Você em primeiro lugar.

Tamanho: px
Começar a partir da página:

Download "Você em primeiro lugar."

Transcrição

1 GABARITEI CONCURSOS MATEMÁTICA Charlles Nunes

2 Gabaritei Concursos Matemática CRONOGRAMA Aula Números e grandezas proporcionais. Razão e proporção. Divisão proporcional. Regras de três simples e composta. Aula Medidas de comprimento, superfície, volume, capacidade, massa e tempo. Sistema legal de unidades de medida. Aula Porcentagem. Juros simples e compostos. Descontos. Aula Equações e inequações de 1o e 2o graus. Sistemas de 1o e 2o graus. Problemas. Aula Números reais, inteiros e racionais. Operações. Revisão Aulas 6 e 7 17 e Progressões aritméticas e geométricas. Aulas 8 e 9 01 e Análise combinatória. Aulas 10 e e Probabilidade.

3 Charlles Nunes I Grandezas e Medidas Ao final dessa unidade você será capaz de Identificar grandezas, instrumentos e unidades de medida. Resolver situações práticas do dia a dia, utilizando os conceitos aprendidos. Diferenciar grandezas diretamente e inversamente proporcionais. Comece respondendo às seguintes perguntas: Qual é sua idade? Quanto você pesa? (Qual é a sua massa?) Quanto tempo dura o curso preparatório? Quantos dias faltam até a data do próximo concurso? Quantos litros de água você consegue tomar por dia? Para responder a cada uma dessas perguntas, você utiliza um tipo de medida. Eis alguns exemplos de grandezas, instrumentos e unidades de medida que utilizamos no dia a dia: GRANDEZA INSTRUMENTO UNIDADE DE MEDIDA 2. temperatura termômetro grau Celsius 3. massa balança quilograma 4. comprimento trena, metro, fita métrica metro, centímetro 5. tempo relógio hora, minuto, segundo 6. capacidade recipiente litro 7. abertura do ângulo transferidor grau Existem métodos de medição que utilizam como base de medida o próprio corpo (palmo, pé, passo). Outros, mais padronizados, são portanto mais confiáveis, como por exemplo o sistema métrico (milímetro, centímetro, metro, quilômetro). Responda: 1. Qual é o comprimento da sua carteira (em palmos e em centímetros) 2. Como você mede o comprimento: a. Da frente da sua casa.

4 Gabaritei Concursos Matemática b. De uma página do seu livro. c. Da distância entre duas cidades. d. Da espessura da capa de um livro. 3. A afirmação Uma folha de papel mede 21 está certa ou errada? Por quê? 4. Imagine a cozinha dos seus sonhos. Qual é a cor e o tamanho dela? Vamos medir a superfície (área) de uma cozinha usando como unidade de medida a própria cerâmica: a. Qual é a grandeza a ser medida? b. Qual é a unidade a ser usada? c. Qual é a área dessa superfície, tomando-se como unidade de medida a própria cerâmica? d. Que outras unidades de área ou unidades de medida de superfície você conhece? 5. Algumas medidas de capacidade bastante utilizadas no dia a dia são a xícara, o copo e a colher. Utilizando a capacidade de uma xícara como unidade de medida, a medida da capacidade do copo é de duas xícaras, e a medida da capacidade do litro, oito xícaras. a. Se utilizarmos o copo como unidade de medida, qual será a medida da capacidade do litro? 6. Gabaritaldo saiu de sua casa às 7h40min. Chegou ao curso preparatório em 15 minutos. Estudou por 3h30min e gastou 14 minutos para chegar em casa. a. À que horas Gabaritaldo chegou em casa? b. Que grandeza está sendo medida? c. Quais as unidades de medida de tempo presentes neste exemplo? d. Que outras você conhece? GRANDEZAS DIRETAMENTE E INVERSAMENTE PROPORCIONAIS Gentileza gera gentileza. Violência gera violência. Excesso de velocidade gera acidentes.

5 Charlles Nunes 7. Por falar em velocidade, resolva esse desafio: a. Gabarinaldo e Gabarinildo decidem realizar um duelo ao volante, para ver quem é o mais rápido. Gabarinaldo percorre 340 km em 4 horas, e Gabarinildo percorre 400 quilômetros em 5 horas. Qual dos dois é o mais veloz? 8. Recordando... Dividendo divisor quociente resto. a. Por qual divisor devemos dividir o dividendo para obter um quociente de valor igual ao dividendo? 9. Gabaritécio resolveu dar um churrasco para comemorar a vitória do seu time. Comprou 13 kg de costela, 10 de asa de frango e 7 de lingüiça. Convidou toda a torcida para participar (59 pessoas). A galera aproveitou para esvaziar a churrasqueira em apenas 37 minutos. a. Em média, quantos gramas de carne cada pessoa presente no churrasco comeu? 10. Assinale se a frase corresponde à proporção diretamente proporcional, ou inversamente proporcional: a. Quanto mais carne for comprada, mais o povo irá comer. b. Quanto mais um participante comer, menos carne irá sobrar para o outro. c. Numa churrascaria sem rodízio, quanto mais se come, mais se paga. d. Quanto mais se come, menos dinheiro se tem na carteira. 11. Caloria (cal) é uma unidade de medida de energia. Observe a tabela de lanches e responda: Quantas calorias o x-salada tem a mais que o hambúrguer duplo? O hambúrguer duplo tem aproximadamente quantas vezes o número de calorias do peito de peru light? GABARITÉCIA LANCHES Lanche cal Peito de peru light 195 Hambúrguer duplo 595 X-Gabarito 795

