Aula 4 Otimização e Discretização
|
|
|
- Laís Canela
- 6 Há anos
- Visualizações:
Transcrição
1 Universidade Federal do ABC Aula 4 Otimização e Discretização EN3224 Dinâmica de Fluidos Computacional
2 Forma adimensional das equações Motivação: às vezes, as equações são normalizadas para: facilitar as mudanças de escala dos resultados obtidos para condições de fluxo reais evitar arredondamento devido a manipulações com números grandes / pequenos avaliar a importância relativa de termos nas equações do modelo Variáveis e os números adimensionais:
3 Simplificações do modelo Objetivo: obter soluções analíticas / reduzir o custo computacional Eqs. Navier-Stokes p/ escoamento compressível Eqs. Navier-Stokes p/ escoamento incompressível Eqs. Euler p/ escoamento compressível Outras simplificações: Stokes flow, camada limite, eqs. Inviscidas, potenciais, etc... Derivação de um modelo simplificado: 1. determinar o tipo de fluxo a ser simulado 2. separar efeitos importantes e sem importância 3. deixar características irrelevantes fora de consideração 4. omitir termos redundantes nas equações do modelo 5. prescrever condições iniciais / limite adequadas
4 Escoamentos incompressíveis viscosos Seja
5 Problemas de convecção natural
6 Escoamentos incompressíveis viscosos
7 Escoamentos incompressíveis invíscidos
8 Equações de Euler compressíveis
9 Classificação das equações diferenciais parciais EDPs podem ser classificadas como hiperbólicas, parabólicas e elípticas Cada classe de PDEs modela um tipo diferente de processos físicos O número de condições iniciais e/ou limite depende do tipo de EDP Métodos de solução diferentes são necessários para EDPs de tipo diferente Hiperbólicas As informações se propagam em certas direções em velocidades finitas A solução é uma superposição de várias ondas simples Parabólicas As informações viaja a jusante / frente no tempo A solução pode ser construída usando um método de passos / tempo Elipticas As informações se propagam em todas as direções a uma velocidade infinita Descreve fenômenos de equilíbrio (problemas elipticos nunca são instáveis)
10 Classificação das equações diferenciais parciais
11 Classificação das EDPs de segunda ordem
12 Classificação de sistemas de EDPs de primeira ordem Forma quase-linear Solução de onda plana Onde n= s é a normal à superfície característica s(x,t)=const Sistemas Hiperbólicos: Existem D normais reais n (k), k = 1,..., D e as soluções dos sistemas associados são linearmente independentes Sistemas Parabólicos: Existem menos de D soluções reais n (k) e Sistemas Elipticos: Não existem normais reais n (k) não existem soluções com características de ondas.
13 EDP de segunda ordem como um sistema de EDPs de primeira ordem
14 EDP de segunda ordem como um sistema de EDPs de primeira ordem
15 Interpretação geométrica de uma EDP de segunda ordem
16 Técnicas de Discretização do Espaço Objetivo: para aproximar a EDP por um conjunto de equações algébricas EDP estacionária (elíptica) Condição de contorno de Dirichlet condição limite de Neumann condições de fronteira de Robin Problema dos valores limite: BVP = EDP + condições de contorno Introdução: problemas simplificados 1D e 2D 1. Du = f equação de Poisson 2. (uv) = (d u) convecção-difusão
17 Malhas computacionais Os graus de liberdade para a solução aproximada são definidos em uma malha computacional que representa a uma subdivisão do domínio em células e/ou elementos. estruturada estruturada em blocos não estruturada
18 Malhas Estruturadas (regulares) As famílias de linhas de grade não se cruzam. Topologicamente equivalente a grade cartesiana de modo que cada ponto de grade (ou VC) é exclusivamente definida por dois índices em 2D índices ou três em 3D. Pode ser do tipo H (não periódica), O (periódica) ou C (periódica com cúspide). Limitada aos domínios simples. Refinamento da malha local afeta outras regiões.
19 Malhas bloco-estruturadas Subdivisão de vários níveis do domínio com redes estruturadas dentro de blocos. Podem ter nãocorrespondência. Tratamento especial é necessária nas interfaces dos blocos. Maior flexibilidade. Refinamento local pode ser realizada blockwise.
