Circunferência e Círculos

Tamanho: px
Começar a partir da página:

Download "Circunferência e Círculos"

Transcrição

1 Circunferência e Círculos 1. (Unifor 2014) Os pneus de uma bicicleta têm raio R e seus centros distam R. Além disso, a reta t passa por P e é tangente à circunferência do pneu, formando um ângulo α com a 2. reta s que liga os dois centros. Pode-se concluir que cos α a) 2 b) 2 2 c) 2 d) 2 2 e) 2. (G1 - cftmg 2014) Maria Campos, a mocinha do Mercado Central, caminha pela Praça Raul Soares sobre o arco ABC e, depois, segue em linha reta até o ponto D. Um esquema simplificado da praça está desenhado a seguir, onde se apresentam duas circunferências de centro O, de raios 5 m e 42 m. Sabe-se que os pontos A, R, S e T são vértices de um quadrado. Considere π. O percurso realizado por Maria, em metros, encontra-se no intervalo a) [55, 60[. b) [60, 65[. c) [65, 70[. d) [70, 75[. Página 1 de 20

2 . (Uerj 2014) Uma máquina possui duas engrenagens circulares, sendo a distância entre seus centros A e B igual a 11cm, como mostra o esquema: Sabe-se que a engrenagem menor dá 1000 voltas no mesmo tempo em que a maior dá 75 voltas, e que os comprimentos dos dentes de ambas têm valores desprezíveis. A medida, em centímetros, do raio da engrenagem menor equivale a: a) 2,5 b),0 c),5 d) 4,0 4. (Uece 2014) Uma bicicleta, cuja medida do raio da circunferência de cada pneu é 5 cm, percorreu uma distância de 100 m, em linha reta, sem deslizamento de pneu ao longo do percurso. O número inteiro que indica, de forma mais aproximada, a quantidade de giros completos de cada pneu da bicicleta, ao longo do trajeto realizado, é Observação: Use,14 para o valor de π. a) 42. b) 45. c) 50. d) (Pucrj 2014) A roda de um carro tem 0 cm de raio. Depois de a roda completar uma volta, o carro terá se deslocado aproximadamente: Usando,14 π a) 60 cm b) 120 cm c) 180 cm d) 188 cm e) 198 cm Página 2 de 20

3 6. (Ufg 201) Gerard Stenley Hawkins, matemático e físico, nos anos 1980, envolveu-se com o estudo dos misteriosos círculos que apareceram em plantações na Inglaterra. Ele verificou que certos círculos seguiam o padrão indicado na figura a seguir, isto é, três círculos congruentes, com centros nos vértices de um triângulo equilátero, tinham uma reta tangente comum. Nestas condições, e considerando-se uma circunferência maior que passe pelos centros dos três círculos congruentes, calcule a razão entre o raio da circunferência maior e o raio dos círculos menores. 7. (Enem 201) Um restaurante utiliza, para servir bebidas, bandejas com base quadradas. Todos os copos desse restaurante têm o formato representado na figura: Considere que 7 AC BD e que é a medida de um dos lados da base da bandeja. 5 Qual deve ser o menor valor da razão BD para que uma bandeja tenha capacidade de portar exatamente quatro copos de uma só vez? a) 2 b) 14 5 c) 4 d) 24 5 e) Página de 20

4 8. (G1 - ifsp 201) Uma pista de atletismo é formada por duas raias cujo percurso é formado por duas partes retas intercaladas com duas semicircunferências, conforme a figura. Dois atletas estavam correndo, um na raia I e outro na raia II, quando pararam para descansar. O atleta da raia II disse que dera 10 voltas na pista e correra mais, pois sua raia é maior; já, o outro atleta discordou, pois ele acreditava ter dado mais voltas. Se a semicircunferência tracejada da raia I tem raio igual a 10 metros, a da raia II tem raio de 12 metros, e as partes retas têm 100 metros de comprimento, então o número mínimo de voltas que o atleta da raia I deve completar para correr mais que o outro é a) 11. b) 12. c) 1. d) 14. e) (Fgv 2012) Uma bobina cilíndrica de papel possui raio interno igual a 4 cm e raio externo igual a 8 cm. A espessura do papel é 0,2 mm. Adotando nos cálculos, π o papel da bobina, quando completamente desenrolado, corresponde a um retângulo cuja maior dimensão, em metros, é aproximadamente igual a a) 20. b) 0. c) 50. d) 70. e) 90. Página 4 de 20