6 Gabaritei Concursos Matemática 12. O decibel db é usado como unidade de medida do nível de intensidade sonora. Ele corresponde à décima parte do bel. A Organização Mundial de Saúde (OMS) recomenda que no interior de edifícios o ruído de fundo não deva ser superior a 45 db e que á noite, no interior de dormitórios o ruído não seja superior a 35 db. Também que os ruídos externos diurnos não sejam superiores a 55 db e os noturnos não superiores a 45 db. Confira os sons (em decibéis) produzidos por: Discotecas 85 a 100 Motos: 80 a 105 Avião a jato: 120 Grandes shows de rock: acima de Crie uma situação a ser resolvida com base nesses dados. Compartilhe com um colega e resolva-a. MEDIDA DE TEMPO HORAS, MINUTOS E SEGUNDOS 14. Gabaritônio retirou um DVD na locadora. O DVD tem dois documentários: um de 1h 45min e outro de 56 minutos. a. Qual a duração total do DVD? b. Se ele começar a assistir aos documentários às 20h 37min, a que horas ele vai terminar? 15. Em suas últimas férias, Gabaritosa decidiu rever os parentes. Ela iniciou sua viagem de carro em Angra dos Reis ao meio-dia e foi até Campinas. A viagem durou 5h 35min. a. A que horas ela chegou a Campinas? 16. Transforme as medidas de tempo completando as lacunas: a. 317 min = h min b. 7 min 23 s = h min c. 420 s = h min 17. Gabaritôncio levou o sobrinho ao estádio. A partida teve a seguinte duração: 1º tempo: 45 min + 3 min de acréscimo Intervalo: 18 minutos 2º tempo: 45 min + 4 min de acréscimo. a. Se o jogo começou meio-dia e meia, a que horas foi dado o apito final? b. O certo é dizer meio-dia e meio ou meio-dia e meia?

7 Charlles Nunes 18. Resolva os seguintes exercícios de soma e multiplicação de minutos: a. (3h 47min 58s) + (2h 7min 23s) b. 4 (5h 17min 53s) 19. Agora, resolva mentalmente: a. (3 h 10 min) + (50 min 30 s) b. (2 h 30 min 40 s) + (1 h 29 min 20 s) c. 3 h (1 h 50 min) d. 45 s + 35 s e. (3 h 30 min) + (2 h 30 min) f min 20. Qual intervalo de tempo é maior: 3 h 5 min, 198 min ou s? 21. Gabarinácio e sua irmã gêmea correm na praia 3 vezes por semana. Em sua última corrida, ele percorreu 3500 m em 50 min, e ela, 4,8 km em 1h 20 min. Em média, qual dos dois foi mais veloz? 22. Exercícios com divisão de tempo: (Ex.: 7h 15min : 5 = 1h 27 min) a. 9 h : 2 b. (8 h 15 min) : 2 c. (5 h 46 min 10 s) : 5 d. 2h : 5 e. (1 h 30 min) : 3 f. (5 h 45 min 20 s) : Exercícios de subtração de tempo: a. 3h (1h 7min 40s) b. (5h 10m 30s0 (2h 7 min 40s) 24. Cálculos de tempo em dias, meses e anos. a. Quantos dias tem o ano comercial? b. Qual é o próximo ano bissexto? 25. Efetue: a. (1a 7 m 20d) + (3a 9m 13 d) b. 2 (3a 5m 8d) *Transformar em dias, converter depois. c. (7a 9m 25d) (3a 10m 7d) d. 4a (2a 6m 20d)

8 Gabaritei Concursos Matemática 26. O Sr. Gabarítono é um tenor famoso que pretende se aposentar. Para isso, precisa completar 35 anos de serviço. No zoológico de Volta Redonda, ele se apresentou por 17a 7m 15d. Na rodoviária de Quixeramobim, entreteve os passageiros por 12a 2m 20d, e no coral da sub-prefeitura do Parque Mambucaba, está há 4a 11m 20d. a. Quanto tempo falta para ele se aposentar? UNIDADES DE MEDIDA DE COMPRIMENTO 26. Uma lesma flamenguista amarga a derrota na final do campeonato indo se esconder no fundo de um poço seco de 10 m de profundidade. Ao ouvir sobre a vitória do seu time, resolve sair de lá. a. Durante o dia consegue subir 2 m pela parede, mas à noite, quando dorme, escorrega 1 m. Em quantos dias ela atingirá o topo do poço, e poderá voltar a torcer na arquibancada? Múltiplos e submúltiplos do metro Múltiplos do metro: decâmetro (dam), hectômetro (hm), quilômetro (km) Submúltiplos do metro: decímetro (dm), centímetro (cm), milímetro (mm) Mudança de unidades de medida no Sistema Métrico Decimal: 0, km hm dam m dm cm mm Complete: a. 1 dm = cm b. 1 m = km c. 1 m = 10 d. 1 dm = m e. 1 km = hm f. 1 dm = Resolva: 3,72 hm + 24,62 m dm = m Nota: 1 milha terrestre mede 1609 metros. Uma polegada, aproximadamente 25mm.

9 Charlles Nunes II Razão, Proporção, Regra de Três Simples e Composta RAZÃO (*Por Marcos Noé, Equipe Brasil Escola.) Dizemos que a razão entre dois números a e b é a relação a/b, onde a e b são números reais com b 0. Dessa forma, concluímos que razão é uma fração, a qual é utilizada no intuito de comparar grandezas. A razão pode ser representada por uma fração, um número na forma decimal, porcentagem ou até mesmo por uma divisão. 3 : 5 = 3/5 = 0,6 = 60% 1 : 10 = 1/10 = 0,1 = 10% Para entendermos a idéia principal de uma razão, observe os exemplos a seguir: Exemplo 1 Em uma turma de preparatório para o vestibular, o número de mulheres é igual a 50 e o número de homens é 40. Determine: A razão entre o número de homens e o número de mulheres. Temos 40 homens para 50 mulheres, então: 40/50 que simplificado fica 4/5. Concluímos que para cada cinco mulheres existem quatro homens. A razão entre o número de homens e de mulheres na forma de porcentagem: 40/50 = 0,8 = 80% Exemplo 2 Em uma prova de testes, Carlos acertou 28 questões e errou 12. Escreva na forma de fração: a) A razão entre o número de acertos e o número de erros: 28/12, simplificando fica 7/3 b) A razão entre o número de erros e o número de acertos. 12/28 simplificando temos 3/7 c) A razão entre o número de acertos e o número total de questões. 28/40 simplificando temos 7/10 Exemplo 3 Em um jogo de basquete, a equipe de Pedro e de José marcou 60 pontos, dos quais Pedro marcou 20 pontos e José marcou 15. Com base nessas informações determine: a) A razão entre o número de pontos marcados por José e o número de pontos marcados por Pedro. 15/20 simplificando temos ¾ b) A razão entre o número de pontos marcados por Pedro e o número de pontos marcados pela equipe. 20/60 que simplificado fica 1/3

