FÍSICA APLICADA TECNOLOGIA EM MECATRÔNICA INDUSTRIAL TECNOLOGIA EM ELETRÔNICA INDUSTRIAL TECNOLOGIA EM FABRICAÇÃO MECÂNICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "FÍSICA APLICADA TECNOLOGIA EM MECATRÔNICA INDUSTRIAL TECNOLOGIA EM ELETRÔNICA INDUSTRIAL TECNOLOGIA EM FABRICAÇÃO MECÂNICA"

Transcrição

1 1 FÍSICA APLICADA TECNOLOGIA EM MECATRÔNICA INDUSTRIAL TECNOLOGIA EM ELETRÔNICA INDUSTRIAL TECNOLOGIA EM FABRICAÇÃO MECÂNICA Elaborado por: Prof. Walmor Cardoso Godoi, M.Sc. Prof. Alexandre Meira, M.Sc. REV.01

2 2 Ao Aluno Você está recebendo um material de apoio para as aulas de Física Aplicada. Esse material tem como objetivo facilitar o processo de ensino/aprendizagem dentro da sala de aula apenas, não tirando do aluno a responsabilidade de buscar a bibliografia recomendada da disciplina na biblioteca. Esta bibliografia está no Plano de Ensino. Recomenda-se também consultas em outros livros, internet e revistas. Prof. Walmor Cardoso Godoi, M.Sc. Curitiba, PR

3 3 1. otação científica Muitas vezes realizamos medidas e precisaremos manipular essas medidas (somar, multiplicar, aplicar em fórmulas, etc). O problema é que as medidas que obtemos nem sempre são fáceis de lidar. Obtemos ou números muito grandes, ou muito pequenos. A notação científica é uma forma concisa de representar números, em especial muito grandes ( ) ou muito pequenos (0, ). É baseada no uso de potências de 10 (os casos acima, em notação científica, ficariam: e , respectivamente). Como exemplo, observe os números abaixo: ,0004 0, , , A representação desses números na forma convencional torna-se difícil, em especial no quarto e oitavo exemplos. O principal fator de dificuldade é a quantidade de zeros extremamente alta para a velocidade normal de leitura dos números. Pode-se pensar que esses valores são pouco relevantes e de uso quase inexistente na vida cotidiana. Mas este pensamento é incorreto. Em áreas como a Física e a Química esses valores são frequentes. Por exemplo, a maior distância observável do universo mede cerca de metros, e a massa de um próton é aproximadamente 0, gramas. Para valores como esses, a notação científica é mais compacta. Outra vantagem da notação científica é que ela sempre pode representar adequadamente a quantidade de algarismos significativos. Por exemplo, a distância observável do universo, do modo que está escrito, sugere a precisão de 30 algarismos significativos. Mas isso não é verdade (seria coincidência demais 25 zeros seguidos numa aferição). Não confunda algarismos significativos com casas decimais. Considere os comprimentos 35,6 mm, 3,56 m, e 0,00356 m. Todos têm 3 (três) algarismos significativos, mas else têm uma, duas e cinco casas decimais, respectivamente. 1.1 História A primeira tentativa conhecida de representar números demasiadamente extensos foi empreendida pelo matemático e filósofo grego Arquimedes, e descrita em sua obra O Contador de Areia [1], no século III a.c.. Ele desenvolveu um método de representação numérica para estimar quantos grãos de areia existiam no universo. O número estimado por ele foi de grãos.

4 4 Foi por meio da notação científica que foi concebido o modelo de representação de números reais através de ponto flutuante. Essa idéia foi proposta independentemente por Leonardo Torres y Quevedo (1914), Konrad Zuse (1936) e George Robert Stibitz (1939). A codificação em ponto flutuante dos computadores atuais é basicamente uma notação científica de base 2. A programação com o uso de números em notação científica consagrou uma representação sem números subscritos. 1, e 2, são representados respectivamente por 1.785E5 e 2.36E-14 (como a maioria das linguagens de programação são baseadas na língua inglesa, as vírgulas são substituídas por pontos). 1.2 Descrição Um número escrito em notação científica segue o seguinte modelo: X 10 x O número X é denominado mantissa e x a ordem de grandeza. Notação científica padronizada A definição básica de notação científica permite uma infinidade de representações para cada valor. Mas a notação científica padronizada inclui uma restrição: a mantissa deve ser maior ou igual a 1 e menor que 10. Desse modo cada número é representado de uma única maneira. Como transformar Para transformar um número qualquer para a notação científica padronizada devemos deslocar a vírgula obedecendo o príncípio de equlíbrio. Vejamos o exemplo abaixo: ,42 A notação científica padronizada exige que a mantissa esteja entre 1 e 10. Nessa situação, o valor adequado seria 2, (observe que a sequência de algarismos é a mesma, somente foi alterada a posição da vírgula). Para o exponente, vale o princípio de equilíbrio: "Cada casa decimal que diminui o valor da mantissa aumenta o expoente em uma unidade, e vice-versa". Nesse caso, o expoente é 5. Observe a transformação passo a passo: ,42 = , = 2 537, = 253, = 25, = 2,

5 5 Um outro exemplo, com valor menor que 1: 0, = 0, = 0, = 0, = 0, = 0, = 0, = 0, = 4, Desse modo, os exemplos da primeira página ficarão: Operações Adição e subtração Para somar dois números em notação científica, é necessário que o expoente seja o mesmo. Ou seja, um dos valores deve ser transformado para que seu expoente seja igual ao do outro. A transformação segue o mesmo princípio de equilíbrio. O resultado possivelmente não estará na forma padronizada, sendo convertido posteriormente. Forma geral : X 10 x + Y 10 x = (X+Y) 10 a Exemplos: 4, , = 4, , = 4, , , = 0, (não padronizado) = (padronizado) Multiplicação Multiplicamos as mantissas e somamos os expoentes de cada valor. O resultado possivelmente não será padronizado, mas pode ser convertido: Forma geral: (X 10 a ) (Y 10 b ) = (XY) 10 a+b Exemplos: a) (6, ). (3, ) = (6,5 3,2) = 20, (não padronizado) = 2, (convertido para a notação padronizada) b) ( ) (1, ) = (4 1,6) 10 6+(-15) = 6, (já padronizado sem necessidade de conversão)

