y = Ce satisfaz a equação diferecial dada, qualquer que seja o valor da costate arbitrária C. Eemplo.6: Mostre que a fução solução da equação y + y =. y 0 t = e e dt + C e é Resolução: De y 0 t = e e dt + C e resulta que y = e t ( ) e dt + e e + Ce, isto é, 0 y 0 t = e e dt + C e. Substituido as epressões y e y o º membro da equação diferecial, obteremos.

3 Defiição.7: Chama-se solução geral ou itegral geral de uma equação diferecial ordiária a toda a solução que evolva uma ou mais costates arbitrárias. Defiição.8: Chama-se solução particular ou itegral particular de uma equação diferecial ordiária a toda a solução obtida atribuido valores às costates arbitrárias da solução geral. Eemplo.9: A taa de desitegração (perda de massa) de uma substâcia radioactiva é proporcioal à massa que fica. Isto é, se d () t represeta a massa eistete um istate t, tem-se = k, dt sedo k uma costate positiva, característica da substâcia. Determie a massa eistete um istate t. Resolução: Vamos resolver a equação diferecial = k. Sedo > 0, vem d dt = k, isto é = k dt = kdt kt C kt l = kt + C = e e = e C. Esta solução () t, vem afectada duma costate arbitrária C, represetado assim uma família de fuções (soluções), ou kt seja, () t = e C é a solução geral da equação diferecial. 3

4 0k 0 Se ( 0 ) = tem-se: ( ) = e C C =. kt Logo, () t = e é uma solução particular, pois já ão evolve ehuma costate arbitrária. Defiição.0: Chamam-se codições iiciais as codições relativas à fução icógita e suas derivadas dadas para o mesmo valor da variável idepedete. Defiição.: Chamam-se codições de froteira as codições relativas à fução icógita e suas derivadas dadas para valores distitos da variável idepedete. Nota: A costate C deve-se à primitivação que foi ecessário fazer. É evidete que se a equação evolvesse derivadas até uma certa ordem, seria ecessário primitivar vezes, logo a solução geral evolveria costates arbitrárias. Neste caso, para obter uma solução particular seria ecessário cohecer codições. Eemplo.: Resolva a equação diferecial: y = 0 e idique a solução da equação que satisfaz as codições y () = 0 e ( 0) = y. Resolução: y = 0 y = y = + C y = + C + C. 4

5 y, vem afectada de duas costates arbitrárias represetado por isso uma família de fuções (soluções). Diz-se, por isso que ( ) + C C y = + é a solução geral da equação diferecial. y() = C 0 ( 0) = = y desejada., C. Como y ( ) = + C C. Logo ( ) = + 3 = y é a solução particular 4.: Equações difereciais de variáveis separadas e separáveis Defiição.: Uma equação diferecial de variáveis separadas é uma equação do tipo g ( y) dy = f ( ) d. MÉTODO DE RESOLUÇÃO A solução geral da equação diferecial de variáveis separadas obtém-se por primitivação de ambos os membros da equação, ou seja, ( y) dy f ( ) d C g = +. Defiição.: Chama-se equação de variáveis separáveis a uma equação do tipo ( ) h ( y) d f ( ) h ( y)dy f = a qual o coeficiete associado a cada diferecial se pode factorizar em fuções, depedetes só de ou só de y. 5

6 MÉTODO DE RESOLUÇÃO Dividido ambos os membros pelo produto ( ) h ( y) fica com as variáveis separadas ( ) ( ) f a equação ( y) ( y) dy f h d =. f h O itegral geral desta equação tem a forma f f ( ) ( ) h d = h ( y) ( y) dy + C Eercícios.3: Determie a solução geral das equações: dy. d (i) ( y ) y = ; (ii) ( + ) y = 0 Eercício.4: Calcule a solução particular da equação ( + e ) yy = e que satisfaz a codição iicial y ( 0 ) =. 4.3: Equações difereciais totais eactas: factor itegrate Defiição 3.: A equação diferecial M (, y) d + N(, y) dy = 0 diz-se total eacta se eistir uma fução g com derivadas parciais de ª ordem cotíuas tal que g (, y) = M (, y) g y e (, y) = N(, y). 6