10 Gabaritei Concursos Matemática * A ordem dos números no cálculo de uma razão é muito importante. O numerador é denominado antecedente e o denominador recebe o nome de consequente. PROPORÇÃO(*Por Marcos Noé, Equipe Brasil Escola.) A igualdade entre duas razões forma uma proporção, vale lembrar que razão é a divisão entre dois números a e b, tal que b 0 e pode ser escrito na forma de a/b. Observe os exemplos de proporções a seguir: é uma proporção, pois 10:20 = 3:6 é uma proporção, pois 9:12 = 3:4 As proporções possuem uma propriedade que diz o seguinte: em uma proporção, o produto dos extremos é igual ao produto dos meios. Essa propriedade pode ser colocada em prática na verificação da proporcionalidade, realizando uma operação denominada multiplicação cruzada. 9 x 4 = 12 x 3 36 = 36 Multiplicação cruzada 4 x 15 = 6 x = 60 As proporções possuem uma enorme aplicabilidade em situações problemas envolvendo informações comparativas, na regra três a proporcionalidade é usada no intuito de calcular o quarto valor com base nos três valores estabelecidos pelo problema. Acompanhe os exemplos a seguir no intuito de demonstrar a importância do estudo das proporções. Exemplo 1 Para fazer 600 pães, são gastos, em uma padaria, 100 Kg de farinha. Quantos pães podem ser feitos com 25kg de farinha?

11 Charlles Nunes Estabelecemos a seguinte relação: x Podem ser feitos 150 pães. Exemplo 2 Se com 40 laranjas é possível fazer 26 litros de suco, quantos litros de suco serão obtidos com 25 laranjas? x Com 25 laranjas podemos fazer 16,25 litros de suco.

12 Gabaritei Concursos Matemática Proporcionalidade entre Grandezas Definimos por grandeza tudo aquilo que pode ser contado e medido, como o tempo, a velocidade, comprimento, preço, idade, temperatura entre outros. As grandezas são classificadas em: diretamente proporcionais e inversamente proporcionais. Grandezas Diretamente Proporcionais são aquelas grandezas onde a variação de uma provoca a variação da outra numa mesma razão. Se uma dobra a outra dobra, se uma triplica a outra triplica, se uma é divida em duas partes iguais a outra também é divida à metade. Exemplo 1 Se três cadernos custam R$ 8,00, o preço de seis cadernos custará R$ 16,00. Observe que se dobramos o número de cadernos também dobramos o valor dos cadernos. Confira pela tabela: Exemplo 2 Para percorrer 300 km, um carro gastou 30 litros de combustível. Nas mesmas condições, quantos quilômetros o carro percorrerá com 60 litros? E com 120 litros? Grandezas Inversamente Proporcionais são aquelas nas quais operações inversas são utilizadas nas grandezas. Se dobramos uma das grandezas temos que dividir a outra por dois, se triplicamos uma delas devemos dividir a outra por três e assim sucessivamente. A velocidade e o tempo são considerados grandezas inversas, pois aumentarmos a velocidade, o tempo é reduzido, e se diminuímos a velocidade, o tempo aumenta. Exemplo 3 Para encher um tanque são necessárias 30 vasilhas de 6 litros cada uma. Se forem usadas vasilhas de 3 litros cada, quantas serão necessárias? Utilizaremos 60 vasilhas, pois se a capacidade da vasilha diminui, o número de vasilhas aumenta no intuito de encher o tanque. * A utilização da regra de três nos casos envolvendo proporcionalidade direta e inversa é de extrema importância para a obtenção dos resultados.

13 Charlles Nunes REGRA DE TRÊS SIMPLES (*Por Marcos Noé, Equipe Brasil Escola.) A regra de três é usada nas situações de proporcionalidade utilizando de três valores dados para o cálculo do quarto valor. A regra de três é muito utilizada na Física e na Química para o cálculo de conversão de grandezas: velocidade, massa, volume, comprimento, área. A regra de três pode ser considerada diretamente proporcional ou inversamente proporcional. Acompanhe a resolução de exemplos utilizando a regra de três. Exemplo 1 Um pintor utilizou 18 litros de tinta para pintar 60m² de parede. Quantos litros de tintas serão necessários para pintar 450 m², nas mesmas condições? Vamos relacionar os dados através de uma tabela: Litros Área em m² x x Observe que, quanto maior a área a ser pintada maior será a quantidade de tinta, então podemos dizer que a regra de três é diretamente proporcional. Nesse caso não invertemos os termos, multiplicamos cruzado: 60*x = 18 * x = 8100 x = 8100/60 x =135 R= Serão necessários 135 litros de tintas para pintar uma parede de 450 m² Exemplo 2 Dias Páginas por dia 4 15 x 6 Márcia leu um livro em 4 dias, lendo 15 páginas por dia. Se tivesse lido 6 páginas por dia, em quanto tempo ela leria o mesmo livro? Se ela ler mais páginas por dia demorará menos tempo para ler o livro, caso ela diminua as páginas lidas por dia aumentará o tempo de leitura, nesse caso a regra de três é proporcionalmente inversa, então devemos inverter a coluna em que se encontra a incógnita e depois multiplicar cruzado. Dias Páginas por dia x x * x = 4 * 15 6x = 60 x = 60/6 x = 10 Se passar a ler 6 páginas por dia levará 10 dias para ler o livro.