5 10. (Uespi 2012) Uma circunferência de raio R é tangente externamente a duas circunferências de raio r, com r < R. As três circunferências são tangentes a uma mesma reta, como ilustrado a seguir. Qual a distância entre os centros das circunferências de raio r? a) 4 Rr b) Rr c) 2 Rr d) Rr e) Rr /2 11. (G1 - utfpr 2012) Uma bicicleta tem uma roda de 0 centímetros de raio e outra de 40 centímetros de raio. Sabendo-se que a roda menor dá 16 voltas para certo percurso, determine quantas voltas dará a roda maior para fazer o mesmo percurso. a) 102. b) 108. c) 126. d) 120. e) (Unioeste 2012) Sabe-se que uma das raízes da equação x 7x 44 0 corresponde, em cm, ao comprimento do raio de uma circunferência. Qual o comprimento desta circunferência, considerando π,14? a) 69,08 cm. b) 69,01 cm. c) 69,80 cm. d) 59,08 cm. e) 58,09 cm. 2 Página 5 de 20

6 1. (Uerj 2012) A figura abaixo representa um círculo de centro O e uma régua retangular, graduada em milímetros. Os pontos A, E e O pertencem à régua e os pontos B, C e D pertencem, simultaneamente, à régua e à circunferência. Considere os seguintes dados Segmentos Medida (cm) AB 1,6 ED 2,0 EC 4,5 O diâmetro do círculo é, em centímetros, igual a: a),1 b), c),5 d),6 14. (G1 - cftmg 2012) Uma partícula descreve um arco de 1080 sobre uma circunferência de 15 cm de raio. A distância percorrida por essa partícula, em cm, é igual a a) 90 π. b) 120 π. c) 140 π. d) 160 π. 15. (Feevale 2012) Um grupo de amigos resolveu abraçar uma árvore centenária com 4 metros de diâmetro. Considere que cada um deles consegue abraçar 0,4π metros da árvore. Nessas condições, quantos amigos foram necessários para conseguir fechar o abraço na árvore? a) 16 amigos b) 10 amigos c) 6 amigos d) 4 amigos e) amigos 16. (G1 - utfpr 2012) A London Eye também conhecida como Millennium Wheel (Roda do Milênio), é uma roda-gigante de observação com 15 metros de diâmetro e está situada na cidade de Londres, capital do Reino Unido. Quanto aproximadamente percorrerá uma pessoa nesta roda-gigante em 6 voltas, considerando π,14? a) 67,5 m. b) 15 m. c) 42,9 m. d) 254,4 m. e) 8589,75 m. Página 6 de 20

7 17. (G1 - ifsp 2012) Uma mangueira de jardim enrolada forma uma pilha circular medindo cerca de 100 cm de um lado a outro. Se há seis voltas completas, o comprimento da mangueira é de, aproximadamente a) 9 m. b) 15 m. c) 19 m. d) 5 m. e) 9 m. 18. (Ufrgs 2012) Um disco de raio 1 gira ao longo de uma reta coordenada na direção positiva, corno representado na figura abaixo. Considerando-se que o ponto P está inicialmente na origem, a coordenada de P, após 10 voltas completas, estará entre a) 60 e 62. b) 62 e 64. c) 64 e 66. d) 66 e 68. e) 68 e (Uerj 2011) Um ciclista pedala uma bicicleta em trajetória circular de modo que as direções dos deslocamentos das rodas mantêm sempre um ângulo de 60º. O diâmetro da roda traseira dessa bicicleta é igual à metade do diâmetro de sua roda dianteira. O esquema a seguir mostra a bicicleta vista de cima em um dado instante do percurso. Admita que, para uma volta completa da bicicleta, N 1 é o número de voltas dadas pela roda traseira e N 2 o número de voltas dadas pela roda dianteira em torno de seus respectivos eixos de rotação. N1 A razão é igual a: N2 a) 1 b) 2 c) d) 4 Página 7 de 20