20 Malhas não-estruturadas Adequadas para domínios arbitrários e passíveis de refinamento de malha adaptativa. Consistem em triângulos ou quadriláteros em 2D, tetraedros ou hexahedra em 3D. As estruturas complexas de dados, padrão de dispersão irregular, difícil de executar.
21 Técnicas de discretização Diferenças finitas / forma diferencial Derivadas de aproximação nodal simples e eficazes, fáceis de gerar limitada a malhas estruturadas Volumes finitos / forma integral aproximação de integrais conservativa por construção adequado para malhas arbitrárias Elementos finitos / forma fraca formulação ponderada residual notavelmente flexível e geral adequado para malhas arbitrárias
Aula 3 Volumes Finitos
Universidade Federal do ABC Aula 3 Volumes Finitos EN3224 Dinâmica de Fluidos Computacional Duas metodologias Leis de Conservação Integrais EDPs O Método dos Volumes Finitos (MVF) Leis de Conservação Integrais
Aula 5 O Método dos Volumes Finitos
Universidade Federal do ABC Aula 5 O Método dos Volumes Finitos EN3224 Dinâmica de Fluidos Computacional Método dos volumes finitos (MVF) Origens: mecânica estrutural, cálculo das variações para condições
Introdução aos Métodos Numéricos
Métodos Numéricos para Mecânica dos Fluidos Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Bibliografia: J. H. Ferziger and M. Peric, 'Computational Methods for Fluid Dynamics', Springer
Um breve estudo sobre Dinâmica dos Fluidos Computacional
Um breve estudo sobre Dinâmica dos Fluidos Computacional Lucia Catabriga [email protected] March 9, 2016 Lucia Catabriga (UFES) ANII e CC DI/PPGI/PPGEM March 9, 2016 1 / 17 Aspectos Gerais - Definição
MÉTODO DE ELEMENTOS FINITOS (MEF) -UMA INTRODUÇÃO-
MÉTODO DE ELEMENTOS FINITOS (MEF) -UMA INTRODUÇÃO- Curso de Transferência de Calor 1 - FEN03-5190 Prof. Gustavo R. Anjos [email protected] 17 e 23 de junho de 2015 EXEMPLOS - VÍDEOS Escoamento de fluido
Álgumas palavras sobre as Equações de Navier-Stokes
Álgumas palavras sobre as Equações de Navier-Stokes As equações de Navier-Stokes foram derivadas inicialmente por M. Navier em 1827 e por S.D. Poisson em 1831, baseando-se num argumento envolvendo considerações
ASPECTOS MATEMÁTICOS DAS EQUAÇÕES
ASPECTOS MATEMÁTICOS DAS EQUAÇÕES Classificações: Ordem: definida pela derivada de maior ordem Dimensão: em função de x, y e z (Ex. 1D, D ou 3D) Tipos de fenômenos 1. Transiente; e. Estacionário, ou permanente.
MEC204 Dinâmica de Fluidos Computacional. Prof. Juan Avila
MEC204 Dinâmica de Fluidos Computacional Prof. Juan Avila http://professor.ufabc.edu.br/~juan.avila Bibliografia Versteeg, H.K. and Malalasekera, An Introduction to Computacional Fluid Dynamics: The Finite
Capítulo 1. INTRODUÇÃO
Capítulo 1. INTRODUÇÃO A simulação numérica de problemas de engenharia ocupa atualmente uma posição de destaque no cenário mundial de pesquisa e desenvolvimento de novas tecnologias. O crescente interesse,
Mecânica dos Fluidos Formulário
Fluxo volúmétrico através da superfície Mecânica dos Fluidos Formulário Fluxo mássico através da superfície Teorema do transporte de Reynolds Seja uma dada propriedade intensiva (qtd de por unidade de
Departamento de Engenharia Mecânica. ENG 1011: Fenômenos de Transporte I
Departamento de Engenharia Mecânica ENG 1011: Fenômenos de Transporte I Aula 9: Formulação diferencial Exercícios 3 sobre instalações hidráulicas; Classificação dos escoamentos (Formulação integral e diferencial,
MECÂNICA DOS FLUIDOS AED-01