14 Gabaritei Concursos Matemática REGRA DE TRÊS COMPOSTA (*Por Marcos Noé, Equipe Brasil Escola.) Podemos realizar comparações entre duas grandezas utilizando a regra de três simples, pois através dela podemos montar uma proporção, calcular um quarto termo com base nos três existentes. Porém, se envolvermos três grandezas, a regra de três simples não terá muita utilidade, mas poderemos aplicar a regra de três composta. Observe os exemplos a seguir: Exemplo 1 Torneiras Água (L) Tempo (h) x Seis torneiras despejam litros de água em uma caixa em 10 horas. Em quanto tempo 12 torneiras despejarão litros de água? Número de torneiras e tempo inversamente proporcionais. (inverter a coluna das torneiras) Litros de água e tempo diretamente proporcionais. Exemplo 2 Tempo (min) Dias kw/h x Usando um ferro elétrico 1 hora por dia, durante 20 dias, o consumo de energia será de 10 kw/h. Se o mesmo ferro elétrico for usado 110 minutos por dia durante 30 dias, qual será o consumo? Tempo e kw/h são diretamente proporcionais. Dias e kw/h são diretamente proporcionais.

15 Charlles Nunes Exemplo 3 Horas/dia Dias R$ x 2700 Trabalhando 10 horas por dia, durante 18 dias, João recebeu R$ 2 100,00. Se trabalhar 8 horas por dia, quantos dias ele deverá trabalhar para receber R$ 2 700,00 Horas por dia e dias são inversamente proporcionais. (inverter a coluna das horas / dia) Dias e salário são diretamente proporcionais. Exemplo 4 nº Peças h/d Dias funcionários x Em uma empresa, 10 funcionários produzem peças, trabalhando 8 horas por dia durante 5 dias. O número de funcionários necessários para que essa empresa produza peças em 15 dias, trabalhando 4 horas por dia, será de: Funcionários e peças são diretamente proporcionais. Funcionários e horas por dia são inversamente proporcionais. (inverter coluna horas por dia) Funcionários e dias são inversamente proporcionais. (inverter coluna dos dias) A regra de três composta é muito utilizada em situações que envolvem mais de duas grandezas diretamente ou inversamente proporcionais. Dúvidas? Sugestões? Comentários? Escreva para o Professor Charlles: Skype: charllesnunes

COMPLEMENTO MATEMÁTICO

COMPLEMENTO MATEMÁTICO COMPLEMENTO MATEMÁTICO Caro aluno, A seguir serão trabalhados os conceitos de razão e proporção que são conteúdos matemáticos que devem auxiliar o entendimento e compreensão dos conteúdos de Química. Os

Leia mais

Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan

Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan Matemática Grandezas diretamente proporcionais A definição de grandeza está associada a tudo aquilo que pode ser medido ou contado. Como

Leia mais

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas:

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: ÁLGEBRA Nivelamento CAPÍTULO VI REGRA DE TRÊS REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: 1) Num acampamento, há 48 pessoas e alimento suficiente para um mês.

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA Razão, Proporção,Regra de, Porcentagem e Juros PROF. CARLINHOS NOME: N O : 1 RAZÃO, PROPORÇÃO E GRANDEZAS Razão é o quociente entre dois números não nulos

Leia mais

FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA DESAFIO DO DIA. Aula 26.1 Conteúdo:

FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA DESAFIO DO DIA. Aula 26.1 Conteúdo: Aula 26.1 Conteúdo: Múltiplos e submúltiplos do metro. 2 Habilidades: Resolver problemas que envolvam medidas de Comprimento e Área. 3 Pedro gastou R$9,45 para comprar 2,1kg de tomate. Quanto custa 1kg

Leia mais

Grandezas e Medidas no CAp UFRJ Introdução. Exercícios

Grandezas e Medidas no CAp UFRJ Introdução. Exercícios Grandezas e Medidas no CAp UFRJ Introdução Exercícios 1) Indique três aspectos diferentes que podem ser medidos num carro. Para cada aspecto identificado, informe a grandeza e a unidade de medida correspondente

Leia mais

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matemática Razão e Proporção Razão A palavra razão vem do latim ratio e significa a divisão ou o quociente entre dois números A e B, denotada

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

Aula 3 Grandezas Diretamente e Inversamente Proporcionais. Regra de

Aula 3 Grandezas Diretamente e Inversamente Proporcionais. Regra de 1 Matemática Instrumental 2008.1 Aula 3 Grandezas Diretamente e Inversamente Proporcionais. Regra de Três. Objetivos: Conceituar grandezas diretamente e inversamente proporcionais. Aplicar os conceitos

Leia mais

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática ENEM 014 - Caderno Cinza Resolução da Prova de Matemática 136. Alternativa (C) Basta contar os nós que ocupam em cada casa. 3 nós na casa dos milhares. 0 nós na casa das centenas. 6 nós na casa das dezenas

Leia mais

Matéria: Matemática Assunto: Conversão de unidades Prof. Dudan

Matéria: Matemática Assunto: Conversão de unidades Prof. Dudan Matéria: Matemática Assunto: Conversão de unidades Prof. Dudan Matemática CONVERSÃO DE UNIDADES Apresentamos a tabela de conversão de unidades do sistema Métrico Decimal Medida de Grandeza Fator Múltiplos

Leia mais

Matemática Financeira Módulo 2

Matemática Financeira Módulo 2 Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente

Leia mais

Regras de Conversão de Unidades

Regras de Conversão de Unidades Unidades de comprimento Regras de Conversão de Unidades A unidade de principal de comprimento é o metro, entretanto existem situações em que essa unidade deixa de ser prática. Se quisermos medir grandes