7 Teorema 3.: Se M e N são fuções cotíuas com derivadas parciais cotíuas uma bola aberta do plao Oy etão a equação diferecial (, y) d + N(, y) dy = 0 M é total eacta se e só se y M, ( y ) ( y)= N,. Nota: O teorema aterior permite cocluir que, se M N, (, y ), etão a equação M (, y) d + N(, y) dy = 0 y ( y) ão é total eacta. MÉTODO DE RESOLUÇÃO Para resolver a equação diferecial total eacta (, y) d + N(, y) dy = 0 M devemos determiar a fução g que g satisfaça as equações (, y) = M (, y) g y e (, y) = N(, y) solução da equação diferecial é dada por g ( y) = C,.. A Nota: Em geral a equação diferecial M (, y) d + N(, y) dy = 0 ão é total eacta. Mas, por vezes, é possível trasformá-la uma equação diferecial total eacta mediate a multiplicação por um factor adequado. Defiição 3.3: Uma fução ( y) I, é um factor itegrate da equação diferecial (, y) d + N(, y) dy = 0 M se a equação diferecial (, y) ( M (, y) d + N(, y) dy) = 0 I for total eacta. 7

8 4.4: Equações difereciais lieares de ª ordem Defiição 4.: Chama-se equação diferecial liear de ª ordem a uma equação da forma y + P( ) y = Q( ) fuções cotíuas de um certo domíio ode P e Q são D IR. É usual desigar por equação completa aquela em que Q ( ) 0 equato que a equação se chama homogéea, se Q ( ) = 0 A resolução destas equações pode equadrar-se em casos já estudados. Se Q ( ) = 0 Se ( ) 0, a equação é de variáveis separáveis. Q a equação admite um factor itegrate fução só P( ) d I, = e. de, ( y) MÉTODO DE RESOLUÇÃO º - Determiar o factor itegrate ( y) P( ) d I, = e ; º - Multiplicar a equação diferecial por este factor itegrate, isto é e P ( ) d P( ) ( y + P( ) y) = e d Q( ) ; () 3º - Notar que o º membro da equação () é igual a d d P( ) d ye ; 4º - Itegrar ambos os membros em ordem a, ou seja, ( ) P( ) d = e d. P d ye Q( ) 8

9 Eercício 4.: Determie a solução geral das equações: () dy d 3 y = ; () ( + ) dy + ( y + + ) d = : Trasformadas de Laplace. Defiição e propriedades. Defiição 5.: Seja f uma fução real de variável real tal que + f () t = 0 se t < 0. Se eistir o itegral impróprio e st f ()dt t, ode s é um úmero real, a este itegral chamamos trasformada de Laplace de f e represeta-se por L { f () t. Eemplo 5.: Use a defiição para calcule { Nota: () A trasformada de Laplace { f ( t) 0 L e { e t L. L de f é uma fução + de s, ou seja, L { f () t = e st f ()dt t 0 ( s) = F. () A trasformada de Laplace { f ( t) L eiste se o itegral impróprio + e st 0 f ()dt t for covergete. 9

10 Defiição 5.3: Uma fução f, real de variável real, diz-se seccioalmete cotíua o itervalo [ a, b], se for defiida em [ a, b] ecepto possivelmete um úmero fiito de potos i, i =,, com a < < <... < < < b, f é cotíua em cada sub-itervalo da forma ] a [, ], [,, ], b[, fiitos os limites laterais em cada poto i,, e se são i =,,. Defiição 5.4: Uma fução f, real de variável real, diz-se seccioalmete cotíua em [ 0,+ [, se for seccioalmete cotíua em [ 0,b], para todo b > 0. O teorema seguite estabelece codições suficietes para a eistêcia da trasformada de Laplace. Teorema 5.5: Seja f uma fução real seccioalmete cotíua em [ 0,+ [. Se eistirem úmeros reais c, M e 0 ct t tais que f () t Me para t > t 0, etão L { f () t eiste, para s > c. Daqui para a frete, cosideraremos sempre fuções que verificam as codições do teorema aterior. Teorema 5.6: Propriedade de liearidade. Sejam a, b IR. Se L { f () t e L { g( t) eistirem etão { af ( t) bg( t) e tem-se L { af ( t) bg( t) = al{ f ( t) + bl{ g( t) +. L + também eiste 0