MECÂNICA DOS FLUIDOS AED-01 BIBLIOGRAFIA parte 1 Fluid Mechanics Frank M. White Fundamentals of Aerodynamics John D. Anderson, Jr Boundary Layer Theory H. Schlichting TÓPICOS PRINCIPAIS Princípios e Equações
EM34B Transferência de Calor 2
EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha [email protected] Parte II: 2 Estudo da Transferência de Calor por Convecção 02 Objetivos 1. Mecanismo físico: o o o Origem física; Parâmetros
Análise Diferencial de Escoamentos de Fluidos
12ª aula PME 3230 2016 Análise Diferencial de Escoamentos de Fluidos Prof. Dr. Marcos Tadeu Pereira Equações com Volume de Controle (VC) para Leis de Conservação de Massa, de Energia e de Quantidade de
Fundamentos da Mecânica dos Fluidos
Fundamentos da Mecânica dos Fluidos 1 - Introdução 1.1. Algumas Características dos Fluidos 1.2. Dimensões, Homogeneidade Dimensional e Unidades 1.2.1. Sistemas de Unidades 1.3. Análise do Comportamentos
1 INTRODUÇÃO 2 MODELO MATEMÁTICO 3 MODELO COMPUTACIONAL 4 EXEMPLOS DE APLICAÇÃO 5 CONSIDERAÇÕES FINAIS INTRODUÇÃO À DINÂMICA DOS FLUIDOS COMPUTACIONAL
INTRODUÇÃO À DINÂMICA DOS FLUIDOS COMPUTACIONAL Vitor SOUSA Instituto Superior Técnico Lisboa, 26 de Abril 2012 1/26 ÍNDICE 1 INTRODUÇÃO 2 MODELO MATEMÁTICO 2.1 Equações do Movimento 2.2 Modelos de Turbulência
VERIFICAÇÃO DAS EQUAÇÕES DE NAVIER-STOKES UTILIZANDO FORMULAÇÃO TOTALMENTE IMPLÍCITA EM MALHA ADAPTATIVA BLOCO-ESTRUTURADA
Faculdade de Engenharia Mecânica Universidade Federal de Uberlândia 1 e 2 de Dezembro, Uberlândia, Minas Gerais, Brasil VERIFICAÇÃO DAS EQUAÇÕES DE NAVIER-STOKES UTILIZANDO FORMULAÇÃO TOTALMENTE IMPLÍCITA
0.5 setgray0 0.5 setgray1. Mecânica dos Fluidos Computacional. Aula 4. Leandro Franco de Souza. Leandro Franco de Souza p.
Leandro Franco de Souza [email protected] p. 1/1 0.5 setgray0 0.5 setgray1 Mecânica dos Fluidos Computacional Aula 4 Leandro Franco de Souza Leandro Franco de Souza [email protected] p. 2/1 A pressão
étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno
étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE
Aula 9. Correlação cruzada Equações diferenciais às derivadas parciais
Aula 9 Correlação cruzada Equações diferenciais às derivadas parciais 1 Correlação entre series (& teorema da correlação) clear all;close all;clc nx=1000;dx=5;x=[-0:dx:(nx-1)*dx]; Ls=[100,100,100];x1s=[2000,2000,2000];x2s=[1000,2000,2500];Amp2s=[1,2,-5];
Capítulo 4 - Equações Diferenciais às Derivadas Parciais
Capítulo 4 - Equações Diferenciais às Derivadas Parciais [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Mestrados em Engenharia da Construção Métodos de Aproximação
MÉTODOS NUMÉRICOS APLICADOS À ENGENHARIA
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MECÂNICA CURSO DE ENGENHARIA MECÂNICA MÉTODOS NUMÉRICOS APLICADOS À ENGENHARIA INTRODUÇÃO AOS MÉTODOS DE DIFERENÇAS FINITAS E DE VOLUMES
Geração de Malhas SME5827. Geração de Grid. Afonso Paiva ICMC-USP
Geração de Malhas SME5827 Geração de Grid Afonso Paiva ICMC-USP 13 de setembro de 2013 Motivação Dadas as fronteiras do domínio físico D f como construir uma transformação de coordenadas (mapeamento) com
CONTEÚDOS PROGRAMADOS (Aerodinâmica de Turbomáquinas - EEK 511) Pás e escoamentos, trabalho, escalas. 2
(Aerodinâmica de Turbomáquinas - EEK 511) N 0 DE AULAS Princípios básicos Considerações gerais de projeto Escoamento através da carcaça e aspectos de escoamentos tridimensionais Escoamento ao redor de
SUMÁRIO PARTE 1 MODELAGEM, COMPUTADORES E ANÁLISE DE ERROS 3. PT1.1 Motivação... 3 Pt1.2 Fundamentos Matemáticos... 5 Pt1.3 Orientação...
