13 a Aula AMIV LEAN, LEC Apontamentos

Tamanho: px
Começar a partir da página:

Download "13 a Aula 2004.10.13 AMIV LEAN, LEC Apontamentos"

Transcrição

1 3 a Aula AMIV LEAN, LEC Apontamentos 3. Singularidades isoladas Para na prática podermos aplicar o teorema dos resíduos com eficiência, precisamos de conhecer técnicas de cálculo de resíduos. Com esse objectivo vamos enunciar algumas definições e proposições elementares que nos permitirão posteriormente introduzir as referidas técnicas de cálculo de resíduos. Definição 3. Seja f uma função complexa de variável complexa e z 0 C. Dizemosque f tem uma singularidade isolada em z 0 se não é analítica (ou não está definida) em z 0, mas existe ε>0 tal que f éanalíticaem{z C :0< z z 0 <ε}. Definição 3.2 Seja f uma função complexa de variável complexa e z 0 C. Se existe ε>0 e m Z tal que para qualquer z satisfazendo 0 < z z 0 <ε,setem = n=m a n (z z 0 ) n, com a m 6=0. Ou dito de outra forma, f admite um desenvolvimento em série de Laurent emtornodopontoz 0 e a sua parte singular é finita, sendo m a ordem da primeira potência do desenvolvimento. Então:. se m > 0 então z 0 éumzero de ordem m da função f. 2. se m > 0 e z 0 é uma singularidade isolada, então z 0 éumasingularidade removível da função f. 3. se m < 0 então z 0 éumpólo de ordem m da função f. Definição 3.3 Se f tem uma singularidade isolada em z 0 que não é nem uma singularidade removível, nem um pólo de certa ordem, então z 0 éumasingularidade essencial de f. Ou dito de outra forma f tem uma singularidade essencial em z 0 sse o seu desenvolvimento emsériedelaurentemtornodopontoz 0 tem uma parte singular infinita. Portanto as singularidades isoladas classificam-se (exclusivamente) em singularidades removíveis, pólos ou singularidades essenciais. Dizemos que uma série de Laurent = + P conjunto de inteiros {n N : a n 6=0} éinfinito. n= a n (z z 0 ) n tem uma parte singular infinita se o

2 3 a AULA AMIV LEAN, LEC APONTAMENTOS 2 Exemplo 3.. a) = z z3 3! + z5 5! simples) de.... ; z =0éumzerodeprimeiraordem(ouumzero b) z 3 = z 4 z6 3! + z8 5!... ; z =0éumzerode4a ordem de z a) = z2 z 3! + z4... ; z =0é uma singularidade removível de. z 5! 3 b) = z 2 z8 z 3! + z4... ; z =0é uma singularidade removível e um zero de 5! 2 a 3 ordem de z. 3. a) = z 2 z z 3! + z3 5!... ; z =0éumpólodea ordem (ou um pólo simples) de ;oresíduode em z =0é. (Res =) z 2 z 2 z=0 z 2 b) = z 6 z 5 3! z + 3 5! z 7! z + 9! z3... ; z =0éumpólode5 a ordem de ; z 6 oresíduode em z =0é.(Res = ) z 6 5! z=0 z 6 5! c) = z 7 z 6 3! z + 4 5! z 2 7! + 9! z2... ; z =0éumpólode6 a ordem de ;o z 7 resíduo de em z =0é 0. (Res =0) z 7 z=0 z 7 4. a) z 3 sen z = z2 3! + 5!z 2 7!z... ; z =0é uma singularidade essencial de 4 z3 sen ; z oresíduodez 3 sen em z =0é 0. (Res z z 3 sen z=0 z =0) b) z 5 sen z = 2 z3 3! z + 5! z... ; z =0é uma singularidade essencial de 5 7!z9 z 5 sen ;oresíduodez 5 sen em z =0é.(Res z 2 z 2 3! z 5 sen z=0 z = ) 2 3! Quando não é fácil (ou possível) determinar o desenvolvimento de Laurent em torno de um ponto, a seguinte proposição é de grande utilidade na classificação de singularidades isoladas. Proposição 3. Se f é analítica em {z C :0< z z 0 <ε} para certo ε>0, então. f tem um zero de ordem m em z 0 sse (z z 0 ) m C\{0}. 2. f tem uma singularidade removível em z 0 sse C. 3. f tem um pólo de ordem m em z 0 sse (z z 0 ) m C\{0}.