6 6 Divisão Dividimos as mantissas e subtraímos os expoentes de cada valor. O resultado possivelmente não será padronizado, mas pode ser convertido: Forma geral: (X 10 a )/ (Y 10 b ) = (X/Y) 10 a-b Exemplos: ( ) / ( ) = (8 /2) = (padronizado) (2, ) / (6, ) = (2,4 /6,2) 10-7-(-11) 0, (não padronizado) = 3, (padronizado) Exponenciação A mantissa é elevada ao expoente externo e o expoente da base dez é multiplicado pelo expoente externo. Forma geral: (X 10 x ) y =X y 10 xy ( ) 4 = (2 4 ) = = 1, (padronizado) Radiciação Antes de fazer a radiciação é preciso transformar um expoente para um valor múltiplo do índice. Após feito isso, o resultado é a radiciação da mantissa multiplicada por dez elevado à razão entre o expoente e o índice do radical. Ordem de grandeza A ordem de grandeza de um número é o expoente da potência de dez que aparece quando o número é expresso em notação científica. Por exemplo, se A=2,3 x10 4 e B=7,8X10 4, A e B possuem a mesma ordem de grandeza (no caso 4).

7 7 (X) 1 ª Parcial ( ) 2 ª Parcial ( ) Recuperação ( ) Exame Final ( ) Aproveitamento Extraordinário de Estudos ( X ) Exercícios ( ) Avaliação Substitutiva Nota (valor:10,0 Peso: 2): Disciplina: Física Aplicada Turma: Aluno (a): Data: 1. Represente os números dados com a notação científica, forma padronizada e três significativos: a) 1236,840 b) 4,22 c) 0, d) 0, e) 9,10 f) 8003 g) Resolva. Apresente o resultado em notação científica, forma padronizada e três significativos: a) ( ) ( ) = b) ( ) ( ) = c) ( ) ( ) = d) (7, ) (2, )= 3. Apresente os resultados das operações indicadas em notação científica, forma padronizada e três significativos: a) / = b) / = c) / = d) 6,0003 /2, = 4. Efetue as operações. Apresente os resultados das operações indicadas em notação científica, forma padronizada e três significativos: a) ( ) + ( ) = b) ( ) - ( ) = c) (8.2 X 10 2 ) + ( ) = d) ( ) - ( ) =

8 8 Resposta Lista 1 Notação Científica a. 1, b. 4, c. 2, d. 2, e. 9, a) b) c) 1, d) 1, a) b) c) 8, d) 3, a) b) c) d) 1,

9 9 2 Medidas e Grandezas Físicas 2.1 Introdução Por que medir? O desenvolvimento e a consolidação da cultura metrológica vêm-se constituindo em uma estratégia permanente das organizações, uma vez que resultam em ganhos de produtividade, qualidade dos produtos e serviços, redução de custos e eliminação de desperdícios. A construção de um senso de cultura metrológica não é tarefa simples, requer ações duradouras de longo prazo e depende não apenas de treinamentos especializados, mas de uma ampla difusão dos valores da qualidade em toda a sociedade. Inmetro, 2007 A Física trabalha com as grandezas físicas, ou seja, com aquelas grandezas na natureza que podem ser medidas e quantificadas. Exemplo: No nado livre a velocidade do nadador pode chegar a até 7,2 km/h. Aqui a grandeza física em questão é a velocidade. Esta grandeza mede a rapidez do nadador. A unidade usada para representar a rapidez do nadador foi o km/h (quilômetros por hora). Note que se eu quiser posso usar outras unidades para representar a grandeza física velocidade. Poderia usar o m/s (metros por segundo), ou então a mph (milhas por hora) que é utilizada nos EUA, por exemplo. Descobrimos a física aprendendo como medir e comparar suas grandezas. Medimos cada grandeza física em suas próprias unidades, por meio da comparação com um padrão. A unidade é o único nome com o qual designamos a medida daquela grandeza (por exemplo, a unidade metro para a grandeza comprimento). Assim, Uma grandeza física é uma propriedade de um corpo, ou particularidade de um fenômeno, suscetível de ser medida, i.e. à qual se pode atribuir um valor numérico. A medição de uma grandeza pode ser efetuada por comparação direta com um padrão ou com um aparelho de medida (medição direta), ou ser calculada, por meio de uma expressão conhecida, à custa das medições de outras grandezas (medição indireta). A unidade é o único nome com o qual designamos a medida daquela grandeza. Exemplo, o metro para a grandeza comprimento. 2.2 O Sistema Internacional de Unidades Em 1971, na 14ª Conferência Geral sobre Pesos e Medidas, foram selecionadas sete grandezas como fundamentais, as quais formam o SI: comprimento (m), tempo (s), massa (kg), corrente elétrica (A), temperatura termodinâmica (K), quantidade de matéria (mol), intensidade luminosa (cd). As grandezas, em geral, foram definidas para estarem em escala humana.

10 10 Unidades das Grandezas do SI Prefixos para unidades do SI Antes de falarmos dos prefixos, temos que voltar atenção especial a um alfabeto diferente do nosso. O alfabeto grego é utiliado em muitos dos prefixos de física. Quando tratamos com grandezas muito grandes ou muito pequenas usamos os prefixos listados abaixo.