8 20. (Uel 2011) Uma pista de corrida de 400 m é constituída por trechos retos e semicirculares, conforme a figura a seguir: Suponha que dois atletas, nas curvas, sempre se mantenham na parte mais interna de suas raias, de modo a percorrerem a menor distância nas curvas, e que a distância medida a partir da parte interna da raia 1 até a parte interna da raia 8 seja de 8 m. Para que ambos percorram 400 m, quantos metros o atleta da raia mais externa deve partir à frente do atleta da raia mais interna? Dado: π =, 14 a) 10,00 m b) 25,12 m c) 2,46 m d) 50,24 m e) 100,48 m 21. (G1 - ifal 2011) A estrada que liga duas cidades tem 4.96 m de extensão. Quantas voltas completas dará uma das rodas da bicicleta que vai percorrer essa estrada se o raio da roda é 0,5 m? Considere π,14. a) voltas. b) voltas. c) voltas. d) voltas. e) voltas. 22. (Uesc 2011) No processo inicial de criação de um logotipo para uma empresa, um designer esboçou várias composições de formas geométricas, na tentativa de encontrar algo simples e representativo. Em uma dessas composições, um círculo de raio r 6cm foi sobreposto a um triângulo equilátero de lado L 18cm, de acordo com a figura. Sabendo-se que as duas figuras têm centros no mesmo ponto, pode-se afirmar que o perímetro do logotipo é, em cm, igual a a) 66 π b) 69 π c) 66 π d) 9 2π e) 9 2 π Página 8 de 20

9 2. (Uftm 2011) O maior relógio de torre de toda a Europa é o da Igreja St. Peter, na cidade de Zurique, Suíça, que foi construído durante uma reforma do local, em (O Estado de S.Paulo. Adaptado.) O mostrador desse relógio tem formato circular, e o seu ponteiro dos minutos mede 4,5 m. Considerando,1, a distância que a extremidade desse ponteiro percorre durante 20 minutos é, aproximadamente, a) 10 m. b) 9 m. c) 8 m. d) 7 m. e) 6 m. 24. (Epcar (Afa) 2011) Na figura abaixo, têm-se quatro círculos congruentes de centros O 1, O 2, O e O 4 e de raio igual a 10 cm. Os pontos M, N, P, Q são pontos de tangência entre os círculos e A, B, C, D, E, F, G, H são pontos de tangência entre os círculos e a correia que os contorna. Sabendo-se que essa correia é inextensível, seu perímetro, em cm, é igual a 2 π 40 a) b) 5 π 16 c) 20 π 4 d) 5 π 8 Página 9 de 20

10 25. (Enem 2011) O atletismo é um dos esportes que mais se identificam com o espírito olímpico. A figura ilustra uma pista de atletismo. A pista é composta por oito raias e tem largura de 9,76 m. As raias são numeradas do centro da pista para a extremidade e são construídas de segmentos de retas paralelas e arcos de circunferência. Os dois semicírculos da pista são iguais. Se os atletas partissem do mesmo ponto, dando uma volta completa, em qual das raias o corredor estaria sendo beneficiado? a) 1 b) 4 c) 5 d) 7 e) (Ufrgs 2010) O perímetro do triângulo equilátero circunscrito a um círculo de raio é a) 18. b) 20. c) 6. d) e) (G1 - cp2 2010) Para fazer um trabalho de Artes, Daniela está recortando círculos de uma folha de cartolina, conforme o modelo de corte da figura abaixo. A cartolina tem dimensões 60 cm x 54 cm e todos os círculos têm o mesmo raio. a) Quanto mede o raio de cada círculo recortado? b) Qual a medida da área desperdiçada de cartolina, representada pelo sombreado na figura acima? (Considere,14 ) Página 10 de 20

11 28. (G1 - utfpr 2010) Observe a figura. Note que as duas circunferências menores se tangenciam no centro da circunferência maior e, também tangenciam a circunferência maior. Sabendo que o comprimento da circunferência maior é de 12ð cm, pode-se afirmar que o valor da área da parte hachurada é, em cm 2 : a) 6π b) 8π c) 9π d) 18π e) 6π 29. (Enem 2010) A ideia de usar rolos circulares para deslocar objetos pesados provavelmente surgiu com os antigos egípcios ao construírem as pirâmides. Representando por R o raio da base dos rolos cilíndricos, em metros, a expressão do deslocamento horizontal y do bloco de pedra em função de R, após o rolo ter dado uma volta completa sem deslizar, é a) y = R. b) y = 2R. c) y = πr. d) y = 2πR. e) y = 4πR. 0. (Pucrj 2010) A figura a seguir é uma janela com formato de um semicírculo sobre um retângulo. Sabemos que a altura da parte retangular da janela é 1 m e a altura total da janela é 1,5 m. A largura da parte retangular, expressa em metros, deve ser: a) 0,5 b) 1 c) 2 d) π e) 2 π Página 11 de 20

