Redes neurais aplicadas na identificação de variedades de soja

Tamanho: px
Começar a partir da página:

Download "Redes neurais aplicadas na identificação de variedades de soja"

Transcrição

1 Redes neurais aplicadas na identificação de variedades de soja Fábio R. R. Padilha Universidade Regional do Noroeste do Estado do Rio Grande do Sul - UNIJUÍ Rua São Francisco, 5 - Sede Acadêmica, 987-, Ijuí - RS - Brasil Oleg A. Khatchatourian Universidade Regional do Noroeste do Estado do Rio Grande do Sul - UNIJUÍ Rua São Francisco, 5 - Sede Acadêmica, 987-, Ijuí - RS - Brasil Introdução A padronização de sementes de soja através do tamanho tem se tornado uma prática rotineira no Brasil e uma exigência de mercado (Lima, 996). A análise morfológica de grãos de soja é caracterizada por procedimentos técnicos utilizados para avaliar a identidade da amostra, ou seja, a verificação da pureza em um lote de sementes quanto à presença de sementes invasoras. De acordo com as Regras para Análise de Sementes (992), a quantidade de sementes analisadas em um laboratório é muito pequena em relação ao tamanho do lote ao qual representa. Se este não for homogêneo ou se houver erro na amostragem, as informações serão incorretas e comprometedoras, podendo beneficiar ou prejudicar os usuários das sementes analisadas. O processo de identificação em sementes de soja é um problema de identificação de padrões. Atualmente, isto é realizado por inspeção visual, uso de produtos químicos e testes de DNA, com alto custo. Para resolver este problema, foram utilizadas Redes Neurais Artificiais (RNA) para auxiliar neste tipo de procedimento. 2. Processamento das Imagens O processamento das imagens foi dividido em cinco etapas: aquisição da imagem, pré-processamento, segmentação, representação, reconhecimento e interpretação (Gonzales, 2). Na primeira etapa, as sementes das variedades pré-selecionadas foram colocadas sobre uma superfície plana de cor preta e fosca. Os grãos foram fotografados por uma câmera digital Coolpix995 da marca Nikon, acoplada a um tripé e ângulo de captação superior reto de 9º, com resolução fina de 28 x 96 pixels sob luz fluorescente. A câmera foi conectada a um adaptador que converteu as imagens em uma saída USB que por sua vez foi conectado ao computador onde as imagens foram salvas em formato JPEG. A partir da segunda etapa foram executados procedimentos no software MATLAB 7. através da ferramenta desenvolvida Figura : Imagem original A imagem a ser processada (Figura ), foi inserida ao programa onde na etapa de préprocessamento foi realizada uma suavização em tons de cinza (Figura 2) Figura 2: Imagem em tons de cinza Este procedimento retornou uma matriz, onde cada posição representa um pixel e seu valor, um tom de cinza do referido pixel.

2 Na próxima etapa foi realizada a segmentação, onde se utilizou o Método de Prewitt para detecção dos contornos dos grãos (Figura 3) Figura 3: Bordas detectadas pelo Método de Prewitt Contudo, o resultado não foi satisfatório, apresentando contornos fracos e descontínuos. Assim, foi necessário realizar uma dilatação desses contornos (Figura 4). da imagem resultante as características para a identificação das variedades. Para isto, aplicou-se um método que retornou as coordenadas de cada pixel e uma numeração seqüencial para cada grão (Figura 8) Figura 5: Preenchimento dos grãos Figura 6: Limpeza das bordas dos grãos Figura 4: Dilatação dos contornos A dilatação dos contornos ainda resultou em alguns contornos descontínuos, então foi aplicada uma função que preencheu todos os grãos que possuíam os contornos contínuos (Figura 5). Devido à dilatação dos contornos, alguns grãos perderam suas características, dificultando a identificação dos padrões nas etapas posteriores. Por isto, realizou-se uma limpeza das bordas dos grãos reduzindo a dilatação realizada anteriormente (Figura 6). Finalizando esta etapa foi realizada a remoção de ruídos (aglomerados com até 7 pixels) que poderiam ser considerados como objetos a serem identificados, mas que por sua vez, não representavam os grãos e sim algum tipo de interferência na imagem (Figura 7). Após a segmentação, iniciou-se a etapa de representação onde foram extraídas Figura 7: Remoção de objetos menores que 7 pixels Figura 8: Imagem com os grãos identificados