Leia mais

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM Olá Caro Aluno, Você já reparou que, no dia a dia quantificamos, comparamos e analisamos quase tudo o que está a nossa volta? Vamos ampliar nossos conhecimentos sobre algumas dessas situações. O objetivo

Leia mais

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12 Matemática Essencial Proporções: Aplicações Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

Disciplina: Matemática. Período: I. Professor (a): Liliane Cristina de Oliveira Vieira e Maria Aparecida Holanda Veloso

Disciplina: Matemática. Período: I. Professor (a): Liliane Cristina de Oliveira Vieira e Maria Aparecida Holanda Veloso COLÉGIO LA SALLE BRASILIA Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Período:

Leia mais

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido. FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL Unidades de Medida A necessidade de contar e mensurar as coisas sempre se fez presente no nosso dia a dia. Na prática, cada país ou região criou suas próprias unidades de medidas. A falta de padronização

Leia mais

Módulo 6 Porcentagem

Módulo 6 Porcentagem Professor: Rômulo Garcia machadogarcia@gmail.com Conteúdo Programático: Razões e proporções, divisão proporcional, regras de três simples e compostas, porcentagens Site: matematicaconcursos.blogspot.com

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma

Leia mais

Universidade Federal de Goiás Instituto de Informática

Universidade Federal de Goiás Instituto de Informática Universidade Federal de Goiás Instituto de Informática EXERCÍCIOS DE ESTRUTURAS SEQUÊNCIAIS 1. O coração humano bate em média uma vez por segundo. Desenvolver um algoritmo para calcular e escrever quantas

Leia mais

Você sabe a regra de três?

Você sabe a regra de três? Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Você sabe a regra de três?

Leia mais

IN = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}

IN = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Números Inteiros Números Naturais Desde os tempos mais remotos, o homem sentiu a necessidade de verificar quantos elementos figuravam em um conjunto. Antes que soubessem contar, os pastores verificavam

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

Resoluções Prova Anglo

Resoluções Prova Anglo Resoluções Prova Anglo TIPO F P-2 tipo D-5 Matemática (P-2) Ensino Fundamental 5º ano DESCRITORES, RESOLUÇÕES E COMENTÁRIOS A Prova Anglo é um dos instrumentos para avaliar o desempenho dos alunos do 5

Leia mais

Disciplina: Matemática. Período: I. Professor (a): Liliane Cristina de Oliveira Vieira e Maria Aparecida Holanda Veloso

Disciplina: Matemática. Período: I. Professor (a): Liliane Cristina de Oliveira Vieira e Maria Aparecida Holanda Veloso COLÉGIO LA SALLE BRASILIA Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Período:

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. UFMG 2007 RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0 Francisco resolveu comprar um pacote de viagem que custava R$ 4 200,00, já incluídos R$ 20,00

Leia mais

Fundamentos da Matemática

Fundamentos da Matemática Fundamentos da Matemática Aula 10 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos

Leia mais

A tabela abaixo mostra os múltiplos e submúltiplos do metro e os seus respectivos valores em relação à unidade padrão:

A tabela abaixo mostra os múltiplos e submúltiplos do metro e os seus respectivos valores em relação à unidade padrão: Unidades de Medidas e Conversões Medidas de comprimento Prof. Flavio Fernandes E-mail: flavio.fernandes@ifsc.edu.br Prof. Flavio Fernandes E-mail: flavio.fernandes@ifsc.edu.br O METRO E SEUS MÚLTIPLOS

Leia mais

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 1. A tecla da divisão da calculadora de Arnaldo parou de funcionar, mas nem por isso ele deixou de efetuar as divisões, pois a tecla de multiplicação funciona normalmente.

Leia mais

Educadora: Daiana Araújo C. Curricular:Ciências Naturais Data: / /2013 Estudante: 9º Ano. Unidade principal

Educadora: Daiana Araújo C. Curricular:Ciências Naturais Data: / /2013 Estudante: 9º Ano. Unidade principal Educadora: Daiana Araújo C. Curricular:Ciências Naturais Data: / /2013 Estudante: 9º Ano Medidas de massa Quilograma A unidade fundamental de massa chama-se quilograma. Apesar de o quilograma ser a unidade

Leia mais

Unidade 7 Grandezas e medidas

Unidade 7 Grandezas e medidas Sugestões de atividades Unidade 7 Grandezas e medidas 6 MATEMÁTICA 1 Matemática 1. Existem alguns comprimentos que ainda são apresentados em polegadas. Um exemplo são as telas de televisores e computadores,

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA ALFA Título do Perímetro e área em situações reais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA ALFA Título do Perímetro e área em situações reais SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA ALFA Título do Perímetro e área em situações reais Podcast Área Matemática Segmento Ensino Fundamental Programa de Alfabetização de Jovens e Adultos Duração 6min32seg

Leia mais

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão Matemática para Concursos - Provas Gabaritadas André Luiz Brandão CopyMarket.com Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida sem a autorização da Editora. Título:

Leia mais

Sumário. Volta às aulas. Vamos recordar?... 7 1. Grandezas e medidas: tempo e dinheiro... 59. Números... 10. Regiões planas e seus contornos...

Sumário. Volta às aulas. Vamos recordar?... 7 1. Grandezas e medidas: tempo e dinheiro... 59. Números... 10. Regiões planas e seus contornos... Sumário Volta às aulas. Vamos recordar?... Números... 0 Um pouco da história dos números... Como os números são usados?... 2 Números e estatística... 4 Números e possibilidades... 5 Números e probabilidade...