11 Eemplo 5.7: Calcule { e t + 5 L. Defiição 5.8: Seja a IR. Chama-se fução de Heaviside ou 0 se fução degrau uitário a fução U a () t = se t < a t a. Teorema 5.9: Sejam g t a, b IR. Se f () t = g t g3 ( ) () () t se t < a se a t < b se t b 0 etão f () t = g ( t) [ U ( t) ] + g ( t) [ U ( t) U ( t) ] g () t U () t + a a b 3 b., Eemplo 5.0: Calcule, usado a tabela à seguir, as seguites trasformadas de Laplace: () L ; () { t 3 (3) { se( t) L ; (4) L ; (5) L{ e t t ; (6) { t e t ( 4t) cos L + ; L. t se 0 t < Eemplo 5.: Cosidere a fução f () t = t. e se t Calcule L { f () t.

12 TABELA DE TRANSFORMADAS DE LAPLACE f () t L { f ( t), s>0 s t, =,,3 se ( kt)! +, s>0 s k, s>0 s + k cos ( kt) s s + k, s>0 f e at f () t F( s a) ( t a) U a ( t), a>0 e as F( s) () t t f, =,,3 ( ) () t f, =,,3 d ( ) F() s ds s F s s f 0 ( ) ( ( ) f ) ( 0) TRANSFORMADA DE LAPLACE INVERSA Dada uma fução f de domíio + IR, a sua trasformada de Laplace é, como vimos, uma fução F de variável s. Pode agora colocar-se o problema iverso. Dada F ( s), eistirá uma fução f () t tal que F ( s) = { f () t L?

13 A fução f, se eistir é chamada trasformada de Laplace iversa de F e escreve-se f ( t) L { F( s) =. Nota: () A trasformada de Laplace iversa em sempre eiste, e caso eista, ela pode ão ser úica. L () Do teorema 5.6 decorre, de imediato, que { af() s bg() s = al { F( s) + bl { G( s) +, com a, b IR. (3) A tabela de trasformadas de Laplace, também pode servir para calcular L { F( s). Eemplo 5.: () L = ; s () L L = t = ; s s (3) L e s ( s ) = tu () t. A trasformada de Laplace é muito útil a resolução de equações difereciais lieares sujeitas a codições iiciais. 3

14 4.6: Resolução de equações difereciais lieares de ordem usado trasformadas de Laplace Sejam a 0, a,,a parâmetros reais. Cosideremos a seguite equação diferecial liear de ordem, com coeficietes costates ( ) ( ) + a y + + a y + a y g( t) a y 0 =, t I IR () sujeita às codições iiciais, em t = 0 I, y ( 0) = y0, y ( 0) = y,, ( ) ( 0) = y y. O osso objectivo é obter a solução y ( t) da equação diferecial. MÉTODO DE RESOLUÇÃO Aplicado a trasformada de Laplace em ambos os membros de (), e usado a propriedade de liearidade obtemos ( ) ( ) { y + a L y { + + a L{ y + a L{ y L g( t) { a L 0 = () Pelo formulário, () equivale a ( a () Y s s y() 0 y ) ( 0) ( s ) + ( Y s s y 0 y 0 ) + ( a s () () ) ( ) + + a Y ( s) = G( s) sedo Y () s = L{ y() t e () s L{ g( t) G =. 0 (3) Mas (3) pode escrever-se a forma ( as + a s + + a0 ) Y ( s) = a ( y + y ) a ( y + y ) = s que é uma equação algébrica em Y ( s). s + + G () s, (4) 0 + 4

15 A trasformada de Laplace iverse aplicada à solução Y () s da equação (4), dá-os a solução y( t) L { Y ( s) diferecial () sujeita às codições iiciais dadas. = da equação Eemplo 6.: Recorredo ao método da trasformada de Laplace, determie a solução da seguite equação diferecial sujeitas às codições iiciais dadas: y = ( t ) e t, y ( 0 ) = e ( ) y + y 0 =. 5

Equações Diferenciais (ED) Resumo

Equações Diferenciais (ED) Resumo Equações Difereciais (ED) Resumo Equações Difereciais é uma equação que evolve derivadas(diferecial) Por eemplo: dy ) 5 ( y: variável depedete, : variável idepedete) d y dy ) 3 0 y ( y: variável depedete,

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM SEPARÁVEIS, HOMOGÊNEAS, EXATAS, FATORES

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas.