12 Gabarito: Resposta da questão 1: [D] Gabarito Oficial: [E] Gabarito SuperPro : [D] Considere a figura. Sabendo que AP R e AB R, do Teorema de Pitágoras, vem AP AB PB (R) R PB PB 2 2R. Em consequência, temos PB 2 2R cosα cosα AP R 2 2 cos α. Resposta da questão 2: [C] O comprimento do percurso realizado por Maria é dado por 1 1 2π OC OC OD ,5 7 68,5 m. Portanto, segue que 68,5 [65, 70[. Página 12 de 20

13 Resposta da questão : [B] Sejam n A e n B, respectivamente, o número de voltas da engrenagem maior e o número de voltas da engrenagem menor. Desse modo, se r A e r B são os raios dessas engrenagens, então n 2π r n 2π r 75 r 1000 r A A B B A B Portanto, B 8 ra r B. 8 ra rb 11 rb rb 11 r cm. Resposta da questão 4: [B] Perímetro do pneu: 2 π 5cm 70,14 219,8cm Distância percorrida: 100m = cm Número de voltas: : 219,8 = 45. Resposta da questão 5: [D] O perímetro da roda corresponde a 2π 0 2, cm, que é o resultado desejado. Resposta da questão 6: Na figura abaixo, H 1, H 2 e H são os pontos em que os círculos de centros A,B e C tangenciam a reta. Seja O o centro do círculo circunscrito ao triângulo ABC. É fácil ver que BH AH 2 BH AM, com M sendo o ponto médio do lado BC. Logo, pela propriedade da mediana, obtemos Página 1 de 20

14 2 4 OA AM BH 1, ou seja, o raio do círculo maior é igual a 4 do raio dos círculos menores. Resposta da questão 7: [D] Considere a figura, em que BD x e AC y. Para que a bandeja tenha capacidade de portar exatamente quatro copos de uma só vez, deve-se ter (x y) 2 x x x. 5 5 Portanto, o resultado pedido é dado por 24 x BD x 5 Resposta da questão 8: [A] Comprimento da raia I = π.10 Comprimento da raia II = π ,8 m 275,6 m De acordo com o problema, o atleta da raia II deu 10 voltas e chamaremos de v o número de voltas dadas pelo atleta da raia I. Logo: v 262, ,6 275,6 v 262,8 V 10,4779 Resposta: O atleta da raia I deve completar 11 voltas para correr mais que o outro. Página 14 de 20

15 Resposta da questão 9: [D] Sabendo que a espessura do papel é 0,2 mm, temos que todo o papel enrolado corresponde a 40 mm 200 circunferências concêntricas, de tal modo que os raios dessas circunferências 0,2 mm crescem, de dentro para fora, segundo uma progressão aritmética de razão 0,2 mm. Portanto, a maior dimensão do retângulo é dada pela soma dos comprimentos das circunferências, ou seja, 40, π (40,2 40,4 80) Resposta da questão 10: [A] Considere a figura mm 70 m. Sabendo que AC R r e BC R r, pelo Teorema de Pitágoras, vem AC AB BC (R r) AB (R r) 2 AB 4Rr AB 2 Rr. Portanto, como AD 2 AB, segue que o resultado pedido é 2 2 Rr 4 Rr. Página 15 de 20

16 Resposta da questão 11: [A] A distância percorrida pela roda maior é igual à distância percorrida pela roda menor. C = comprimento da roda maior. c = comprimento da roda menor. x = número de voltas da roda maior c C 16.2 π.0 x.2 π x 40 x 102 Resposta da questão 12: [A] 2 Determinando as raízes da equação x 7x 44 0, temos x = - 4 ou x = 11. Logo, o raio da circunferência é x = 11. Portanto, o comprimento da circunferência será dado por: C 2 π r 2, ,08 Resposta da questão 1: [B] Considere a figura abaixo. Queremos calcular 2 OB. Sabemos que ED 2cm e EC 4,5cm. Logo, DC EC ED 4,5 2 2,5cm. DC 2,5 Sendo M o ponto médio do segmento DC, vem que DM 1,25cm. 2 2 Por outro lado, como EF AB, temos FD ED EF ED AB 2 1,6 0,4cm. Portanto, 2 OB 2 (FD DM) 2 (0,4 1,25),cm. Resposta da questão 14: [A] Número de voltas: 1080 :60 =. Distância total percorrida: 2 π π cm. Página 16 de 20