PARTE 1 MODELAGEM, COMPUTADORES E ANÁLISE DE ERROS 3 PT1.1 Motivação... 3 Pt1.2 Fundamentos Matemáticos... 5 Pt1.3 Orientação... 7 CAPÍTULO 1 Modelagem matemática e resolução de problemas de engenharia...10
Um modelo do Método dos Volumes Finitos com malha não estruturada
Trabalho apresentado no III CMAC - SE, Vitória-ES, 015. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Um modelo do Método dos Volumes Finitos com malha não estruturada
ESTUDO DE UMA FORMULAÇÃO EXPLÍCITA-IMPLÍCITA PARA ESCOAMENTOS INCOMPRESSÍVEIS
ESTUDO DE UMA FORMULAÇÃO EXPLÍCITA-IMPLÍCITA PARA ESCOAMENTOS INCOMPRESSÍVEIS Rafael Alves Rodrigues Lucia Catabriga [email protected] [email protected] Universidade Federal do Espírito Santo-UFES,
Estudo do Efeito de Malhas Bloco-Estruturadas em Escoamentos Incompressíveis de Fluidos Newtonianos
Estudo do Efeito de Malhas Bloco-Estruturadas em Escoamentos Incompressíveis de Fluidos Newtonianos Ana Paula Franco Bueno, José Laércio Doricio, Depto de Engenharia de Materiais, Aeronáutica e Automobilística,
RESUMO MECFLU P3. REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS
RESUMO MECFLU P3 REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS Equação do Teorema do Transporte de Reynolds: : variação temporal da propriedade
Introdução aos Escoamentos Compressíveis
Introdução aos Escoamentos Compressíveis José Pontes, Norberto Mangiavacchi e Gustavo R. Anjos GESAR Grupo de Estudos e Simulações Ambientais de Reservatórios UERJ Universidade do Estado do Rio de Janeiro
SIMULAÇÃO EM CFD DE UM TANQUE DE MISTURA UTILIZANDO DIFERENTES TIPOS DE MALHA
SIMULAÇÃO EM CFD DE UM TANQUE DE MISTURA UTILIZANDO DIFERENTES TIPOS DE MALHA Victor Gabriel Santos Silva João Inácio Soletti José Luís Gomes Marinho Sandra Helena Vieira Carvalho [email protected]
Comentários sobre a densidade de operação
Comentários sobre a densidade de operação A densidade de operação, ou densidade de referência, no software ANSYS CFD, tem grande importância na robustez e convergência de uma simulação de fluidodinâmica
Estudo de Bocal em escoamento compressível bidimensional usando as equações de Euler
Estudo de Bocal em escoamento compressível bidimensional usando as equações de Euler Alexandre Roitman Rosset Escola Politécnica da Universidade de São E-mail : [email protected] Resumo. O presente
Escoamentos Externos
Escoamentos Externos O estudo de escoamentos externos é de particular importância para a engenharia aeronáutica, na análise do escoamento do ar em torno dos vários componentes de uma aeronave Entretanto,
Departamento de Engenharia Mecânica. ENG Fenômenos de Transporte I
Departamento de Engenharia Mecânica ENG1011 - Fenômenos de Transporte I Aula 1: Introdução e Manometria O que é um fluido? Área de aplicação da Mecânica de Fluidos Formulação (leis de conservação; leis
Equações Diferenciais Parciais.