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas. Equação Difereial Uma equação difereial é uma epressão que relaioa uma fução desoheida (iógita) om suas derivadas É útil lassifiar os diferetes tipos de equações para um desevolvimeto sistemátio da Teoria

Leia mais

Equações Diferenciais Lineares de Ordem n

Equações Diferenciais Lineares de Ordem n PUCRS Faculdade de Matemática Equações Difereciais - Prof. Eliete Equações Difereciais Lieares de Ordem Cosideremos a equação diferecial ordiária liear de ordem escrita a forma 1 d y d y dy L( y( x ))

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida.

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida. . EQUAÇÕES DIFERENCIAIS.. Coceito e Classificação Equação iferecial é uma equação que apreseta erivaas ou ifereciais e uma fução escohecia. Seja uma fução e e um iteiro positivo, etão uma relação e igualae

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

Solução de Equações Diferenciais Ordinárias Usando Métodos Numéricos

Solução de Equações Diferenciais Ordinárias Usando Métodos Numéricos DELC - Departameto de Eletrôica e Computação ELC 0 Estudo de Casos em Egeharia Elétrica Solução de Equações Difereciais Ordiárias Usado Métodos Numéricos Versão 0. Giovai Baratto Fevereiro de 007 Ídice

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas.

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas. !"$# &%$" ')( * +-,$. /-0 3$4 5 6$7 8:9)$;$< =8:< > Deomiaremos equação diofatia (em homeagem ao matemático grego Diofato de Aleadria) uma equação em úmeros iteiros. Nosso objetivo será estudar dois tipos

Leia mais

O oscilador harmônico

O oscilador harmônico O oscilador harmôico A U L A 5 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial de um oscilador harmôico simples, V( x) kx. objetivos obter a solução da equação de Schrödiger para um oscilador

Leia mais

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa A TORRE DE HANÓI Carlos Yuzo Shie - Colégio Etapa Artigo baseado em aula miistrada a IV Semaa Olímpica, Salvador - BA Nível Iiciate. A Torre de Haói é um dos quebra-cabeças matemáticos mais populares.

Leia mais

Exercícios de Cálculo III - CM043

Exercícios de Cálculo III - CM043 Eercícios de Cálculo III - CM43 Prof. José Carlos Corrêa Eidam DMAT/UFPR Dispoível o sítio people.ufpr.br/ eidam/ide.htm o. semestre de 22 Lista Sequêcias e séries de úmeros reais. Decida se cada uma das

Leia mais

INTERPOLAÇÃO. Interpolação

INTERPOLAÇÃO. Interpolação INTERPOLAÇÃO Profa. Luciaa Motera motera@facom.ufms.br Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação

Leia mais

Secção 9. Equações de derivadas parciais

Secção 9. Equações de derivadas parciais Secção 9 Equações de derivadas parciais (Farlow: Sec 9 a 96) Equação de Derivadas Parciais Eis chegado o mometo de abordar as equações difereciais que evolvem mais do que uma variável idepedete e, cosequetemete,

Leia mais

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 60 Sumário CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 5.1. Itrodução... 62 5.2. Tabelas de trasição dos flip-flops... 63 5.2.1. Tabela de trasição do flip-flop JK... 63 5.2.2. Tabela de

Leia mais

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger Tópicos de Mecâica Quâtica I Equações de Newto e de Hamilto versus Equações de Schrödiger Ferado Ferades Cetro de Ciêcias Moleculares e Materiais, DQBFCUL Notas para as aulas de Química-Física II, 010/11

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

somente um valor da variável y para cada valor de variável x.

somente um valor da variável y para cada valor de variável x. Notas de Aula: Revisão de fuções e geometria aalítica REVISÃO DE FUNÇÕES Fução como regra ou correspodêcia Defiição : Uma fução f é uma regra ou uma correspodêcia que faz associar um e somete um valor

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

APLICAÇÃO DO MÉTODO DE INTEGRAÇÃO TRAPEZOIDAL EM SISTEMAS ELÉTRICOS

APLICAÇÃO DO MÉTODO DE INTEGRAÇÃO TRAPEZOIDAL EM SISTEMAS ELÉTRICOS AT49-07 - CD 6-07 - PÁG.: APLICAÇÃO DO MÉTODO DE INTEGAÇÃO TAPEZOIDAL EM SISTEMAS ELÉTICOS J.. Cogo A.. C. de Oliveira IEE - EFEI Uiv. Taubaté Artigo apresetado o Semiário de Pesquisa EFEI 983 ESUMO Este