3 3 a AULA AMIV LEAN, LEC APONTAMENTOS 3 Demonstração.. Se f tem um zero de ordem m em z 0,então = n=m X+ X+ a n (z z 0 ) n =(z z 0 ) m a n (z z 0 ) n m =(z z 0 ) m a n+m (z z 0 ) n, pelo que hipóteseafunçãodefinida por n=m (z z 0 ) m = a m 6=0. Reciprocamente se = (z z 0 ) m se 0 < z z 0 <ε, (z z 0 ) m se z = z 0 (z z 0 ) m C\{0}, então por é analítica em 0 < z z 0 <εecontínuaemz 0. Pelo Corolário 2.2 concluímos que é analítica em todo o círculo z z 0 <ε. Então pelo Teorema de Taylor = ã n (z z 0 ) n e g (z 0 )=ã 0 = (z z 0 ) m 6=0. Portanto, = P + ãn (z z 0 ) n+m temumzerodeordemm em z Se f tem uma singularidade removível em z 0,então = P + a n (z z 0 ) n, pelo que =a 0. Reciprocamente se C, então por hipótese a função definida por ( se 0 < z z0 <ε = se z = z, 0 é analítica em 0 < z z 0 <εecontínuaemz 0. Pelo Corolário 2.2 concluímos que P é analítica em todo o círculo z z 0 <ε. Então pelo Teorema de Taylor = = + a n (z z 0 ) n. 3. Se f tem um pólo de ordem m em z 0,então = n= m a n (z z 0 ) n = (z z 0 ) m n= m a n (z z 0 ) n+m = (z z 0 ) m a n m (z z 0 ) n pelo que (z z 0 ) m =a m 6=0. Reciprocamente se (z z 0 ) m C\{0}, entãoporhipótese afunçãodefinida por ( (z z0 ) m se 0 < z z 0 <ε = (z z 0 ) m se z = z, 0 é analítica em 0 < z z 0 <εecontínuaemz 0. Pelo Corolário 2.2 concluímos que é analítica em todo o círculo z z 0 <ε. Então pelo Teorema de Taylor = ã n (z z 0 ) n e g (z 0 )=ã 0 = (z z 0 ) m 6= 0. Portanto, = P + ãn (z z 0 ) n m temumpólodeordemm em z 0.

4 3 a AULA AMIV LEAN, LEC APONTAMENTOS Classificação de singularidades isoladas Por vezes, para obter enunciados mais sucintos para as propriedades de pólos e zeros de funções, são convenientes, de acordo com a proposição anterior, as seguintes convenções: Definição 3.4 Dado m Z, positivo, negativo ou nulo e uma função analítica na região definida por 0 < z z 0 <ε(i. e. numa vizinhança perfurada de z 0 ),. f tem um zero de ordem m sse 2. f tem um pólo de ordem m em z 0 sse (z z 0 ) m C\{0}. (z z 0 ) m C\{0}. Portanto, de acordo com esta definição, tem um zero de ordem m ssetemumpólode ordem m. Emparticularumafunçãotemumzerodeordem zero em z 0 (ouoqueéo mesmo, um pólo de ordem zero em z 0 ) sse é analítica numa vizinhança de z 0 enão se anula neste ponto (e portanto também não se anula numa vizinhança do ponto). Como resultado imediato, mas importante do ponto de vista prático, temos a seguinte: Proposição 3.2 Se tem um zero de ordem m em z 0 e um zero de ordem n no mesmo ponto, então. A função temumzerodeordemm + n em z = z A função tem2 : (a) um zero de ordem m n, sem > n. (b) uma singularidade removível, se m > n. (c) um pólo de ordem n m, sem < n. Exemplo 3.2 Considere-se a função sen2 z 9. Como z = π éumzerosimplesde (z π) (porque = ), concluímos, de acordo com a proposição anterior, que z π z π sen2 z tem sen 2 z um zero de segunda ordem e 9 um pólo de ordem 7 no mesmo ponto. (z π) 2 Se (é analítica e) tem um zero de ordem finita (i. e. não é identicamente nula) em z 0 então existe uma vizinhança de z 0 onde z 0 é o único zero de g. Pois neste caso g (z) = (z z 0 ) m éumafunção analítica que não se anula em z 0 ; por continuidade o mesmo acontece numa vizinhança deste ponto; então =(z z 0 ) m g (z) também não se anula numa vizinhança de z 0 (excluindo o ponto z 0 ).