Leia mais

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental TEMA II GRANDEZAS E MEDIDAS A comparação de grandezas de mesma natureza que dá origem à idéia de

Leia mais

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. a Lista de Exercícios (L0) Queridos alunos, chegamos à nossa última lista de exercícios! Nesta lista vocês trabalharão com razão, proporção e regra de três. Façam

Leia mais

Resoluções Prova Anglo

Resoluções Prova Anglo Resoluções Prova Anglo F- TIPO D-6 Matemática (P-2) Ensino Fundamental 6º ano DESCRITORES, RESOLUÇÕES E COMENTÁRIOS A Prova Anglo é um dos instrumentos para avali ar o desempenho dos alunos do 6 o ano

Leia mais

Tópico 2. Conversão de Unidades e Notação Científica

Tópico 2. Conversão de Unidades e Notação Científica Tópico 2. Conversão de Unidades e Notação Científica Toda vez que você se refere a um valor ligado a uma unidade de medir, significa que, de algum modo, você realizou uma medição. O que você expressa é,

Leia mais

Matemática. Elementar II Caderno de Atividades

Matemática. Elementar II Caderno de Atividades Matemática Elementar II Caderno de Atividades Autor Leonardo Brodbeck Chaves 2009 2008 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores

Leia mais

Algarismos Significativos

Algarismos Significativos Algarismos Significativos Neste texto você conhecerá melhor os algarismos significativos, bem como as Regras gerais para realização de operações com algarismos significativos e as regras para Conversão

Leia mais

12- Gustavo comprou uma passagem aérea por R$ 1 600,00. No dia seguinte, o preço da passagem sofreu acréscimo de 22,5%.

12- Gustavo comprou uma passagem aérea por R$ 1 600,00. No dia seguinte, o preço da passagem sofreu acréscimo de 22,5%. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES ÁLGEBRA 7º ANO ENSINO FUNDAMENTAL =========================================================================================== 0- Calcule a razão entre:

Leia mais

CURSO FREE PMES PREPARATÓRIO JC

CURSO FREE PMES PREPARATÓRIO JC CURSO FREE PMES PREPARATÓRIO JC Geometria CÍRCULO Área A = π. r 2 π = 3,14 Perímetro P = 2. π. r RETANGULO Área A = b. h Perímetro P = 2b + 2h QUADRADO Área A = l. loua = l 2 Perímetro TRIÂNGULO P = 4l

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao

Leia mais

Introdução aos conceitos de medidas. Prof. César Bastos

Introdução aos conceitos de medidas. Prof. César Bastos Introdução aos conceitos de medidas. Prof. César Bastos Prof. César Bastos 2009 pág. 1 Medidas 1.1 Sistema Internacional de Unidades Durante muito tempo cada reino estabelecia suas unidades (padrões) de

Leia mais

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento.

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. MEDIDAS Comprimento O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. Existem várias unidades que podem ser utilizadas

Leia mais

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu

Leia mais

Área e perímetro. O cálculo de área é feito, multiplicando os valores dos lados dos polígonos:

Área e perímetro. O cálculo de área é feito, multiplicando os valores dos lados dos polígonos: Nome: nº: 6º ano: do Ensino Fundamental Professores: Edilaine e Luiz Carlos TER Área e perímetro O cálculo de área é feito, multiplicando os valores dos lados dos polígonos: Área do quadrado: Lado x Lado

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

Roteiro da aula. MA091 Matemática básica. Cálculo do mmc usando o mdc. Mínimo múltiplo comum. Aula 5 MMC e frações. Horas.

Roteiro da aula. MA091 Matemática básica. Cálculo do mmc usando o mdc. Mínimo múltiplo comum. Aula 5 MMC e frações. Horas. Roteiro da aula MA091 Matemática básica Aula 5 MMC e frações. Horas. Francisco A. M. Gomes UNICAMP - IMECC Março de 2015 1 2 3 4 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março de

Leia mais

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015 Roteiro da aula MA091 Matemática básica Aula 11 Equações e sistemas lineares 1 Francisco A. M. Gomes 2 UNICAMP - IMECC Março de 2015 3 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março

Leia mais

SITE_INEP_PROVA BRASIL - SAEB_MT_9ºANO (OK)

SITE_INEP_PROVA BRASIL - SAEB_MT_9ºANO (OK) 000 IT_005267 A figura a seguir é uma representação da localização das principais cidades ao longo de uma estrada, onde está indicada por letras a posição dessas cidades e por números as temperaturas registradas

Leia mais

Resoluções Prova Anglo

Resoluções Prova Anglo Resoluções Prova Anglo F- TIPO D-7 Matemática (P-2) Ensino Fundamental 7º ano DESCRITORES, RESOLUÇÕES E COMENTÁRIOS A Prova Anglo é um dos instrumentos para avaliar o desempenho dos alunos do 7 o ano das

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pela Universidade Federal do Paraná (UFPR). Graduado em Matemática pela UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 1992.

Leia mais

Aula 00 Curso: Raciocínio Lógico e Matemática Professor: Custódio Nascimento

Aula 00 Curso: Raciocínio Lógico e Matemática Professor: Custódio Nascimento Aula 00 Curso: Raciocínio Lógico e Matemática Professor: Custódio Nascimento APRESENTAÇÃO Caros alunos e alunas, Bem vindos ao curso online preparatório para o cargo de Auditor-Fiscal da Receita Federal

Leia mais

Caderno de Atividades De Aritmética para Educaç o de Jovens e Adultos do Ensino Fundamental

Caderno de Atividades De Aritmética para Educaç o de Jovens e Adultos do Ensino Fundamental APÊNDICE Produto Elaborado Lourival Alves Freitas Filho João Bosco Laudares Caderno de Atividades De Aritmética para Educaço de Jovens e Adultos do Ensino Fundamental Lourival Alves Freitas Filho João

Leia mais

TÉCNICO EM CONTABILIDADE MATEMÁTICA FINANCEIRA MÓDULO 1 ETEP TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 2012

TÉCNICO EM CONTABILIDADE MATEMÁTICA FINANCEIRA MÓDULO 1 ETEP TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 2012 2012-1 TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 1 Explicando o funcionamento da disciplina e a avaliação. Serão 2 aulas semanais onde os conteúdos serão abordados, explicados e exercitados.