Leia mais

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries Departameto de Matemática - Uiversidade de Coimbra Mestrado Itegrado em Egeharia Civil Exercícios Teórico-Práticos 200/20 Capítulo : Sucessões e séries. Liste os primeiros cico termos de cada uma das sucessões

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que LISTA INCRÍVEL DE MATEMÁTICA DISCRETA II DANIEL SMANIA 1 Amostras, seleções, permutações e combiações Exercício 1 Quatos bytes (8 bits) existem de modo que ele coteha exatamete quatro 1 s? Exercício 2

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

Construção dos números racionais, Números fracionários e operações com frações

Construção dos números racionais, Números fracionários e operações com frações Construção dos números racionais, Números fracionários e operações com frações O número racional pode ser definido a partir da aritmética fechamento da operação de divisão entre inteiros ou partir da geometria

Leia mais

Computação Científica - Departamento de Informática Folha Prática 1

Computação Científica - Departamento de Informática Folha Prática 1 1. Costrua os algoritmos para resolver os problemas que se seguem e determie as respetivas ordes de complexidade. a) Elaborar um algoritmo para determiar o maior elemeto em cada liha de uma matriz A de

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

MOMENTOS DE INÉRCIA. Física Aplicada à Engenharia Civil II

MOMENTOS DE INÉRCIA. Física Aplicada à Engenharia Civil II Física Aplicada à Egeharia Civil MOMENTOS DE NÉRCA Neste capítulo pretede-se itroduzir o coceito de mometo de iércia, em especial quado aplicado para o caso de superfícies plaas. Este documeto, costitui

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma? GUIÃO REVISÕES Equações e Inequações Equações Numa turma de 6 alunos, o número de raparigas ecede em 4 o número de rapazes. Quantos rapazes há nesta turma? O objectivo do problema é determinar o número

Leia mais

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA 5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização Curso MI Matemática Fiaceira Professor: Pacífico Referêcia: 07//00 Juros compostos com testes resolvidos. Coceito Como vimos, o regime de capitalização composta o juro de cada período é calculado tomado

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

[ \ x Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \.

[ \ x Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \. &DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV1 &DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV Å 1Ro}HV *HUDLV Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \. [\ [\ É fácil verificar

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18 /Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis

Leia mais

COMPOSIÇÕES DE FUNÇÕES GERATRIZES E A FÓRMULA EXPONENCIAL

COMPOSIÇÕES DE FUNÇÕES GERATRIZES E A FÓRMULA EXPONENCIAL COMPOSIÇÕES DE FUNÇÕES GERATRIZES E A FÓRMULA EXPONENCIAL Grade parte do poder de fuções geratrizes vêm de composição delas! Observação. Sejam F (x) = 0 G(x) = 0 f x g x duas séries formais. A composição

Leia mais

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Módulo VI Séries ou Fluxos de Caixas Uiformes Daillo Touriho S. da Silva, M.Sc. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Coceito A resolução de problemas de matemática fiaceira tora-se muito

Leia mais

LISTA BÁSICA MATEMÁTICA

LISTA BÁSICA MATEMÁTICA LISTA BÁSICA Professor: ARGENTINO FÉRIAS: O ANO DATA: 0 / 06 / 0 MATEMÁTICA 6 0 6 +, + 4 é:. O valor de ( ) ( ) ( ) a) b) c) 7 d) 9 e). Considere a epressão numérica a) 9 b) 0 c) 8,00 d) 69 e) 9,00000

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS rof Me Arto Barboi SUMÁRIO INTRODUÇÃO EQUAÇÃO DIFERENCIAL ORDINÁRIA (EDO) Ordem de uma Equação Diferecial Ordiária Grau de uma Equação Diferecial Ordiária Solução geral e particular

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Síntese de Transformadores de Quarto de Onda

Síntese de Transformadores de Quarto de Onda . Sítese de rasforadores de Quarto de Oda. Itrodução rasforadores de guia de oda são aplaete epregados o projeto de copoetes e oda guiada e são ecotrados e praticaete todas as cadeias alietadoras de ateas

Leia mais

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii) Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão

Leia mais

Matemática Financeira I 3º semestre 2013 Professor Dorival Bonora Júnior Lista de teoria e exercícios