5 3 a AULA AMIV LEAN, LEC APONTAMENTOS 5 Proposição 3.3 Se tem um zero de ordem m em z e um zero de ordem n > 0 no ponto z 0,entãof (z + ) temumzerodeordemmn em z = z 0. Demonstração. Uma vez que (z + ) = z,temos µ m f (z + ) f (z + ) (z z 0 ) mn = (z z 0 ) n (z + z ) m µ m = (z z 0 ) n z z (z z ) m C\{0} 3 Exemplo 3.3 Considere-se a função sen ( 2 ) 3. Como z =0éumzerosimplesde, concluímos, de acordo com a proposição anterior, que 3 temumzerodeterceiraordem e sen ³(sen 3 z 2 3 ) tem um zero de sexta ordem no mesmo ponto. Portanto sen ( 2 ) 3 tem um pólo de terceira ordem em z = Cálculo de ites Quer na classificação das singularidades isoladas quer na determinação do resíduos de pólos (como veremos mais à frente) é essencial calcular ites de funções analíticas, obtendo-se frequentemente indeterminações 0. É pois importante saber lidar com estas situações. A 0 próxima proposição dá-nos o resultado prático frequentemente usado na resolução de tais dificuldades. Pode ser visto como uma generalização da regra de Cauhy da análise real, contudo, embora agora se considerem funções de variável complexa, as condições impostas às funções são mais restrictivas: as funções têm de ser analíticas. As conclusões também são ligeiramente mais fortes: não é necessário, apriori, admitir a existência de um ite. Proposição 3.4 Sejam f e g não identicamente nulas e analíticas em z z 0 <εetais que f (z 0 )=g (z 0 )=0. Então (onde a não existência de um dos ites implica a não existência do outro 3 ) = f 0 (z) g 0 (z) e = µ µ 3 De facto, nestas condições, os ites em causa existem sempre em C { } (esfera de Riemann) verificando-se também a igualdade dos ites neste contexto generalizado, em que = significa por definição =0. 0 0

6 3 a AULA AMIV LEAN, LEC APONTAMENTOS 6 Demonstração. Como f e g não são identicamente nulas e são analíticas numa vizinhança de z 0, estão bem definidas como números naturais as ordens dos zeros de f e g. Sejam então m aordemdozerodef e n a ordem do zero de g; por hipótese m e n são inteiros positivos. Então existem funções f e g analíticas em z z 0 <εtais =(z z 0 ) m f (z) e f (z 0 ) 6= 0, Portanto =(z z 0 ) n g (z) e g (z 0 ) 6= 0. f 0 (z) =m (z z 0 ) m f (z)+(z z 0 ) m f 0 (z). Daqui concluímos f 0 (z)(z z 0 ) m m (z z 0 ) m f (z)+(z z 0 ) m+ f 0 (z) = m (z z 0 ) m f (z) µ = + (z z 0) f 0 (z) mf (z) =. Então, utilizando este resultado para a função f e para a função g, e µ µ 0 = m f 0 (z)(z z 0 ) = n m f 0 (z) g 0 (z) 0 = = n m g 0 (z)(z z 0 ) n f 0 (z)(z z 0 ) m. g 0 (z)(z z 0 ) n nf 0 (z) mg 0 (z) n m = n m Basta agora verificar que no caso m>n, sem perca de generalidade 4,setem =0. De facto, para m>n, (z z 0 ) m f (z) = (z z 0 ) n g (z) = (z z 0 ) m n f (z) g (z) =(z 0 z 0 ) m n f (z 0 ) g (z 0 ) = 0. 4 Ocason>mreduz-se ao caso m>ntrocando os papeis de f e g. Isto é, se n>m,entãovem f(z) g(z) z z g(z) =, oquesignifica por definição 0 z z f(z) = f(z) =0. 0 g(z)

6 SINGULARIDADES E RESÍDUOS

6 SINGULARIDADES E RESÍDUOS 6 SINGULARIDADES E RESÍDUOS Quando uma função f (z) não é diferenciável num complexo z 0 ; diremos que z 0 é uma singularidade de f (z) ; z 0 dir-se-á uma singularidade isolada de f (z) se, contudo, f