EDP p.1/23 Equações Diferenciais Parciais. Margarete Oliveira Domingues PGMET/INPE Definições Básicas EDP p.2/23 EDP p.3/23 EDP Uma equação de derivadas parciais ou EDP é uma equação envolvendo duas ou
Professor: Juan Julca Avila. Site:
Professor: Juan Julca Avila Site: http://professor.ufabc.edu.br/~juan.avila Bibliografia Cook, R.; Malkus, D.; Plesha, M., Concepts and Applications of Finite Element Analysis, John Wiley, New York, Fourth
Dinâmica dos Fluidos Computacional
Dinâmica dos Fluidos Computacional 2017 Angela O. Nieckele Dept. de Engenharia Mecânica PUC-Rio http://mecflu2.usuarios.rdc.puc-rio.br/dinflucomp_mec2335.html Objetivo do Curso Descrever um método numérico
4 Modelagem Numérica. 4.1 Método das Diferenças Finitas
4 Modelagem Numérica Para se obter a solução numérica das equações diferenciais que regem o processo de absorção de CO 2,desenvolvido no capitulo anterior, estas precisam ser transformadas em sistemas
SIMULAÇÃO DE UM ESCOAMENTO BIFÁSICO ÓLEO- ÁGUA EM RESERVATÓRIO DE PETRÓLEO
SIMULAÇÃO DE UM ESCOAMENTO BIFÁSICO ÓLEO- ÁGUA EM RESERVATÓRIO DE PETRÓLEO T. B. FORTUNATO 1, J. C. S. DUTRA 2 e W. B. da SILVA 3 LAMCES Laboratório de Métodos Computacionais, Controle e Estimação Universidade
ESTE Aula 2- Introdução à convecção. As equações de camada limite
Universidade Federal do ABC ESTE013-13 Aula - Introdução à convecção. As equações de camada limite EN 41: Aula As equações de camada limite Análise das equações que descrevem o escoamento em camada limite:
SUMÁRIO VOLUME II 8 MODELAGEM MATEMÁTICA COM EQUAÇÕES DIFERENCIAIS SÉRIES INFINITAS CURVAS PARAMÉTRICAS E POLARES; SEÇÕES CÔNICAS 692
SUMÁRIO VOLUME II 8 MODELAGEM MATEMÁTICA COM EQUAÇÕES DIFERENCIAIS 561 8.1 Modelagem com equações diferenciais 561 8.2 Separação de variáveis 568 8.3 Campos de direções; método de Euler 579 8.4 Equações
ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos)
ENGENHARIA FÍSICA Fenômenos de Transporte A (Mecânica dos Fluidos) Prof. Dr. Sérgio R. Montoro [email protected] [email protected] Objetivos da Disciplina Apresentar noções de mecânica dos
Tutorial para o uso do aplicativo TransCal 1.1
Tutorial para o uso do aplicativo TransCal 1.1 1 Teoria do aplicativo TransCal 1.1 O aplicativo TransCal é um software com fins educacionais, especialmente projetado para ser um instrumento auxiliar no
ONDAS DE SUPERFÍCIE NO OCEANO
ONDAS DE SUPERFÍCIE NO OCEANO MECÂNICA DAS ONDAS (TEORIA LINEAR) Hipóteses: Movimento irrotacional; Fluido incompressível; EXISTÊNCIA DE UM POTENCIAL DE VELOCIDADE QUE SATISFAZ A EQUAÇÃO DA CONTINUIDADE.
étodos uméricos MÉTODO DOS ELEMENTOS FINITOS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos MÉTODO DOS ELEMENTOS FINITOS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE
Capítulo 6: Escoamento Externo Hidrodinâmica
Capítulo 6: Escoamento Externo Hidrodinâmica Conceitos fundamentais Fluido É qualquer substância que se deforma continuamente quando submetido a uma tensão de cisalhamento, ou seja, ele escoa. Fluidos
SUMÁRIO CAPÍTULO 1 CAPÍTULO 2
SUMÁRIO CAPÍTULO 1 NÚMEROS COMPLEXOS 1 Somas e produtos 1 Propriedades algébricas básicas 3 Mais propriedades algébricas 5 Vetores e módulo 8 Desigualdade triangular 11 Complexos conjugados 14 Forma exponencial
EN Escoamento interno. Considerações fluidodinâmicas e térmicas
Universidade Federal do ABC EN 411 - Escoamento interno. Considerações fluidodinâmicas e térmicas Considerações fluidodinâmicas Escoamento laminar dentro de um tubo circular de raio r o, onde o fluido
Sumári"o. Capitulo 1 INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Luis Carlos Wrobel Introdução Método das Diferenças Finitas...
Sumári"o Capitulo 1 INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Luis Carlos Wrobel 1 1.1 Introdução... 2 1.2 Método das Diferenças Finitas... 4 1.2.1 Derivadas de Ordem Superior.. 7 1.2.2 Problemas Bidimensionais....