Matemática Financeira I 3º semestre 2013 Professor Dorival Bonora Júnior Lista de teoria e exercícios www/campossalles.br Cursos de: dmiistração, Ciêcias Cotábeis, Ecoomia, Comércio Exterior, e Sistemas de Iformação - telefoe (11) 3649-70-00 Matemática Fiaceira I 3º semestre 013 Professor Dorival Boora

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

==Enunciado== 2. (a) Mostre que se h(t) é uma função seccionalmente contínua e periódica, de período T, que admite transformada de Laplace, então

==Enunciado== 2. (a) Mostre que se h(t) é uma função seccionalmente contínua e periódica, de período T, que admite transformada de Laplace, então Departameto de Matemática - Escola Superior de ecologia - Istituto Politécico de Viseu Complemetos de Aálise Matemática Egeharia de Sistemas e Iformática Euciado e Resolução da a. Frequêcia de 5/6 Duração:

Leia mais

ESTIMATIVA DA EMISSIVIDADE ATMOSFÉRICA E DO BALANÇO DE ONDAS LONGAS EM PIRACICABA, SP

ESTIMATIVA DA EMISSIVIDADE ATMOSFÉRICA E DO BALANÇO DE ONDAS LONGAS EM PIRACICABA, SP ESTIMATIVA DA EMISSIVIDADE ATMOSFÉRICA E DO BALAÇO DE ODAS LOGAS EM PIRACICABA, SP Kare Maria da Costa MATTOS (1) ; Marcius Gracco Marcoi GOÇALVES (1) e Valter BARBIERI () (1) Aluos de Pós-graduação em

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA Apontamentos: Curso de Conhecimentos Básicos de Matemática Cursos do Departamento de Gestão Maria Cristina

Leia mais

UFRGS 2007 - MATEMÁTICA

UFRGS 2007 - MATEMÁTICA - MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas

Leia mais

Aula 07 Análise no domínio do tempo Parte II Sistemas de 2ª ordem

Aula 07 Análise no domínio do tempo Parte II Sistemas de 2ª ordem Aula 07 Aálise o domíio do tempo Parte II Sistemas de ª ordem Aálise o domíio do tempo - Sistemas de ª ordem iput S output Sistema de seguda ordem do tipo α G(s) as + bs + c Aálise o domíio do tempo -

Leia mais

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR INODUÇÃO AO ESUDO DA ÁLGEBA LINEA CAPÍULO 6 ANSFOMAÇÃO LINEA Introdução Muitos problemas de Matemática Aplicada envolvem o estudo de transformações, ou seja, a maneira como certos dados de entrada são

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemática Ficha de Trabalho Probabilidades 12º ao FT4 Arrajos completos (arrajos com repetição) Na liguagem dos computadores usa-se o código biário que é caracterizado pela utilização de apeas dois algarismos,

Leia mais

1. Definição e conceitos básicos de equações diferenciais

1. Definição e conceitos básicos de equações diferenciais Capítulo 7: Soluções Numéricas de Equações Difereciais Ordiárias. Itrodução Muitos feómeos as áreas das ciêcias, egearias, ecoomia, etc., são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

1 Resoluções dos exercícios de SÉRIES propostos nocaderno1

1 Resoluções dos exercícios de SÉRIES propostos nocaderno1 Resoluções dos exercícios de SÉRIES propostos ocadero. Dadoque = /,asérieumérica =+ + + + + = 5 / éumasériededirichletcomα=/,logoédivergete.. A série umérica = + 4 + 8 + 6 + + 04 + é uma série geométrica

Leia mais

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b JUROS COMPOSTOS Chamamos de regime de juros compostos àquele ode os juros de cada período são calculados sobre o motate do período aterior, ou seja, os juros produzidos ao fim de cada período passam a

Leia mais

Processamento Digital de Sinais

Processamento Digital de Sinais Processameto Digital de Siais Prof. Luciao Leoel Medes S. Mitra, Digital Sigal Processig A computer-based approach, 2 d editio. Capítulo Siais e Processameto de Siais Sial é uma fução de uma variável idepedete,

Leia mais

A otimização é o processo de

A otimização é o processo de A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Eiste um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento de otimização.

Leia mais

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 00/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração....