Leia mais

GRANDEZAS. A sua nota na prova depende do número de questões que você acerta?

GRANDEZAS. A sua nota na prova depende do número de questões que você acerta? . UNIVERSIDADE CASTELO BRANCO CURSO DE MATEMÁTICA DISCIPLINA: Matemática Financeira - Negócios PROFESSOR: Ramon Silva de Freitas DATA: / / ALUNO: GRANDEZAS Você já pensou que: A sua nota na prova depende

Leia mais

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA PLANOS DE CURSO PARA 6º E 7º ANOS Campina Grande, 2011 -

Leia mais

FRAÇÕES DE UMA QUANTIDADE

FRAÇÕES DE UMA QUANTIDADE FRAÇÕES DE UMA QUANTIDADE FRAÇÕES DE UMA QUANTIDADE PREPARANDO O BOLO DICAS Helena comprou 4 ovos. Ela precisa de dessa quantidade para fazer o bolo de aniversário de Mariana. De quantos ovos Helena vai

Leia mais

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA PAG - 1 QUESTÃO ÚNICA MÚLTIPLA ESCOLHA 10,00 (dez) pontos distribuídos em 20 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item: MATEMÁTICA 01.

Leia mais

DISCURSIVAS SÉRIE AULA AULA 01

DISCURSIVAS SÉRIE AULA AULA 01 ANÁLISE MATEMÁTICA BÁSICA DISCURSIVAS SÉRIE AULA AULA 01 H40120M 4800 35 M120 1200M) H80 M MATEMÁTICA V M H 1) (Unicamp SP) M120H 50 A média aritmética das idades de um grupo de 120 pessoas é de 40 anos.

Leia mais

Operação com Números racionais

Operação com Números racionais Operação com Números racionais 1 Significado das frações a) Parte do todo Exemplo 1: 3 = três partes de seis partes, onde seis 6 partes é o todo. Exemplo 8: a) b) b) Divisão Exemplo 2: 6 3 = 6 3 Exemplo

Leia mais

COLÉGIO MILITAR DE CURITIBA - Projeto Pré-Requisitos 7º ano

COLÉGIO MILITAR DE CURITIBA - Projeto Pré-Requisitos 7º ano Caro aluno Este Caderno de Apoio à Aprendizagem em Matemática foi produzido com o objetivo de colaborar em sua aprendizagem. Ele apresenta uma série de atividades a serem resolvidas por você. Estas atividades

Leia mais

Usando unidades de medida

Usando unidades de medida Usando unidades de medida O problema Q uando alguém vai à loja de autopeças para comprar alguma peça de reposição, tudo que precisa é dizer o nome da peça, a marca do carro, o modelo e o ano de fabricação.

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Nome do(a) Aluno(a): Turma: RECOMENDAÇÕES IMPORTANTES

Nome do(a) Aluno(a): Turma: RECOMENDAÇÕES IMPORTANTES 5º ANO ESPECIALIZADO E CURSO PREPARATÓRIO 4º SIMULADO/2014-2ª ETAPA MATEMÁTICA Nome do(a) Aluno(a): Turma: RECOMENDAÇÕES IMPORTANTES 01) Verifique o total de folhas (09) deste Simulado. Ele contém 20 (vinte)

Leia mais

QUESTÕES PARA O 9º ANO ENSINO FUNDAMENTAL MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA O 9º ANO ENSINO FUNDAMENTAL MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA O 9º ANO ENSINO FUNDAMENTAL MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÃO 01 1 Identificar a localização/movimentação de objeto, em mapas, croquis e outras representações gráficas.

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA Uma Sequência Didática De Medidas De Comprimento E Superfície No 5º Ano Do Ensino Fundamental:

Leia mais

Aula 8. Acesse: http://fuvestibular.com.br/

Aula 8. Acesse: http://fuvestibular.com.br/ Acesse: http://fuvestibular.com.br/ Aula 8 A multiplicação nada mais é que uma soma de parcelas iguais. E a divisão, sua inversa, "desfaz o que a multiplicação faz". Quer ver? Vamos pensar nas questões

Leia mais

Matemática Financeira RECORDANDO CONCEITOS

Matemática Financeira RECORDANDO CONCEITOS 1 Matemática Financeira RECORDANDO CONCEITOS Propriedades da matemática Prioridades: É importante relembrar e entender alguns conceitos da matemática, que serão muito úteis quando trabalharmos com taxas.

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO COLÉGIO MILITAR DE BELO HORIZONTE BELO HORIZONTE MG 25 DE OUTUBRO DE 2003 DURAÇÃO: 120 MINUTOS CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO NÚMERO DE

Leia mais

Conjuntos Numéricos. Por meio do diagrama podemos verificar que: Introdução

Conjuntos Numéricos. Por meio do diagrama podemos verificar que: Introdução Conjuntos Numéricos Introdução Os conjuntos numéricos mostram a evolução do homem no decorrer do tempo mostrando que, de acordo com suas necessidades, criava novos números para atendê-las. Os conjuntos

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D Questão Considere a seqüência abaixo, conhecida como seqüência de Fibonacci Ela é definida de tal forma que cada termo, a partir do terceiro, é obtido pela soma dos dois imediatamente teriores a i :,,,

Leia mais

PRIMEIRA LISTA DE EXERCÍCIOS DE ALGORITMOS

PRIMEIRA LISTA DE EXERCÍCIOS DE ALGORITMOS PRIMEIRA LISTA DE EXERCÍCIOS DE ALGORITMOS CENTENA = x DEZENA = x UNIDADE = x 1. A imobiliária Imóbilis vende apenas terrenos retangulares. Faça um algoritmo para ler as dimensões de um terreno e depois

Leia mais

O material com as atividades resolvidas deverá ser entregue em dia combinado posteriormente.