17 Resposta da questão 15: [B] Perímetro do tronco: 2 π.2 4π Número de amigos = 4π 10 0,4π Portanto, foram necessários 10 amigos. Resposta da questão 16: [D] Comprimento de uma volta: C = 2.,14.(15/2) = 42,9 m. Comprimento de seis voltas: 6.42,9 = 254,4 m. Resposta da questão 17: [C] Raio de cada volta: 0,5 m. Comprimento aproximado de cada volta: 2 π 0,5,14 cm. Comprimento aproximado da mangueira toda: 6,14 18,84 m 19 m. Resposta da questão 18: [B] Perímetro da circunferência: C 2πR C 2 (,14) 1 6,28. Após 10 voltas completas, estaremos em 62,8; portanto, entre 62 e 64. Resposta da questão 19: [A] Sejam OP R 1 e OQ R 2, respectivamente, os raios das trajetórias das rodas traseira e dianteira. Do triângulo OPQ obtemos R1 sen0 R2 2R 1. R 2 Página 17 de 20

18 Logo, as distâncias percorridas pelas rodas traseira e dianteira para executar uma volta completa são dadas por S 2 R e 1 1 S2 2 R2 4 R 1. Sejam r 1 e r, 2 respectivamente, os raios das rodas traseira e dianteira da bicicleta. Do enunciado, sabemos que r 2r. Assim, os comprimentos das rodas são iguais a C 2 r e C 2 r 4 r Portanto, a razão pedida é: S1 2 R1 N1 C1 2 r1 1. N S2 4 R 2 1 C 4 r 2 1 Resposta da questão 20: [E] 2 1 Comprimento da pista maior = 2.,14.6, ,76 = 450,24 m 450, = 50,24 m Resposta da questão 21: [B] N.º de voltas = π 0,5 6,28 0,5 Página 18 de 20

19 Resposta da questão 22: [C] Considere a figura. Como MBNO é losango, segue que o perímetro pedido é dado por 6 MB OM 6 (6 ). Resposta da questão 2: [B] 20 minutos correspondem a 1/ da circunferência descrita pelo ponteiro. Logo, a distância percorrida por sua extremidade será de Aproximadamente 9 m. 2. π.r 2.,1.4,5 8,99m Resposta da questão 24: [C] Resposta da questão 25: [A] Na raia 1, o atleta percorreria a menor distância, pois seu comprimento é menor. Os raios das semicircunferências são menores. Página 19 de 20

20 Resposta da questão 26: [A] x é a medida do lado do triângulo, logo: 1. x x 6 2 log o P x 18 Resposta da questão 27: a) 6.R = 60 R = 10 cm b) A = = 728 cm 2 Resposta da questão 28: [D] R = r aio maior e r = raio menor 2.R = 12 R = 6cm e r = cm A = = 18 cm 2 Resposta da questão 29: [E] Deslocamento do rolo em relação ao solo: 2. R. Deslocamento do bloco em relação ao rolo: 2. R. Deslocamento do bloco em relação ao solo: 4. R. Resposta da questão 0: [B] Raio do círculo: R = 1,5 1 = 0,5m Logo 2R = 1m Portanto a largura do retângulo é: x = 2R x = 1m Página 20 de 20

LISTA de RECUPERAÇÃO MATEMÁTICA

LISTA de RECUPERAÇÃO MATEMÁTICA LISTA de RECUPERAÇÃO Professor: ARGENTINO Recuperação: O ANO DATA: 0 / 06 / 015 MATEMÁTICA 1. A figura representa duas raias de uma pista de atletismo plana. Fábio (F) e André (A) vão apostar uma corrida

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,

Leia mais

Arcos na Circunferência

Arcos na Circunferência Arcos na Circunferência 1. (Fuvest 013) Uma das primeiras estimativas do raio da Terra é atribuída a Eratóstenes, estudioso grego que viveu, aproximadamente, entre 75 a.c. e 195 a.c. Sabendo que em Assuã,

Leia mais

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante.

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 9º ANO REVISÃO 1) (Cesesp-PE) Do alto de uma torre de 50 metros de altura, localizada numa ilha, avista-se a

Leia mais

Lei dos Senos e dos Cossenos

Lei dos Senos e dos Cossenos Lei dos Senos e dos Cossenos 1. (G1 - cftrj 014) Considerando que ABC é um triângulo tal que AC 4 cm, BC 1 cm e  60, calcule os possíveis valores para a medida do lado AB.. (Ufpr 014) Dois navios deixam

Leia mais

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m.