Leia mais

MATEMÁTICA FINANCEIRA UNIDADE IX DESCONTOS

MATEMÁTICA FINANCEIRA UNIDADE IX DESCONTOS UNIDADE IX DESCONTOS Itrodução: Em cotabilidade, chama-se descoto a operação bacária de etrega do valor de um título ao seu detetor, ates do prazo do vecimeto, e mediate o pagameto de determiada quatia

Leia mais

Guia de aulas: Equações diferenciais. Prof. Carlos Vidigal Profª. Érika Vidigal

Guia de aulas: Equações diferenciais. Prof. Carlos Vidigal Profª. Érika Vidigal Guia de aulas: Equações diferenciais Prof. Carlos Vidigal Profª. Érika Vidigal 1º Semestre de 013 Índice 1.Introdução... 3. Equações Diferenciais de 1ª Ordem... 7.1. Equações Diferenciais Separáveis...

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA

CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA 1 CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA Simulação de chaves utilizando a função degrau a) Fonte de tensão que entra em operação em t = 0 Substituindo a chave

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Circuitos de 2 ª ordem: RLC. Parte 1

Circuitos de 2 ª ordem: RLC. Parte 1 Circuitos de 2 ª ordem: RLC Parte 1 Resposta natural de um circuito RLC paralelo Veja circuito RLC paralelo abaixo: A tensão é a mesma e aplicando a soma de correntes que saem do nó superior temos: v R

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

Universidade Presbiteriana Mackenzie. Processamento Digital de Sinais

Universidade Presbiteriana Mackenzie. Processamento Digital de Sinais Uiversidade Presbiteriaa Mackezie Curso de Egeharia Elétrica Processameto Digital de Siais Notas de Aula Prof. Marcio Eisecraft Segudo semestre de 7 Uiversidade Presbiteriaa Mackezie Curso de Egeharia

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess Jorge Pealva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO 1.º ANO COMPILAÇÃO TEMA FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA FUNÇÕES

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo. UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital

Leia mais

Derivadas Cálculo Diferencial e Integral I

Derivadas Cálculo Diferencial e Integral I Uidade G Derivadas Cálculo Diferecial e Itegral I Tecologia em Costrução de Edifícios IFRS CAMPUS RIO GRANDE PROFª DÉBORA BASTOS 4. Taa de variação Muitos coceitos e feômeos físicos, ecoômicos, biológicos,

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

PRESTAÇÃO = JUROS + AMORTIZAÇÃO

PRESTAÇÃO = JUROS + AMORTIZAÇÃO AMORTIZAÇÃO Amortizar sigifica pagar em parcelas. Como o pagameto do saldo devedor pricipal é feito de forma parcelada durate um prazo estabelecido, cada parcela, chamada PRESTAÇÃO, será formada por duas

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

Figura 2.1: Carro-mola

Figura 2.1: Carro-mola Capítulo 2 EDO de Segunda Ordem com Coeficientes Constantes 2.1 Introdução - O Problema Carro-Mola Considere um carro de massa m preso a uma parede por uma mola e imerso em um fluido. Colocase o carro

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013 ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier MAT456 - Cálculo Diferecial e Itegral para Egeharia IV o Semestre de - a Lista de eercícios: Séries de Potêcias e Séries de Fourier Usado derivação e itegração termo a termo, calcular as somas das séries

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO CURSO DE MATEMÁTICA APLICADA À ECONOMIA E GESTÃO ANÁLISE MATEMÁTICA I ELEMENTOS DE ANÁLISE REAL Volume Por : Gregório Luís I PREFÁCIO O presete teto destia-se a

Leia mais

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior 28 de agosto de 2015 Derivação Impĺıcita Considere o seguinte conjunto R = {(x, y); y = 2x + 1} O conjunto R representa a reta definida

Leia mais

FELIPE ANDRADE VELOZO REPRESENTAÇÃO GRÁFICA DE SISTEMAS DA MECÂNICA QUÂNTICA

FELIPE ANDRADE VELOZO REPRESENTAÇÃO GRÁFICA DE SISTEMAS DA MECÂNICA QUÂNTICA FELIPE ANDRADE VELOZO REPRESENTAÇÃO GRÁFICA DE SISTEMAS DA MECÂNICA QUÂNTICA Moografia de graduação apresetada ao Departameto de Ciêcia da Computação da Uiversidade Federal de Lavras como parte das exigêcias

Leia mais