11 Mudança de Unidades Frequentemente precisamos mudar as unidades nas quais uma determinada grandeza física está expressa. Fazemos isso por um método denominado de conversão em cadeia (multiplicamos por uma razão entre as unidades que é igual ao fator unitário). Por exemplo, Por exemplo, para converter 2 min em segundos, temos Mais exemplos: Realize as conversões solicitadas a) 1,5 kg mg b) 60 km/h m/s e mm/s c) 3 m 3 cm 3 d) 10 l ml 2.4 Comprimento A definição do metro baseada no protótipo internacional em platina iridiada, em vigor desde 1889, foi substituída na 11ª CGPM (1960) por uma outra definição baseada no comprimento de onda de uma radiação do criptônio 86, com a finalidade de aumentar a exatidão da realização do metro. A 17ª CGPM (1983, Resolução 1; CR 97 e Metrologia, 1984, 20, 25) substituiu, em 1983, essa última definição pela seguinte: Tal número foi escolhido para que a velocidade da luz c, fosse dada exatamente por c= m/s

12 Tempo Primitivamente, o segundo, unidade de tempo, era definido como a DE TEMPO (SEGUNDO) fração 1/ do dia solar médio. Porém não era muito exato. Assim, a 13ª CGPM (1967) decidiu substituir a definição do segundo pela seguinte: Na sessão de 1997, o Comitê Internacional confirmou que: Essa definição se refere a um átomo de césio em repouso, a uma temperatura de 0 K. 2.6 Massa A massa é uma grandeza física fundamental, definida segundo a mecânica Newtoniana como inércia ou resistência de um corpo em ter seu movimento acelerado, na teoria da gravitação universal de Newton, a massa tem outro papel, é a origem da força gravitacional. A teoria da relatividade de Einstein dá razão a essa função dupla, e relaciona a massa como um tipo de Energia através da famosa equação E=mc². Ao contrário do espaço e do tempo, que podemos dar uma definição operacional e intuitiva através de réguas e relógios, para definirmos o conceito de massa é necessário recorrermos explicitamente à teoria física. O conceito intuitivo de quantidade de matéria ( que não deve ser confundido com quantidade de substância em mols) é muito vago para uma definição operacional e referem-se a propriedades comuns de peso e inércia, que são tratados de forma diferente na dinâmica Newtoniana. Atualmente existem algumas teorias que tentam explicar a massa, dentre elas podemos falar do mecanismo de Higgs, teoria das cordas e a teoria quântica da gravidade mas nenhuma ainda foi testada experimentalmente (O LHC cuja início de operação ocorreu em 2008 tem potência suficiente para encontrar o Bóson de Higgs se ele existir). A 3ª CGPM (1901; CR,70), para acabar com a ambigüidade que ainda existia no uso corrente sobre o significado da palavra peso, confirmou que: O quilograma é a unidade de massa (e não de peso, nem força); ele é igual à massa do protótipo internacional do quilograma. Este protótipo internacional em platina iridiada é conservado no Bureau Internacional, nas condições que foram fixadas pela 1ª CGPM em 1889.

13 13 O quilograma padrão. Um segundo padrão de massa As massas dos átomos podem ser comparados entre si mais precisamente do que o quilograma padrão. Por esta razão, temos um segundo padrão de massa, o átomo de carbono-12 ao qual, por acordo internacional, foi atribuída uma massa de 12 unidades de massa atômica (u) com uma incerteza de 10 nas duas últimas casas decimais.

Tópico 2. Conversão de Unidades e Notação Científica

Tópico 2. Conversão de Unidades e Notação Científica Tópico 2. Conversão de Unidades e Notação Científica Toda vez que você se refere a um valor ligado a uma unidade de medir, significa que, de algum modo, você realizou uma medição. O que você expressa é,

Leia mais

Medidas e Grandezas em Física

Medidas e Grandezas em Física CMJF - Colégio Militar de Juiz de Fora - Laboratório de Física Medidas e Grandezas em Física MEDIDAS EM FÍSICA Uma das maneiras de se estudar um fenômeno é estabelecer relações matemáticas entre as grandezas

Leia mais

Introdução ao Estudo dos Fenômenos Físicos

Introdução ao Estudo dos Fenômenos Físicos Universidade Federal do Espírito Santo Centro de Ciências Exatas Departamento de Física Introdução ao Estudo dos Fenômenos Físicos Aula 05 Medidas físicas Medidas, valores numéricos e unidades. Sistemas

Leia mais

2aula TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS. 2.1 Algarismos Corretos e Avaliados

2aula TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS. 2.1 Algarismos Corretos e Avaliados 2aula Janeiro de 2012 TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS Objetivos: Familiarizar o aluno com os algarismos significativos, com as regras de arredondamento e as incertezas

Leia mais

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos

Leia mais

Aula 1: Medidas Físicas

Aula 1: Medidas Físicas Aula 1: Medidas Físicas 1 Introdução A Física é uma ciência cujo objeto de estudo é a Natureza. Assim, ocupa-se das ações fundamentais entre os constituíntes elementares da matéria, ou seja, entre os átomos

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

Descrevendo Grandezas Físicas. Prof. Warlley Ligório Antunes

Descrevendo Grandezas Físicas. Prof. Warlley Ligório Antunes Descrevendo Grandezas Físicas Prof. Warlley Ligório Antunes Grandezas Físicas Define-se grandeza como tudo aquilo que pode ser comparado com um padrão por meio de uma medição. Exemplo: Este corpo tem várias

Leia mais

FÍSICA. Do grego physis = natureza. E-mail: contato@profmueller.net. Site: www.profmueller.net

FÍSICA. Do grego physis = natureza. E-mail: contato@profmueller.net. Site: www.profmueller.net FÍSICA Do grego physis = natureza Objetivo da Física A Física, como ciência, tem como objetivo descrever e explicar os fenômenos físicos da natureza, ou seja, aqueles que não alteram a estrutura da matéria.

Leia mais

Introdução. A Informação e sua Representação (Parte III) Universidade Federal de Campina Grande Departamento de Sistemas e Computação

Introdução. A Informação e sua Representação (Parte III) Universidade Federal de Campina Grande Departamento de Sistemas e Computação Universidade Federal de Campina Grande Departamento de Sistemas e Computação Introdução à Computação A Informação e sua Representação (Parte III) Prof.a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13

Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13 Sumário Prefácio................................................................. xi Prólogo A Física tira você do sério?........................................... 1 1 Lei da Ação e Reação..................................................

Leia mais

2. Representação Numérica

2. Representação Numérica 2. Representação Numérica 2.1 Introdução A fim se realizarmos de maneira prática qualquer operação com números, nós precisamos representa-los em uma determinada base numérica. O que isso significa? Vamos

Leia mais

Medidas e Incertezas

Medidas e Incertezas Medidas e Incertezas O que é medição? É o processo empírico e objetivo de designação de números a propriedades de objetos ou eventos do mundo real de forma a descreve-los. Outra forma de explicar este

Leia mais

Análise Dimensional Notas de Aula

Análise Dimensional Notas de Aula Primeira Edição Análise Dimensional Notas de Aula Prof. Ubirajara Neves Fórmulas dimensionais 1 As fórmulas dimensionais são formas usadas para expressar as diferentes grandezas físicas em função das grandezas

Leia mais

Capítulo 16. Gravitação. Página 231

Capítulo 16. Gravitação. Página 231 Capítulo 16 Gravitação Página 231 O peso de um corpo é consequência da força de gravidade com que o corpo é atraído pela Terra ou por outro astro. É medido com dinamômetro. Não levando em conta os efeitos

Leia mais

Quando você receber a nova edição do Caderno do Aluno, veja o que mudou e analise as diferenças, para estar sempre bem preparado para suas aulas.

Quando você receber a nova edição do Caderno do Aluno, veja o que mudou e analise as diferenças, para estar sempre bem preparado para suas aulas. Caro Professor, Em 009 os Cadernos do Aluno foram editados e distribuídos a todos os estudantes da rede estadual de ensino. Eles serviram de apoio ao trabalho dos professores ao longo de todo o ano e foram

Leia mais

Capítulo 1 Erros e representação numérica

Capítulo 1 Erros e representação numérica Capítulo 1 Erros e representação numérica Objetivos Esperamos que ao final desta aula, você seja capaz de: Pré-requisitos Identificar as fases de modelagem e os possíveis erros nelas cometidos; Compreender

Leia mais

centena dezena unidade 10 2 10 1 10 0 275 2 7 5 200 + 70 + 5 275

centena dezena unidade 10 2 10 1 10 0 275 2 7 5 200 + 70 + 5 275 A. Sistemas de Numeração. Para se entender a linguagem do computador (o Código de Máquina), é necessário conhecer um pouco da teoria dos números. Não é uma tarefa tão difícil quanto pode parecer. Sabendo-se

Leia mais

20-10-2014. Sumário. Arquitetura do Universo

20-10-2014. Sumário. Arquitetura do Universo Sumário Das Estrelas ao átomo Unidade temática 1 Diferenças entre medir, medição e medida duma grandeza. Modos de exprimir uma medida. Algarismos significativos: Regras de contagem e operações. Esclarecimento

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

METROLOGIA MEDIDAS E CONVERSÕES

METROLOGIA MEDIDAS E CONVERSÕES METROLOGIA MEDIDAS E CONVERSÕES Prof. Fagner Ferraz 1 Algarismos significativos Os algarismos significativos são os algarismos que têm importância na exatidão de um número, por exemplo, o número 2,67 tem

Leia mais

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento

Leia mais

2. Sistemas de Numeração, Operações e Códigos. 2. Sistemas de Numeração, Operações e Códigos 1. Números Decimais. Objetivos.

2. Sistemas de Numeração, Operações e Códigos. 2. Sistemas de Numeração, Operações e Códigos 1. Números Decimais. Objetivos. Objetivos 2. Sistemas de Numeração, Operações e Códigos Revisar o sistema de numeração decimal Contar no sistema de numeração binário Converter de decimal para binário e vice-versa Aplicar operações aritméticas

Leia mais

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s Representação numérica Cálculo numérico Professor Walter Cunha Um conjunto de ferramentas ou métodos usados para se obter a solução de problemas matemáticos de forma aproximada. Esses métodos se aplicam

Leia mais

QUÍMICA TECNOLÓGICA I

QUÍMICA TECNOLÓGICA I Universidade Federal dos Vales do Jequitinhonha e Mucuri Bacharelado em Ciência e Tecnologia Diamantina - MG QUÍMICA TECNOLÓGICA I Prof a. Dr a. Flaviana Tavares Vieira flaviana.tavares@ufvjm.edu.br Alquimia

Leia mais

Introdução. As grandezas físicas e suas unidades

Introdução. As grandezas físicas e suas unidades Introdução Antes mesmo de Galileu, o homem, com o avanço do comércio e das técnicas de produção, já havia sentido a necessidade de realizar medições, mas foi Galileu que trouxe a real importância das medições

Leia mais

Matemática. Elementar II Caderno de Atividades

Matemática. Elementar II Caderno de Atividades Matemática Elementar II Caderno de Atividades Autor Leonardo Brodbeck Chaves 2009 2008 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores

Leia mais

GRANDEZAS E UNIDADES ALGARISMOS SIGNIFICATIVOS REGRAS PARA ARREDONDAMENTO TRANSFORMAÇÃO DE UNIDADES

GRANDEZAS E UNIDADES ALGARISMOS SIGNIFICATIVOS REGRAS PARA ARREDONDAMENTO TRANSFORMAÇÃO DE UNIDADES DEPARTAMENTO ACADÊMICO DE MECÂNICA APOSTILA DE METROLOGIA GRANDEZAS E UNIDADES ALGARISMOS SIGNIFICATIVOS REGRAS PARA ARREDONDAMENTO TRANSFORMAÇÃO DE UNIDADES Cid Vicentini Silveira 2005 1 SISTEMA INTERNACIONAL

Leia mais

condições de repouso ou movimento de corpos sob a ação de forças.

condições de repouso ou movimento de corpos sob a ação de forças. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 2007-2 Professor:

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Ensaio de tração: cálculo da tensão

Ensaio de tração: cálculo da tensão Ensaio de tração: cálculo da tensão A UU L AL A Você com certeza já andou de elevador, já observou uma carga sendo elevada por um guindaste ou viu, na sua empresa, uma ponte rolante transportando grandes

Leia mais

Usando unidades de medida

Usando unidades de medida Usando unidades de medida O problema Q uando alguém vai à loja de autopeças para comprar alguma peça de reposição, tudo que precisa é dizer o nome da peça, a marca do carro, o modelo e o ano de fabricação.

Leia mais

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental TEMA II GRANDEZAS E MEDIDAS A comparação de grandezas de mesma natureza que dá origem à idéia de

Leia mais

Introdução aos conceitos de medidas. Prof. César Bastos

Introdução aos conceitos de medidas. Prof. César Bastos Introdução aos conceitos de medidas. Prof. César Bastos Prof. César Bastos 2009 pág. 1 Medidas 1.1 Sistema Internacional de Unidades Durante muito tempo cada reino estabelecia suas unidades (padrões) de

Leia mais

Algarismos Significativos

Algarismos Significativos UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE QUÍMICA DEPARTAMENTO DE QUÍMICA INORGÂNICA QUÍMICA FUNDAMENTAL A - QUI-01-009 Algarismos Significativos ALGARISMOS SIGNIFICATIVOS Os algarismos significativos

Leia mais

Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo - FEAU. Fundamentos Física Prof. Dra. Ângela Cristina Krabbe

Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo - FEAU. Fundamentos Física Prof. Dra. Ângela Cristina Krabbe Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo - FEAU Fundamentos Física Prof. Dra. Ângela Cristina Krabbe Lista de exercícios 1. Considerando as grandezas físicas A

Leia mais

Matemática Financeira RECORDANDO CONCEITOS

Matemática Financeira RECORDANDO CONCEITOS 1 Matemática Financeira RECORDANDO CONCEITOS Propriedades da matemática Prioridades: É importante relembrar e entender alguns conceitos da matemática, que serão muito úteis quando trabalharmos com taxas.

Leia mais

UNIDADES EM QUÍMICA UNIDADES SI COMPRIMENTO E MASSA

UNIDADES EM QUÍMICA UNIDADES SI COMPRIMENTO E MASSA UNIDADES EM QUÍMICA O sistema métrico, criado e adotado na França durante a revolução francesa, é o sistema de unidades de medida adotada pela maioria dos paises em todo o mundo. UNIDADES SI Em 1960, houve

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h

Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara Carga Horária: 60h Representação de grandeza com sinal O bit mais significativo representa o sinal: 0 (indica um número

Leia mais

METROLOGIA Escala e Paquímetro. Prof. João Paulo Barbosa, M.Sc.

METROLOGIA Escala e Paquímetro. Prof. João Paulo Barbosa, M.Sc. METROLOGIA Escala e Paquímetro Prof. João Paulo Barbosa, M.Sc. Regras de Arredondamento Quando o algarismo seguinte ao último algarismo a ser conservado for inferior a 5, o último algarismo a ser conservado

Leia mais

Representação de Dados

Representação de Dados Representação de Dados Introdução Todos sabemos que existem diferentes tipos de números: fraccionários, inteiros positivos e negativos, etc. Torna-se necessária a representação destes dados em sistema

Leia mais

1. Sistemas de numeração

1. Sistemas de numeração 1. Sistemas de numeração Quando mencionamos sistemas de numeração estamos nos referindo à utilização de um sistema para representar uma numeração, ou seja, uma quantidade. Sistematizar algo seria organizar,

Leia mais

Algarismos Significativos

Algarismos Significativos Algarismos Significativos Neste texto você conhecerá melhor os algarismos significativos, bem como as Regras gerais para realização de operações com algarismos significativos e as regras para Conversão

Leia mais

CAPÍTULO II COLETANDO DADOS EXPERIMENTAIS

CAPÍTULO II COLETANDO DADOS EXPERIMENTAIS CAPÍTULO II COLETANDO DADOS EXPERIMENTAIS II.1 A Comunicação em Ciência e Tecnologia A comunicação torna-se ainda mais perfeita, mais objetiva, se a questão envolver a definição da igualdade ou não de

Leia mais

Universidade Federal de São João Del Rei - UFSJ

Universidade Federal de São João Del Rei - UFSJ Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart

Leia mais

FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA DESAFIO DO DIA. Aula 26.1 Conteúdo:

FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA DESAFIO DO DIA. Aula 26.1 Conteúdo: Aula 26.1 Conteúdo: Múltiplos e submúltiplos do metro. 2 Habilidades: Resolver problemas que envolvam medidas de Comprimento e Área. 3 Pedro gastou R$9,45 para comprar 2,1kg de tomate. Quanto custa 1kg

Leia mais

Universidade Federal de Ouro Preto UFOP Instituto de Ciências Exatas e Biológicas ICEB Departamento de Computação DECOM

Universidade Federal de Ouro Preto UFOP Instituto de Ciências Exatas e Biológicas ICEB Departamento de Computação DECOM PROGRAMAÇÃO DE COMPUTADORES I BCC70 204-02 Aula Prática 02 Exercício Codifique em Scilab as seguintes expressões matemáticas, armazenando-as em variáveis na memória conforme os exemplos. A sin(3.45) cos(2

Leia mais

Introdução à Engenharia de

Introdução à Engenharia de Introdução à Engenharia de Computação Tópico: Sistemas de Numeração José Gonçalves - LPRM/DI/UFES Introdução à Engenharia de Computação Introdução O número é um conceito abstrato que representa a idéia

Leia mais

Claudia Regina Campos de Carvalho. Módulo I

Claudia Regina Campos de Carvalho. Módulo I Módulo I 1) Dúvidas ou Problemas ao longo do curso deverão ser resolvidas diretamente com o professor responsável (Profa. Claudia R. C. de Carvalho) que estará disponível na sala dos professores ou sala

Leia mais

Aula 3 - Sistemas de Numeração

Aula 3 - Sistemas de Numeração UEM Universidade Estadual de Maringá DIN - Departamento de Informática Disciplina: Fundamentos da Computação Profª Thelma Elita Colanzi Lopes thelma@din.uem.br Aula 3 - Sistemas de Numeração O ser humano,

Leia mais

Valor verdadeiro, precisão e exatidão. O valor verdadeiro de uma grandeza física experimental às vezes pode ser considerado

Valor verdadeiro, precisão e exatidão. O valor verdadeiro de uma grandeza física experimental às vezes pode ser considerado UNIDADE I Fundamentos de Metrologia Valor verdadeiro, precisão e exatidão O valor verdadeiro de uma grandeza física experimental às vezes pode ser considerado o objetivo final do processo de medição. Por

Leia mais

Você acha que o rapaz da figura abaixo está fazendo força?

Você acha que o rapaz da figura abaixo está fazendo força? Aula 04: Leis de Newton e Gravitação Tópico 02: Segunda Lei de Newton Como você acaba de ver no Tópico 1, a Primeira Lei de Newton ou Princípio da Inércia diz que todo corpo livre da ação de forças ou

Leia mais

Sistemas Numéricos e a Representação Interna dos Dados no Computador

Sistemas Numéricos e a Representação Interna dos Dados no Computador Capítulo 2 Sistemas Numéricos e a Representação Interna dos Dados no Computador 2.0 Índice 2.0 Índice... 1 2.1 Sistemas Numéricos... 2 2.1.1 Sistema Binário... 2 2.1.2 Sistema Octal... 3 2.1.3 Sistema

Leia mais

Prova Escrita de Física e Química A

Prova Escrita de Física e Química A Exame Final Nacional do Ensino Secundário Prova Escrita de Física e Química A 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 715/Época Especial Critérios de Classificação 11 Páginas

Leia mais

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

Sistemas de Numerações.

Sistemas de Numerações. Matemática Profº: Carlos Roberto da Silva; Lourival Pereira Martins. Sistema de numeração: Binário, Octal, Decimal, Hexadecimal; Sistema de numeração: Conversões; Sistemas de Numerações. Nosso sistema

Leia mais

Biofísica Faculdade de Educação e Artes FEA

Biofísica Faculdade de Educação e Artes FEA Biofísica Faculdade de Educação e Artes FEA Prof. Dr. Sergio Pilling (IP&D/ Física e Astronomia) PARTE A Unidades, Grandezas, Escalas e Graficos. Objetivos: Nomear e conceituar as grandezas fundamentais

Leia mais

Sistemas de Numeração. Introdução ao Computador 2010/1 Renan Manola

Sistemas de Numeração. Introdução ao Computador 2010/1 Renan Manola Sistemas de Numeração Introdução ao Computador 2010/1 Renan Manola Introdução Em sistemas digitais o sistema de numeração binário é o mais importante, já fora do mundo digital o sistema decimal é o mais

Leia mais

Oficina de Apropriação de Resultados. Paebes 2013

Oficina de Apropriação de Resultados. Paebes 2013 Oficina de Apropriação de Resultados Paebes 2013 Objetivos: Interpretar os resultados da avaliação do Programa de Avaliação da Educação Básica do Espírito Santo (PAEBES). Discutir e elaborar estratégias

Leia mais

Grandezas e Medidas no CAp UFRJ Introdução. Exercícios

Grandezas e Medidas no CAp UFRJ Introdução. Exercícios Grandezas e Medidas no CAp UFRJ Introdução Exercícios 1) Indique três aspectos diferentes que podem ser medidos num carro. Para cada aspecto identificado, informe a grandeza e a unidade de medida correspondente

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

Trabalho compilado da Internet Prof. Claudio Passos. Sistemas Numéricos

Trabalho compilado da Internet Prof. Claudio Passos. Sistemas Numéricos Trabalho compilado da Internet Prof. Claudio Passos Sistemas Numéricos A Informação e sua Representação O computador, sendo um equipamento eletrônico, armazena e movimenta as informações internamente sob

Leia mais

Sistemas de numeração

Sistemas de numeração E Sistemas de numeração Aqui estão apenas números ratificados. William Shakespeare A natureza tem algum tipo de sistema de coordenadas geométrico-aritmético, porque a natureza tem todos os tipos de modelos.

Leia mais

AS LEIS DO MOVIMENTO. O Conceito de Força

AS LEIS DO MOVIMENTO. O Conceito de Força AS LEIS DO MOVIMENTO Até agora, só falamos de cinemática, isto é, só descrevemos os movimentos. Agora vamos dar uma olhada nas causas destes movimentos => dinâmica O Conceito de Força Agente externo capaz

Leia mais

A lógica de programação ajuda a facilitar o desenvolvimento dos futuros programas que você desenvolverá.

A lógica de programação ajuda a facilitar o desenvolvimento dos futuros programas que você desenvolverá. INTRODUÇÃO A lógica de programação é extremamente necessária para as pessoas que queiram trabalhar na área de programação, seja em qualquer linguagem de programação, como por exemplo: Pascal, Visual Basic,

Leia mais

FÍSICA PARA PRF PROFESSOR: GUILHERME NEVES

FÍSICA PARA PRF PROFESSOR: GUILHERME NEVES Olá, pessoal! Tudo bem? Vou neste artigo resolver a prova de Fïsica para a Polícia Rodoviária Federal, organizada pelo CESPE-UnB. Antes de resolver cada questão, comentarei sobre alguns trechos das minhas

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 O que é a Análise Numérica? Ramo da Matemática dedicado ao estudo e desenvolvimento de métodos (métodos

Leia mais

Unidades de Medidas e as Unidades do Sistema Internacional

Unidades de Medidas e as Unidades do Sistema Internacional Unidades de Medidas e as Unidades do Sistema Internacional Metrologia é a ciência da medição, abrangendo todas as medições realizadas num nível conhecido de incerteza, em qualquer dominio da atividade

Leia mais

Física Simples e Objetiva Mecânica Cinemática e Dinâmica Professor Paulo Byron. Apresentação

Física Simples e Objetiva Mecânica Cinemática e Dinâmica Professor Paulo Byron. Apresentação Apresentação Após lecionar em colégios estaduais e particulares no Estado de São Paulo, notei necessidades no ensino da Física. Como uma matéria experimental não pode despertar o interesse dos alunos?

Leia mais

A tabela abaixo mostra os múltiplos e submúltiplos do metro e os seus respectivos valores em relação à unidade padrão:

A tabela abaixo mostra os múltiplos e submúltiplos do metro e os seus respectivos valores em relação à unidade padrão: Unidades de Medidas e Conversões Medidas de comprimento Prof. Flavio Fernandes E-mail: flavio.fernandes@ifsc.edu.br Prof. Flavio Fernandes E-mail: flavio.fernandes@ifsc.edu.br O METRO E SEUS MÚLTIPLOS

Leia mais

COLÉGIO DA POLÍCIA MILITAR-RECIFE COORDENAÇÃO DO ENSINO FUNDAMENTAL DISCIPLINA: Ciência - FÍSICA PLANO DE ENSINO ANUAL DA 9 ANO ANO LETIVO: 2015

COLÉGIO DA POLÍCIA MILITAR-RECIFE COORDENAÇÃO DO ENSINO FUNDAMENTAL DISCIPLINA: Ciência - FÍSICA PLANO DE ENSINO ANUAL DA 9 ANO ANO LETIVO: 2015 1 09/02/12 - Início do 1 Ano Letivo 25 de abril 1) INTRODUÇÃO A FÍSICA (Divisões da Física, Grandezas Físicas, Unidades de Medida, Sistema Internacional, Grandezas Escalares e Vetoriais; 2) CONCEITOS BASICOS

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

Complemento Matemático 06 Ciências da Natureza I NOTAÇÃO CIENTÍFICA Física - Ensino Médio Material do aluno

Complemento Matemático 06 Ciências da Natureza I NOTAÇÃO CIENTÍFICA Física - Ensino Médio Material do aluno Você sabia que a estrela Alfa da constelação do Centauro está a 41.300.000.000.000 quilômetros da Terra. a massa do próton vale 0,00000000000000000000000000167 quilogramas. o raio do átomo de hidrogênio

Leia mais

Sistema de unidades. Curso Técnico Mecânico Modulo I. Prof. Eduardo M. Suzuki

Sistema de unidades. Curso Técnico Mecânico Modulo I. Prof. Eduardo M. Suzuki Sistema de unidades Curso Técnico Mecânico Modulo I Prof. Eduardo M. Suzuki SI: Sistema Internacional de Unidades Estudar o estabelecimento de uma regulamentação completa das unidades de medida; Proceder,

Leia mais

USO DO APLICATIVO POWERS OF 10 COMO FERRAMENTA DE INTEGRAÇÃO NO ENSINO DE CIÊNCIAS EXATAS

USO DO APLICATIVO POWERS OF 10 COMO FERRAMENTA DE INTEGRAÇÃO NO ENSINO DE CIÊNCIAS EXATAS 1 USO DO APLICATIVO POWERS OF 10 COMO FERRAMENTA DE INTEGRAÇÃO NO ENSINO DE CIÊNCIAS EXATAS Sônia Elisa Marchi Gonzatti (lagonzatti@bewnet.com.br) Eliana Fernandes Borragini (borragini@yahoo.com.br) Ieda

Leia mais

Vamos relatar alguns fatos do dia -a- dia para entendermos a primeira lei de Newton.

Vamos relatar alguns fatos do dia -a- dia para entendermos a primeira lei de Newton. CAPÍTULO 8 As Leis de Newton Introdução Ao estudarmos queda livre no capítulo cinco do livro 1, fizemos isto sem nos preocuparmos com o agente Físico responsável que provocava a aceleração dos corpos em

Leia mais

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA CAPÍTULO 1 AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA Talvez o conceito físico mais intuitivo que carregamos conosco, seja a noção do que é uma força. Muito embora, formalmente, seja algo bastante complicado

Leia mais

Física Quântica Caex 2005 Série de exercícios 1

Física Quântica Caex 2005 Série de exercícios 1 Física Quântica Caex 005 Questão 1 Se as partículas listadas abaixo têm todas a mesma energia cinética, qual delas tem o menor comprimento de onda? a) elétron b) partícula α c) nêutron d) próton Questão

Leia mais

Medidas e conversões

Medidas e conversões Medidas e conversões Apesar de se chegar ao metro como unidade de medida, ainda são usadas outras unidades. Na Mecânica, por exemplo, é comum usar o milímetro e a polegada. O sistema inglês ainda é muito

Leia mais

Capítulo UM Bases Numéricas

Capítulo UM Bases Numéricas Capítulo UM Bases Numéricas 1.1 Introdução Quando o homem aprendeu a contar, ele foi obrigado a desenvolver símbolos que representassem as quantidades e grandezas que ele queria utilizar. Estes símbolos,

Leia mais

Cinemática sem fórmulas?

Cinemática sem fórmulas? Cinemática sem fórmulas? Prof. Fernando Lang da Silveira IF-UFRGS Segundo Piaget a idéia de velocidade nas crianças é geneticamente anterior a de espaço percorrido, de deslocamento. Einstein, ao assistir

Leia mais

Sistemas de Numeração (Aula Extra)

Sistemas de Numeração (Aula Extra) Sistemas de Numeração (Aula Extra) Sistemas de diferentes bases Álgebra Booleana Roberta Lima Gomes - LPRM/DI/UFES Sistemas de Programação I Eng. Elétrica 27/2 Sistemas de Numeração Um sistema de numeração

Leia mais

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1998/99 Erros Objectivos: Arredondar um número para n dígitos significativos. Determinar os erros máximos absoluto e relativo

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

Resoluções Prova Anglo

Resoluções Prova Anglo Resoluções Prova Anglo F- TIPO D-6 Matemática (P-2) Ensino Fundamental 6º ano DESCRITORES, RESOLUÇÕES E COMENTÁRIOS A Prova Anglo é um dos instrumentos para avali ar o desempenho dos alunos do 6 o ano

Leia mais

Deste modo, por razões tecnológicas e conceituais, os números binários e a álgebra boole-ana formam a base de operação dos computadores atuais.

Deste modo, por razões tecnológicas e conceituais, os números binários e a álgebra boole-ana formam a base de operação dos computadores atuais. 25BCapítulo 2: Números e Aritmética Binária Os computadores armazenam e manipulam a informação na forma de números. Instruções de programas, dados numéricos, caracteres alfanuméricos, são todos representados

Leia mais

A Matéria Química Geral

A Matéria Química Geral Química Geral A Matéria Tudo o que ocupa lugar no espaço e tem massa. A matéria nem sempre é visível Noções Preliminares Prof. Patrícia Andrade Mestre em Agricultura Tropical Massa, Inércia e Peso Massa:

Leia mais

C.N.C. Programação Torno

C.N.C. Programação Torno C.N.C. Programação Torno Módulo I Aula 03 Unidades de medidas ( Sistema Inglês) milímetros - polegadas Sistema Imperial Britânico Embora a unificação dos mercados econômicos da Europa, da América e da

Leia mais

PRIMEIRO TRIMESTRE NOTAS DE AULAS LUCAS XAVIER www.wikifisica.com (FILOMENA E CORONEL) FÍSICA

PRIMEIRO TRIMESTRE NOTAS DE AULAS LUCAS XAVIER www.wikifisica.com (FILOMENA E CORONEL) FÍSICA α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π ϖ θ ϑ ρ σ ς τ υ ω ξ ψ ζ Α Β Χ Ε Φ Γ Η Ι Κ Λ Μ Ν Ο Π Θ Ρ Σ Τ Υ Ω Ξ Ψ Ζ PRIMEIRO TRIMESTRE NOTAS DE AULAS LUCAS XAVIER www.wikifisica.com (FILOMENA E CORONEL) FÍSICA Ciência

Leia mais

Introdução à Lógica de Programação

Introdução à Lógica de Programação Sistemas Operacionais e Introdução à Programação Introdução à Lógica de Programação 1 Estruturas de dados Representação computacional das informações do problema ser resolvido Informações podem ser de

Leia mais

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES REVISÃO Disciplina: Cálculo e Estatística Aplicada Professor: Dr. Fábio Saraiva da

Leia mais

Vamos exemplificar o conceito de sistema posicional. Seja o número 1303, representado na base 10, escrito da seguinte forma:

Vamos exemplificar o conceito de sistema posicional. Seja o número 1303, representado na base 10, escrito da seguinte forma: Nova bibliografia: Título: Organização e projeto de computadores a interface Hardware/Software. Autor: David A. Patterson & John L. Hennessy. Tradução: Nery Machado Filho. Editora: Morgan Kaufmmann Editora

Leia mais

Medidas de Grandezas Fundamentais - Teoria do Erro

Medidas de Grandezas Fundamentais - Teoria do Erro UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL Medidas de Grandezas Fundamentais - Teoria do Erro Objetivo As práticas que serão trabalhadas nesta aula têm os objetivos de

Leia mais

ULA- Unidade Lógica Aritmética. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h

ULA- Unidade Lógica Aritmética. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h ULA- Unidade Lógica Aritmética. Prof. Rômulo Calado Pantaleão Camara Carga Horária: 60h Sumário Unidade Lógica Aritmetrica Registradores Unidade Lógica Operações da ULA Unidade de Ponto Flutuante Representação

Leia mais

ELETRÔNICA. Changed with the DEMO VERSION of CAD-KAS PDF-Editor (http://www.cadkas.com). INTRODUÇÃO

ELETRÔNICA. Changed with the DEMO VERSION of CAD-KAS PDF-Editor (http://www.cadkas.com). INTRODUÇÃO 0010100111010101001010010101 CURSO DE 0101010100111010100101011101 1010011001111010100111010010 ELETRÔNICA 1010000111101010011101010010 DIGITAL INTRODUÇÃO Os circuitos equipados com processadores, cada

Leia mais