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m. ÁREAS DE FIGURAS PLANAS RETÂNGULO PARALELOGRAMO Exemplo: Calcule a área de um paralelogramo que tem,4 cmdebasee1,3cmdealtura. Resposta: A= B h A=,4x1,3 A=3,1 cm² 01. Calcule a área do paralelogramo, sabendo-se

Leia mais

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é ÁRES 01 (UFMG) Um terreno tem a forma da figura abaixo. Se,, = 10 m, = 70 m, = 40 m e = 80 m, então a área do terreno é a) 1 500 m b) 1 600 m c) 1 700 m d) 1 800 m 0 (FMMG) - Observe a figura. Nessa figura,

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

Grupo de exercícios I - Geometria plana- Professor Xanchão

Grupo de exercícios I - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

Quinta lista de exercícios.

Quinta lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2015 Quinta lista de exercícios. Triângulos retângulos. Polígonos regulares. Áreas de superfícies planas. 1. Qual deve ser o comprimento de uma escada

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia..0. Sabendo que os anos bissextos são os múltiplos de 4 e que o primeiro dia de 007 foi segunda-feira, o próximo ano a começar também em uma

Leia mais

2. Na figura, ANM é um triângulo e ABCD é um quadrado. Calcule a área do quadrado:

2. Na figura, ANM é um triângulo e ABCD é um quadrado. Calcule a área do quadrado: SEMELHANÇA DE TRIÂNGULOS 1. Duas cidades X e Y são interligadas pela rodovia R101, que é retilínea e apresenta 300 km de extensão. A 160 km de X, à beira da R101, fica a cidade Z, por onde passa a rodovia

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

Arcos na Circunferência

Arcos na Circunferência Arcos na Circunferência 1. (Uerj 015) Um tubo cilíndrico cuja base tem centro F e raio r rola sem deslizar sobre um obstáculo com a forma de um prisma triangular regular. As vistas das bases do cilindro

Leia mais

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03. Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

1 ELEMENTOS DA CIRCUNFERÊNCIA

1 ELEMENTOS DA CIRCUNFERÊNCIA Matemática 2 Pedro Paulo GEOMETRIA PLANA II 1 ELEMENTOS DA CIRCUNFERÊNCIA Circunferência é o conjunto de pontos que está a uma mesma distância (chamaremos essa distância de raio) de um ponto fixo (chamaremos

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco 1. A figura a seguir apresenta o delta do rio Jacuí, situado na região metropolitana de Porto Alegre. Nele se encontra o parque estadual Delta do Jacuí, importante parque de preservação ambiental. Sua

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

Avançando com as áreas de figuras planas

Avançando com as áreas de figuras planas Módulo 1 Unidade 8 Avançando com as áreas de figuras planas Para início de conversa... Nem todos os polígonos possuem fórmulas específicas para cálculo da medida de sua área. Imagine, por exemplo, que

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

valdivinomat@yahoo.com.br Rua 13 de junho, 1882-3043-0109

valdivinomat@yahoo.com.br Rua 13 de junho, 1882-3043-0109 LISTA 17 RELAÇÕES MÉTRICAS 1. (Uerj 01) Um modelo de macaco, ferramenta utilizada para levantar carros, consiste em uma estrutura composta por dois triângulos isósceles congruentes, AMN e BMN, e por um

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais

b) Qual deve ser a aceleração centrípeta, para que com esta velocidade, ele faça uma trajetória circular com raio igual a 2m?

b) Qual deve ser a aceleração centrípeta, para que com esta velocidade, ele faça uma trajetória circular com raio igual a 2m? 1 - Dadas as medidas da bicicleta abaixo: a) Sabendo que um ciclista pedala com velocidade constante de tal forma que o pedal dá duas voltas em um segundo. Qual a velocidade linear, em km/h da bicicleta?