EM-524 Fenômenos de Transporte
EM-524 Fenômenos de Transporte Livro : Introdução às Ciências Térmicas F.W. Schmidt, R.E. Henderson e C.H. Wolgemuth Editora Edgard Blücher Denilson Boschiero do Espirito Santo DE FEM sala : ID301 [email protected]
2 Modelagem Matemática do Problema
2 Modelagem Matemática do Problema O escoamento de uma gota imersa em um fluido através de um capilar é um problema transiente, não linear, bifásico com superfície livre e descrito pela equação de Navier
Introdução ao Método dos Elementos Finitos
Introdução ao Método dos Elementos Finitos Estruturas Aeroespaciais II (10373) 2014 1. Introdução O Método dos Elementos Finitos (MEF), cuja génese se verificou por volta de 1940, é uma ferramenta matemática
3.1. Conservação da Massa
3 Modelo Matemático A mecânica dos fluidos é, no vasto campo da mecânica aplicada, a disciplina que se dedica ao estudo do comportamento dos fluidos, em repouso e em movimento. A disciplina da mecânica
Efeito das propriedades variáveis com o tempo em uma barra de um reator nuclear
Efeito das propriedades variáveis com o tempo em uma barra de um reator nuclear João Gilberto Furlan Rocha Instituto Tecnológico de Aeronáutica - ITA/CTA 12228-900 São José dos Campos, São Paulo, Brasil
FENÔMENOS DE TRANSPORTES
FENÔMENOS DE TRANSPORTES AULA 6 CINEMÁTICA DOS FLUIDOS PROF.: KAIO DUTRA Conservação da Massa O primeiro princípio físico para o qual nós aplicamos a relação entre as formulações de sistema e de volume
Simulação numérica de um escoamento incompressível em uma cavidade quadrada utilizando o Método do Passo Fracionado e o Método da Penalidade
Simulação numérica de um escoamento incompressível em uma cavidade quadrada utilizando o Método do Passo Fracionado e o Método da Penalidade Numerical simulation of an incompressible flow in a square cavity
Métodos de Aproximação em Engenharia
Métodos de Aproximação em Engenharia [email protected] Departamento de Matemática Mestrados em Engenharia da Construção 1 o Semestre 2011/2012 Métodos de Aproximação em Engenharia 1/ 11 Sumário Primeira Aula
Introdução ao Método dos Elementos de Contorno
Introdução ao Método dos Elementos de Contorno Prof. Raul Bernardo Vidal Pessolani Depto de Eng Mecânica - PGMEC niversidade Federal Fluminense [email protected] Programa 1. Aspectos Gerais Dedução da Eq.
CFD, propulsão e aerodinâmica de foguetes
Grupo de pesquisa: CFD, propulsão e aerodinâmica de foguetes (CFD/UFPR) junho/2002 25 Mar 2013 1 Laboratórios (136 m 2 ): Lena 1: alunos Lena 2: professores LAE: minifoguetes Localização: salas 7-16, 7-30
lineares via método de diferenças finitas exponencial de alta ordem
Solução numérica de problemas elípticos não lineares via método de diferenças finitas exponencial de alta ordem Numerical solution of nonlinear elliptic problems by the exponential finite difference method
Condução multidirecional: a equação de difusão de calor
Condução multidirecional: a equação de difusão de calor Problema motivador 01: Para a alteração de propriedades de ligas metálicas, metais nobres podem ser adicionados na forma de pellets (pequenas esferas)
3 Modelos matemáticos e formulação numérica
3 Modelos matemáticos e formulação numérica Os modelos matemáticos para fluxos em meios porosos fraturados que transformam os modelos conceituais em equações seguem basicamente a equação de Richards que
Mecânica de Fluidos Computacional I
Mecânica de Fluidos Computacional I Prof. Gustavo Carlos Buscaglia Laboratório de Matemática Aplicada e Computação Científica (LMACC) Departamento de Matemática Aplicada e Estatística Instituto de Ciências
ENGENHARIA DE MATERIAIS. Mecânica dos Fluidos e Reologia
ENGENHARIA DE MATERIAIS Mecânica dos Fluidos e Reologia Prof. Dr. Sérgio R. Montoro [email protected] [email protected] Objetivos da Disciplina Apresentar noções de mecânica dos fluidos e
Hidráulica para Engenharia Civil e Ambiental
Hidráulica para Engenharia Civil e Ambiental Sumário Agradecimentos v Prefácio vii Uma Breve História da Hidráulica ix Notas Introdutórias xi Principais Símbolos xv Parte I Princípios e Aplicações Básicas
étodos uméricos MÉTODO DOS ELEMENTOS FINITOS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos MÉTODO DOS ELEMENTOS FINITOS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE