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Singularidades de Funções de Variáveis Complexas

Singularidades de Funções de Variáveis Complexas Singularidades de Funções de Variáveis Complexas AULA 11 META: Introduzir o conceito de singularidades de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2015/2016

Análise Complexa e Equações Diferenciais 1 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 205/206 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ). Considere a função u : R 2 R dada por onde a e b são duas constantes reais. 09 de Abril

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

Uma e.d.o. de segunda ordem é da forma

Uma e.d.o. de segunda ordem é da forma Equações Diferenciais de Ordem Superior Uma e.d.o. de segunda ordem é da forma ou então d 2 y ( dt = f t, y, dy ) 2 dt y = f(t, y, y ). (1) Dizemos que a equação (1) é linear quando a função f for linear

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação 1/48 Sumário Arredondamentos Erros 2/48 Sumário Arredondamentos

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18 /Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis

Leia mais

1 A Integral por Partes

1 A Integral por Partes Métodos de Integração Notas de aula relativas aos dias 14 e 16/01/2004 Já conhecemos as regras de derivação e o Teorema Fundamental do Cálculo. Este diz essencialmente que se f for uma função bem comportada,

Leia mais

Construção dos números racionais, Números fracionários e operações com frações

Construção dos números racionais, Números fracionários e operações com frações Construção dos números racionais, Números fracionários e operações com frações O número racional pode ser definido a partir da aritmética fechamento da operação de divisão entre inteiros ou partir da geometria

Leia mais

Resolução de sistemas lineares

Resolução de sistemas lineares Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)

Leia mais

Introdução à Topologia Resoluções de exercícios. Capítulo 1

Introdução à Topologia Resoluções de exercícios. Capítulo 1 Introdução à Topologia Resoluções de exercícios Exercício nº5 (alíneas 3. e 4.) Capítulo 1 É imediato, directamente a partir da definição, que, dados r, s Q, d p (r, s) e que d p (r, s) = se e só se r

Leia mais

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade Corpos Definição Um corpo é um anel comutativo com elemento identidade em que todo o elemento não nulo é invertível. Muitas vezes é conveniente pensar em ab 1 como sendo a b, quando a e b são elementos

Leia mais

ÁLGEBRA LINEAR. Núcleo e Imagem de uma Transformação Linear, Teorema da Dimensão, Isomorfismo. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Núcleo e Imagem de uma Transformação Linear, Teorema da Dimensão, Isomorfismo. Prof. Susie C. Keller ÁLGEBRA LINEAR Núcleo e Imagem de uma Transformação Linear, Teorema da Dimensão, Isomorfismo Prof. Susie C. Keller Núcleo de uma Definição: Chama-se núcleo de uma transformação linear T: V W ao conjunto

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

x As VpULHVGHSRWrQFLDV são um caso particularmente importante das séries de funções, com inúmeras aplicações tanto teóricas como práticas.

x As VpULHVGHSRWrQFLDV são um caso particularmente importante das séries de funções, com inúmeras aplicações tanto teóricas como práticas. Å 6pULHV GH SRWrQFLDV As VpULHVGHSRWrQFLDV são um caso particularmente importante das séries de funções, com inúmeras aplicações tanto teóricas como práticas. Um eemplo típico é a série, O cálculo do valor

Leia mais

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio Material Teórico - Aplicações das Técnicas Desenvolvidas Exercícios e Tópicos Relacionados a Combinatória Segundo Ano do Ensino Médio Prof Cícero Thiago Bernardino Magalhães Prof Antonio Caminha Muniz

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT GABARITO da 3 a Avaliação Nacional de Aritmética - MA14-21/12/2013 Questão 1. (pontuação: 2) (1,0) a) Enuncie e demonstre

Leia mais

por séries de potências

por séries de potências Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio

Leia mais

Sistemas de Apoio à Decisão

Sistemas de Apoio à Decisão Sistemas de Apoio à Decisão Processo de tomada de decisões baseia-se em informação toma em consideração objectivos toma em consideração conhecimento sobre o domínio. Modelar o processo de tomada de decisões

Leia mais

Aula 2 - Cálculo Numérico

Aula 2 - Cálculo Numérico Aula 2 - Cálculo Numérico Erros Prof. Phelipe Fabres Anhanguera Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 1 / 41 Sumário Sumário 1 Sumário 2 Erros Modelagem Truncamento Representação

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA CURSO BIETÁPICO EM ENGENHARIA CIVIL º ciclo Regime Diurno/Nocturno Disciplina de COMPLEMENTOS DE MATEMÁTICA Ano lectivo de 7/8 - º Semestre Etremos

Leia mais

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente

Leia mais

EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado

EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado Aula 28 EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado Prof. Ricardo C.L.F. Oliveira Faculdade de Engenharia Elétrica e de Computação Universidade Estadual de Campinas 2 o Semestre

Leia mais

[ \ x Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \.

[ \ x Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \. &DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV1 &DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV Å 1Ro}HV *HUDLV Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \. [\ [\ É fácil verificar

Leia mais

29/Abril/2015 Aula 17

29/Abril/2015 Aula 17 4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Sistema de malha fechada G(s) G(s) G(s) Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada,

Leia mais

Análise de Regressão Linear Simples e Múltipla

Análise de Regressão Linear Simples e Múltipla Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques (DepMAT ESTV) Análise de Regres. Linear Simples e Múltipla

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A FICHA 8 APLICAÇÕES E COMPLEMENTOS Sistemas Dinâmicos Discretos (1) (Problema

Leia mais

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está

Leia mais

Distribuição de probabilidades

Distribuição de probabilidades Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva

Leia mais

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim FACULDADE DE CIÊNCIA E TECNOLOGIA Cursos de Engenharia Prof. Álvaro Fernandes Serafim Última atualização: //7. Esta apostila de Álgebra Linear foi elaborada pela Professora Ilka Rebouças Freire. A formatação

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Unidade II - Sistemas de Equações Lineares

Unidade II - Sistemas de Equações Lineares Unidade II - Sistemas de Equações Lineares 1- Situando a Temática Discutiremos agora um dos mais importantes temas da matemática: Sistemas de Equações Lineares Trata-se de um tema que tem aplicações dentro

Leia mais

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Maria Angélica Araújo Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação

Leia mais

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR INODUÇÃO AO ESUDO DA ÁLGEBA LINEA CAPÍULO 6 ANSFOMAÇÃO LINEA Introdução Muitos problemas de Matemática Aplicada envolvem o estudo de transformações, ou seja, a maneira como certos dados de entrada são

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) II Métodos numéricos para encontrar raízes (zeros) de funções reais. Objetivos:

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 2 - FUNDAMENTOS 2.1) Teoria dos Conjuntos 2.2) Números

Leia mais

Notas Para um Curso de Cálculo. Daniel V. Tausk

Notas Para um Curso de Cálculo. Daniel V. Tausk Notas Para um Curso de Cálculo Avançado Daniel V. Tausk Sumário Capítulo 1. Diferenciação... 1 1.1. Notação em Cálculo Diferencial... 1 1.2. Funções Diferenciáveis... 8 Exercícios para o Capítulo 1...

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Transformações Lineares 1 Definição e Exemplos 2 Núcleo e Imagem

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

Gráficos de funções em calculadoras e com lápis e papel (*)

Gráficos de funções em calculadoras e com lápis e papel (*) Rafael Domingos G Luís Universidade da Madeira/Escola Básica /3 São Roque Departamento de Matemática Gráficos de funções em calculadoras e com lápis e papel (*) A difusão de calculadoras gráficas tem levado

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, considere z = + i19 cis θ Determine os valores de θ pertencentes

Leia mais

A importância da certificação para os laboratórios de meio ambiente A importância da certificação para os laboratórios de meio ambiente

A importância da certificação para os laboratórios de meio ambiente A importância da certificação para os laboratórios de meio ambiente A importância da certificação para os laboratórios de meio ambiente Prof. Quilici A importância A da importância certificação para da certificação os laboratórios para de meio ambiente os laboratórios

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra Aparecida de Amo Lista de Exercícios n o 2 Exercícios sobre Modelos de Máquinas de Turing

Leia mais

Root Locus (Método do Lugar das Raízes)

Root Locus (Método do Lugar das Raízes) Root Locus (Método do Lugar das Raízes) Ambos a estabilidade e o comportamento da resposta transitória em um sistema de controle em malha fechada estão diretamente relacionadas com a localização das raízes

Leia mais

Campos Vetoriais e Integrais de Linha

Campos Vetoriais e Integrais de Linha Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Campos Vetoriais e Integrais de Linha Um segundo objeto de interesse do Cálculo Vetorial são os campos de vetores, que surgem principalmente

Leia mais

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A 4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los

Leia mais

MD Sequências e Indução Matemática 1

MD Sequências e Indução Matemática 1 Sequências Indução Matemática Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Sequências e Indução Matemática 1 Introdução Uma das tarefas mais importantes

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

Aritmética de Ponto Flutuante

Aritmética de Ponto Flutuante Aritmética de Ponto Flutuante Entre 1970 e 1980 um grupo formado por cientistas e engenheiros de diferentes empresas de computação realizou um trabalho intenso na tentativa de encontrar um padrão de representação

Leia mais

o conjunto das coberturas de dominós de uma superfície quadriculada S. Um caminho v 0 v 1...v n

o conjunto das coberturas de dominós de uma superfície quadriculada S. Um caminho v 0 v 1...v n efinições Preliminares Na introdução foi apresentado o conceito de superfície quadriculada bicolorida e balanceada. Os discos com buracos estão mergulhados em R, mas não necessariamente estão no plano

Leia mais

Prog A B C A e B A e C B e C A,B e C Nenhum Pref 100 150 200 20 30 40 10 130

Prog A B C A e B A e C B e C A,B e C Nenhum Pref 100 150 200 20 30 40 10 130 Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 2 Lógica II Quando lemos um problema de matemática imediatamente podemos ver que ele está dividido em duas partes:

Leia mais

Monopólio. Microeconomia II LGE108. Características do Monopólio:

Monopólio. Microeconomia II LGE108. Características do Monopólio: Monopólio Introdução Características do Monopólio: Existe uma única empresa do lado da oferta; Existem muitos compradores de pequena dimensão; Não existem substitutos próximos; Existe informação perfeita

Leia mais

Instruções para a Prova de MATEMÁTICA APLICADA:

Instruções para a Prova de MATEMÁTICA APLICADA: Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. A duração total do Módulo Discursivo é

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA Apontamentos: Curso de Conhecimentos Básicos de Matemática Cursos do Departamento de Gestão Maria Cristina

Leia mais

Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643

Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643 Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643 Programação não linear para que serve? A programação linear tem a função objectivo e os constrangimentos lineares. O que nem sempre acontece na realidade,

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4 Teorema de Taylor Prof. Doherty Andrade Sumário 1 Fórmula de Taylor com Resto de Lagrange 1 2 Exemplos 2 3 Exercícios 3 4 A Fórmula de Taylor 4 5 Observação 5 1 Fórmula de Taylor com Resto de Lagrange

Leia mais

ECONOMIA MÓDULO 17. AS ELASTICIDADES DA DEMANDA (continuação)

ECONOMIA MÓDULO 17. AS ELASTICIDADES DA DEMANDA (continuação) ECONOMIA MÓDULO 17 AS ELASTICIDADES DA DEMANDA (continuação) Índice 1. As Elasticidades da Demanda (continuação)...3 1.1. Elasticidade-preço cruzada da demanda... 3 1.2. Elasticidade-renda da demanda...

Leia mais

Pedro Ribeiro 2014/2015

Pedro Ribeiro 2014/2015 Programação Dinâmica Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Programação Dinâmica 2014/2015 1 / 56 Números de Fibonacci Sequência de números muito famosa definida por Leonardo Fibonacci

Leia mais

Lista de Exercícios 03

Lista de Exercícios 03 Lista de Exercícios 03 Aplicações das relações e funções no cotidiano Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados

Leia mais

FICHA DE TRABALHO 6 - RESOLUÇÃO

FICHA DE TRABALHO 6 - RESOLUÇÃO ecção de Álgebra e Análise, Departamento de Matemática, Instituto uperior Técnico Análise Matemática III A - 1 o semestre de 23/4 FIHA DE TRABALHO 6 - REOLUÇÃO 1) Indique se as formas diferenciais seguintes

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 00/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração....

Leia mais

Testes (Não) Paramétricos

Testes (Não) Paramétricos Armando B. Mendes, DM, UAç 09--006 ANOVA: Objectivos Verificar as condições de aplicabilidade de testes de comparação de médias; Utilizar ANOVA a um factor, a dois factores e mais de dois factores e interpretar

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEEC, MEMec o semestre 011/01 1 o Teste B 1/04/01 11:00 Duração: 1 hora e 30 minutos Justifique

Leia mais

Frações. Números Racionais

Frações. Números Racionais Frações Números Racionais Consideremos a operação 4:5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números porque não há

Leia mais

CálculoDiferencialem R n Limites

CálculoDiferencialem R n Limites ROSÁRIO LAUREANO 1 CálculoDiferencialem R n Limites [Elaborado por Rosário Laureano] [2012/13] Esteficheirocontém: 1. Tópicosdeteoria-ites(p. 1) 2. Exercícios resolvidos(p. 5) 1 Tópicosdeteoria-ites DistânciaEuclidiana

Leia mais

CAPÍTULO III TERMOQUÍMICA

CAPÍTULO III TERMOQUÍMICA CAPÍTULO III - Termoquímica 40 CAPÍTULO III TERMOQUÍMICA Podemos designar a termoquímica como o estudo do calor envolvido nas transformações físicas e químicas. Vamos considerar um sistema constituído

Leia mais

Capítulo SETE Números em Ponto Fixo e Ponto Flutuante

Capítulo SETE Números em Ponto Fixo e Ponto Flutuante Capítulo SETE Números em Ponto Fixo e Ponto Flutuante 7.1 Números em ponto fixo Observação inicial: os termos ponto fixo e ponto flutuante são traduções diretas dos termos ingleses fixed point e floating

Leia mais

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia

Leia mais

Direitos do Consumidor. Série Matemática na Escola

Direitos do Consumidor. Série Matemática na Escola Direitos do Consumidor Série Matemática na Escola Objetivos 1. Introduzir o conceito de função afim; 2. Aplicar o conceito de função afim na resolução de um problema simples. Direitos do consumidor Série

Leia mais

Projecto de Programação por Objectos 2007/08 Escalonamento em Multi-processador por Programação Evolutiva MEBiom/MEEC 1 Problema

Projecto de Programação por Objectos 2007/08 Escalonamento em Multi-processador por Programação Evolutiva MEBiom/MEEC 1 Problema Projecto de Programação por Objectos 2007/08 Escalonamento em Multi-processador por Programação Evolutiva MEBiom/MEEC 1 Problema Considere-se um sistema com um conjunto finito de processadores P = {p1,...,

Leia mais

Problemas sobre Sistemas Não Lineares

Problemas sobre Sistemas Não Lineares Mestrado Integrado em Engenharia Electrotécnica e de Computadores Controlo em Espaço de Estados Problemas sobre Sistemas Não Lineares Organizada por J. Miranda Lemos 0 J. M. Lemos IST P. (Construção do

Leia mais

Valores e Vectores Próprios. Carlos Luz Departamento de Matemática Escola Superior de Tecnologia de Setúbal

Valores e Vectores Próprios. Carlos Luz Departamento de Matemática Escola Superior de Tecnologia de Setúbal Valores e Vectores Próprios Carlos Luz Departamento de Matemática Escola Superior de Tecnologia de Setúbal Ano Lectivo 24/25 Conteúdo Definição de Valor e Vector Próprios 2 2 Um Eemplo de Aplicação 8 3

Leia mais

Controlabilidade e Observabilidade

Controlabilidade e Observabilidade IA536 - Teoria de Sistemas Lineares - FEEC/UNICAMP contr 1/18 Controlabilidade e Observabilidade Sfrag replacements R 1 R 2 + u C 1 C 2 R 3 y A tensão no capacitor C 2 não pode ser controlada pela entrada

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos

Leia mais

Exercícios Resolvidos Integrais de Linha. Teorema de Green

Exercícios Resolvidos Integrais de Linha. Teorema de Green Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Exercícios Resolvidos Integrais de Linha. Teorema de Green Exercício 1 Um aro circular de raio 1 rola sem deslizar ao longo

Leia mais

Características de um fluido

Características de um fluido FLUIDOS - Propriedades Características de um fluido Gases e liquídos podem ambos ser considerados fluidos. Há certas características partilhadas por todos os fluidos que podem usar-se para distinguir liquidos

Leia mais