Leia mais

LISTA DE MATEMÁTICA II

LISTA DE MATEMÁTICA II Ensino Médio Unidade São Judas Tadeu Professora: Oscar Aluno (a): Série: 3ª Data: / / 2015. LISTA DE MATEMÁTICA II 1) (Fuvest-SP) Um lateral L faz um lançamento para um atacante A, situado 32 m à sua frente

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade

Leia mais

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF Pirâmide 1. (Unifesp 01) Na figura, ABCDEFGH é um paralelepípedo reto-retângulo, e PQRE é um tetraedro regular de lado 6cm, conforme indica a figura. Sabe-se ainda que: P e R pertencem, respectivamente,

Leia mais

Velocidade Média. Se um

Velocidade Média. Se um Velocidade Média 1. (Unicamp 2013) Para fins de registros de recordes mundiais, nas provas de 100 metros rasos não são consideradas as marcas em competições em que houver vento favorável (mesmo sentido

Leia mais

Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab.

Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab. MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA13-2015.2 - Gabarito Questão 01 [ 2,00 pts ] Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

Geometria Métrica Espacial. Geometria Métrica Espacial

Geometria Métrica Espacial. Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica

Leia mais

ESCOLA ESTADUAL JOÃO XXIII A

ESCOLA ESTADUAL JOÃO XXIII A Educando para a Modernidade desde 1967 ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! NATUREZA DA ATIVIDADE: EXERCÍCIOS DE FIXAÇÃO 2 DISCIPLINA: FÍSICA ASSUNTO: MOVIMENTO

Leia mais

Semelhança de Triângulos

Semelhança de Triângulos Semelhança de Triângulos 1. (Pucrj 2013) O retângulo DEFG está inscrito no triângulo isósceles ABC, como na figura abaixo: Assumindo DE = GF =12, EF = DG = 8 e AB =15, a altura do triângulo ABC é: a) 35

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

QUESTÕES ÁREAS DE POLÍGONOS

QUESTÕES ÁREAS DE POLÍGONOS QUESTÕES ÁREAS DE POLÍGONOS 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a),0 m. b),0

Leia mais

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1.

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1. EXAME NACIONAL DE QUALIFICAÇÃO 0 - Questão. GABARITO Considere um triângulo equilátero de lado e seja A sua área. Ao ligar os pontos médios de cada lado, obtemos um segundo triângulo equilátero de área

Leia mais

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia Q0 João entrou na lanchonete BOG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0 Na mesa ao lado, algumas pessoas pediram 8

Leia mais

P.A. 2. 2. (Uece 2015) Para qual valor do número inteiro positivo n a igualdade. 1 3 5 2n 1 2014 é satisfeita? a) 2016. b) 2015. c) 2014. d) 2013.

P.A. 2. 2. (Uece 2015) Para qual valor do número inteiro positivo n a igualdade. 1 3 5 2n 1 2014 é satisfeita? a) 2016. b) 2015. c) 2014. d) 2013. P.A. 1. (Pucpr 015) Um consumidor, ao adquirir um automóvel, assumiu um empréstimo no valor total de R$ 4.000,00 (já somados juros e encargos). Esse valor foi pago em 0 parcelas, formando uma progressão

Leia mais

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as

Leia mais

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVAS DE MATEMÁTICA DA UFMG VESTIBULAR 01 a ETAPA Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA A - a Etapa o DIA QUESTÃO 01 Janaína comprou um eletrodoméstico financiado, com taxa de 10% ao mês,

Leia mais

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13 Cilindro 1. (Ueg 01) Uma coluna de sustentação de determinada ponte é um cilindro circular reto. Sabendo-se que na maquete que representa essa ponte, construída na escala 1:100, a base da coluna possui

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

Áreas e Aplicações em Geometria

Áreas e Aplicações em Geometria 1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das

Leia mais

Construções Fundamentais. r P r

Construções Fundamentais. r P r 1 Construções Fundamentais 1. De um ponto traçar a reta paralela à reta dada. + r 2. De um ponto traçar a perpendicular à reta r, sabendo que o ponto é exterior a essa reta; e de um ponto P traçar a perpendicular

Leia mais

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes. OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto

Leia mais

16 Comprimento e área do círculo

16 Comprimento e área do círculo A UA UL LA Comprimento e área do círculo Introdução Nesta aula vamos aprender um pouco mais sobre o círculo, que começou a ser estudado há aproximadamente 4000 anos. Os círculos fazem parte do seu dia-a-dia.

Leia mais

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera Aula n ọ 04 Esfera e Sólidos Redondos Área da Esfera A área de uma esfera é a medida de sua superfície. Podemos dizer que sua área é igual a quatro vezes a área de um círculo máximo, ou seja: eixo R O

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA FUVEST VESTIBULAR 006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA 1. A partir de 64 cubos brancos, todos iguais, forma-se um novo cubo. A seguir, este novo

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS Como pode cair no enem (UERJ) Pardal é a denominação popular do dispositivo óptico-eletrônico utilizado para fotografar veículos

Leia mais

EXERCÍCIOS UERJ 2014 MOVIMENTO CIRCULAR

EXERCÍCIOS UERJ 2014 MOVIMENTO CIRCULAR 1. (Fgv 2009) Uma grande manivela, quatro engrenagens pequenas de 10 dentes e outra de 24 dentes, tudo associado a três cilindros de 8 cm de diâmetro, constituem este pequeno moedor manual de cana. Ao

Leia mais

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA MATEMÁTICA 49 A distância que um automóvel percorre após ser freado é proporcional ao quadrado de sua velocidade naquele instante Um automóvel, a 3 km/, é freado e pára depois de percorrer mais 8 metros

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

Troncos de Cone e de Pirâmide

Troncos de Cone e de Pirâmide Troncos de Cone e de Pirâmide 1. (Uerj 015) Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede 4 cm, e o raio de sua base

Leia mais

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES B3 CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES Circunferência Circunferência é um conjunto de pontos do plano situados à mesma distância de um ponto fixo (centro). Corda é um segmento de recta cujos extremos

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 0/novembro/008 MTEMÁTI 0. umentando a base de um triângulo em 0% e reduzindo a altura relativa a essa base em 0%, a área do triângulo aumenta em %.

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

Quarta lista de exercícios.

Quarta lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2015 Quarta lista de exercícios. Circunferência e círculo. Teorema de Tales. Semelhança de triângulos. 1. (Dolce/Pompeo) Um ponto P dista 7 cm do centro

Leia mais

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

1 A AVALIAÇÃO ESPECIAL UNIDADE I -2014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C.

1 A AVALIAÇÃO ESPECIAL UNIDADE I -2014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. 1 A AVALIAÇÃO ESPECIAL UNIDADE I -014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Questão 01. (UESC-Adaptada) (x + )!(x + )! O valor de x N, que

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

Exercícios Triângulos (1)

Exercícios Triângulos (1) Exercícios Triângulos (1) 1. Na figura dada, sabe-se que r // s. Calcule x. 2. Nas figuras abaixo, calcule o valor de x. 5. (PUC-SP) Na figura seguinte, as retas r e s são paralelas. Encontre os ângulos

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

Considere um triângulo eqüilátero T 1

Considere um triângulo eqüilátero T 1 Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.

Leia mais

ESTUDO GRÁFICO DOS MOVIMENTOS. Gráfico posição x tempo (x x t)

ESTUDO GRÁFICO DOS MOVIMENTOS. Gráfico posição x tempo (x x t) ESTUDO GRÁFICO DOS MOVIMENTOS No estudo do movimento é bastante útil o emprego de gráficos. A descrição de um movimento a partir da utilização dos gráficos (posição x tempo; velocidade x tempo e aceleração

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA UFR_VESTIBULAR _004 COMENTÁRIO E RESOLUÇÃO OR ROFA. MARIA ANTONIA GOUVEIA QUESTÃO Um grupo de estudantes decidiu viajar de ônibus para participar de um encontro nacional. Ao fazerem uma pesquisa de preços,

Leia mais

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2011 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente,

Leia mais

Exercícios cinemática MCU, Lançamento horizontal e Oblíquo

Exercícios cinemática MCU, Lançamento horizontal e Oblíquo Física II Professor Alexandre De Maria Exercícios cinemática MCU, Lançamento horizontal e Oblíquo COMPETÊNCIA 1 Compreender as Ciências Naturais e as tecnologias a elas associadas como construções humanas,

Leia mais

Exercícios de Matemática Geometria Analítica Cônicas

Exercícios de Matemática Geometria Analítica Cônicas Eercícios de Matemática Geometria Analítica Cônicas ) (ITA-004) Considere todos os números z = + i que têm módulo e estão na elipse + 4 = 4. Então, o produto deles é igual a 9 49 8 4 ) (VUNESP-00) A figura

Leia mais

Geometria Plana Noções Primitivas

Geometria Plana Noções Primitivas Geometria Plana Noções Primitivas Questão 1 (CESGRANRIO-85) Numa carpintaria, empilham-se 50 tábuas, umas de 2 cm e outras de 5 cm de espessura. A altura da pilha é de 154 cm. A diferença entre o número

Leia mais

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40. Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção

Leia mais