O material com as atividades resolvidas deverá ser entregue em dia combinado posteriormente. Aluno (a): Disciplina MATEMÁTICA Professor ROLANDO Curso FUNDAMENTAL II ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 7º ANO Número: 1 - Conteúdo: Estudo de sistemas de equações do 1º grau Estudo da

Leia mais

(A) 25 (B) 35 (C) 55 (D) 85

(A) 25 (B) 35 (C) 55 (D) 85 D9 Estabelecer relações entre o horário de inicio e termino e ou intervalo da duração de um evento ou acontecimento. D10 Num problema estabelecer trocas entre cédulas e moedas do sistema monetário brasileiro,

Leia mais

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA MATEMÁTICA 49 A distância que um automóvel percorre após ser freado é proporcional ao quadrado de sua velocidade naquele instante Um automóvel, a 3 km/, é freado e pára depois de percorrer mais 8 metros

Leia mais

Resposta: Resposta: KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5

Resposta: Resposta: KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5 KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5 1. Com um automóvel que faz uma média de consumo de 12 km por litro, um motorista A gasta em uma viagem R$ 143,00 em combustível, abastecendo ao preço de R$ 2,60

Leia mais

Exercícios Importância das Unidades

Exercícios Importância das Unidades Exercícios Importância das Unidades 1. Tenho na carteira 3 notas de 5 reais e 2 moedas de 50 centavos. Quantos reais tenho em minha carteira? Quantos centavos tenho em minha carteira? 16 reais ou 1600

Leia mais

MÓDULO IX PARABÉNS!!!!!!

MÓDULO IX PARABÉNS!!!!!! 1 MÓDULO IX PARABÉNS!!!!!! VOCÊ É UM ALUNO VIRTUAL DE SUCESSO... VOCÊ CHEGOU COM BRILHANTISMO ATÉ AQUI E AGORA É SÓ COLHER OS RESULTADOS... BOA SORTE E SUCESSO EM SUA VIDA... PROFª FABIANA (www.somaticaeducar.com.br)

Leia mais

Qual é a média dos salários dessa empresa? R.:

Qual é a média dos salários dessa empresa? R.: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 7º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 0- Assunto: Média aritmética

Leia mais

Matriz Curricular de Matemática 6º ao 9º ano 6º ano 6º Ano Conteúdo Sistemas de Numeração Sistema de numeração Egípcio Sistema de numeração Romano Sistema de numeração Indo-arábico 1º Trimestre Conjunto

Leia mais

Caderno de Aplicação das Actividades do Manual

Caderno de Aplicação das Actividades do Manual Caderno de Aplicação das do Manual Com vista à reutilização do manual do aluno Eva Lima, Nuno Barrigão, Nuno Pedroso, Susana Santos Matemática 3.º ano Oferta ao aluno Também disponível on-line Oo Este

Leia mais

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matemática Sistema Métrico Decimal Definição: O SISTEMA MÉTRICO DECIMAL é parte integrante do Sistema de Medidas. É adotado no Brasil tendo

Leia mais

3º Ano do Ensino Médio. Aula nº 02. Assunto: JUROS E PORCENTAGENS

3º Ano do Ensino Médio. Aula nº 02. Assunto: JUROS E PORCENTAGENS Nome: Ano: 3º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº 02 Assunto: JUROS E PORCENTAGENS 1) Porcentagem Definição: É uma fração que indica a participação de uma quantidade sobre um todo.

Leia mais

Sistema Internacional de unidades (SI). 22/06/1799 sistema métrico na França

Sistema Internacional de unidades (SI). 22/06/1799 sistema métrico na França CURSO DE ENGENHARIA CARTOGRÁFICA Carlos Aurélio Nadal Doutor em Ciências Geodésicas Professor Titular do Departamento de Geomática - Setor de Ciências da Terra Sistema Internacional de unidades (SI). 22/06/1799

Leia mais

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9 Sumário Questão 1 (Assunto: Operações com números na forma de fração)... Questão (Assunto: Formas geométricas planas)... Questão (Assunto: Potências e raízes)...4 Questão 4 (Assunto: Expressões numéricas)...4

Leia mais

Lista de Exercícios 10 Matemática Financeira

Lista de Exercícios 10 Matemática Financeira Lista de Exercícios 10 Matemática Financeira Razão Chama-se de razão entre dois números racionais a e b, ao quociente entre eles. Indica-se a razão de a para b por a/b ou a:b. Exemplo: Na sala da 6ª B

Leia mais

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL 1 - Medida de comprimento SISTEMA MÉTRICO DECIMAL No sistema métrico decimal, a unidade fundamental para medir comprimentos é o metro, cuja abreviação é m. Existem os múltiplos e os submúltiplos do metro,

Leia mais

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO:

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta fixada

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Regra de três. Elizabete Alves de Freitas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Regra de três. Elizabete Alves de Freitas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 02 matemática Regra de três Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto Gráfico Secretaria de Educação a

Leia mais

Colégio Militar de Curitiba

Colégio Militar de Curitiba Colégio Militar de Curitiba Caro aluno Este Caderno de Apoio à Aprendizagem em Matemática foi produzido para você com o objetivo de colaborar com seus estudos. Ele apresenta uma série de atividades a serem

Leia mais

Grandezas proporcionais (II): regra de três composta

Grandezas proporcionais (II): regra de três composta Grandezas proporcionais (II): regra de três composta 1. Proporcionalidade composta Observe as figuras: A 4 2 B 5 A C 8 B 10 C Triângulo Base Altura Área 5 4 2 2 A = 5. 4 2 = 10 10 8 A = 10. 8 2 = 40 2

Leia mais

METROLOGIA Escala e Paquímetro. Prof. João Paulo Barbosa, M.Sc.

METROLOGIA Escala e Paquímetro. Prof. João Paulo Barbosa, M.Sc. METROLOGIA Escala e Paquímetro Prof. João Paulo Barbosa, M.Sc. Regras de Arredondamento Quando o algarismo seguinte ao último algarismo a ser conservado for inferior a 5, o último algarismo a ser conservado

Leia mais