3 Através destas coordenadas, extraíram-se da imagem os pixels de cada grão identificados por uma matriz. Devido aos diferentes formatos dos grãos, foram obtidas matrizes de dimensões variadas. Assim, foi realizada uma varredura nestas matrizes a fim de se identificar a maior dimensão entre elas. Feito isto, as matrizes menores foram preenchidas com zeros para igualar a dimensão entre elas. Após este procedimento, cada grão foi definido em termos de valores binários em um grid de dimensão 3 x 3 pixels. A Figura 9 mostra o esquema de um grão de soja através de uma matriz em um grid de tamanho 3 x 3 pixels. transformadas em vetores colunas para que pudessem ser inseridas como dados de entrada na rede neural da próxima etapa. 3. Configuração da Rede Neural Segundo Haykin (2) a arquitetura da rede neural utilizada para o tipo de reconhecimento de padrões verificada neste trabalho é a rede feedforward multicamadas com aprendizado backpropagation (Figura 2). A rede foi composta por 69 neurônios na camada de entrada, 3 camadas ocultas com 9, 7 e 6 neurônios e uma camada de saída com 8 neurônios. As camadas ocultas e a camada de saída possuíam biases. 4. Treinamento da Rede Neural Figura 9: Representação do grão através da matriz Os dados inseridos na rede foram limitados entre os valores (cor preta) e (cor branca) como pode ser observado na Figura. Figura : Imagem binária do grão de soja Para obter os dados de entrada, os padrões de treinamento foram submetidos à fase de pré-processamento que resultou uma matriz de dimensão 69 por 5, onde cada coluna representa um grão reconhecido no conjunto de treinamento descrito na fase de representação. Os vetores objetivos (Figura ) foram representados por uma matriz de dimensão 5 por 8, onde cada coluna representa uma saída desejada para cada grão (vetor unitário da base canônica) e as linhas os padrões a serem treinados. A posição do elemento igual corresponde ao padrão correto. BRS 33 BRS 84 CD 25 CD 26 EMB 48 NK 835 RS MSOY 8RR Figura : Vetores objetivos Finalizando esta etapa, as matrizes correspondentes a cada grão foram

4 Figura 2: Arquitetura da rede neural 5. Treinamento do Algoritmo O procedimento para ajustar os pesos da rede neural (treinamento do algoritmo) envolveu três fases: a propagação do vetor de entrada, a retropropagação do erro e o ajuste dos pesos. Designando W como a matriz dos pesos para a ª camada oculta, o vetor de entrada a para a 2ª camada oculta foi calculado da seguinte forma: 9x 9x69 69x 9x a = f W p + b () onde: p é o vetor de entrada (conjunto de treinamento), b é a bias e f é a função de transferência (sigmóide binária). Seguindo para a próxima camada, tem-se o vetor dos pesos multiplicado pelo vetor de saída da ª camada, caracterizando a propagação da rede e assim para a 3ª camada de acordo com as equações (2) e (3): ( 2) ( 2) 7x 7x9 9x 7x a = f W a + b (2) ( 3) ( 2) ( 3) 6x 6x7 7x 6x a = f W a + b (3) Continuando a etapa feedforward, o ( 4) vetor de saída a para a camada de saída foi calculado da seguinte forma: ( 4) ( 3) ( 4) 8x 8x6 6x 8x a = f V a + b (4) onde: V é a matriz de pesos para camada de saída. Durante a etapa de retropropagação (backpropagation), os pesos da rede foram ajustados para minimizar o erro quadrático total, determinado pela diferença entre o peso atual e o peso da saída da rede. A condição de parada inclui a tolerância na relação total do erro quadrático e no limite de iterações impostas (épocas). A rede neural foi considerada treinada quando os valores de saída estavam dentro do erro estipulado (,). Para os 5 vetores de entrada foram necessárias 352 épocas. 6. Resultados A rede neural após atingir o treinamento foi submetida aos primeiros testes utilizando 8 imagens contendo as amostras das variedades escolhidas. Os resultados são mostrados nas Tabelas a 8. Imagem analisada: Variedade BRS 33 BRS ,9% BRS ,9% CD 25 22,72% CD 26 % EMB ,9% NK ,45% RS % MSOY 8RR 2 4,55% Total 44 % Tabela : Análise da imagem BRS33.jpg

5 Imagem analisada: Variedade BRS 84 BRS ,29% BRS ,% CD ,6% CD 26 2,4% EMB 48 % NK 835 2,4% RS 6 2,24% MSOY 8RR 3 6,2% Total 49 % Tabela 2: Análise da imagem BRS84.jpg Imagem analisada: Variedade CD 25 BRS ,8% BRS ,95% CD ,9% CD 26 % EMB ,82% NK ,69% RS % MSOY 8RR 2,56% Total 39 % Tabela 3: Análise da imagem CD25.jpg Imagem analisada: Variedade CD 26 BRS 33 % BRS % CD 25 % CD % EMB 48 % NK 835 % RS 6 32% MSOY 8RR 4 8% Total 5 % Tabela 4: Análise da imagem CD26.jpg Imagem analisada: Variedade EMB 48 BRS ,37% BRS ,2% CD 25 5,2% CD 26 % EMB ,82% NK ,49% RS % MSOY 8RR % Total 49 % Tabela 5: Análise da imagem EMB.jpg Imagem analisada: Variedade NK 835 BRS ,2% BRS 84 2,3% CD ,5% CD 26 % EMB ,9% NK ,43% RS % MSOY 8RR % Total 47 % Tabela 6: Análise da imagem NK835.jpg Imagem analisada: Variedade RS BRS 33 % BRS % CD 25 % CD 26 22% EMB 48 % NK 835 % RS 29 58% MSOY 8RR 6 2% Total 5 % Tabela 7: Análise da imagem RS.jpg Imagem analisada: Variedade MSOY 8RR BRS ,38% BRS ,5% CD ,26% CD ,5% EMB 48 % NK 835 % RS 2,3% MSOY 8RR 33 7,2% Total 47 % Tabela 8: Análise da imagem MSOY8RR.jpg

6 Em outro teste, foram tiradas fotos separadas em grupos contendo 5,, 5, 2, 25, 3 e 35 grãos para cada variedade a fim de identificar o número de sementes necessárias para a confiabilidade do modelo (Figura 3). Figura 3: Imagens para avaliação da RNA As Figuras 4 a 2 mostram os gráficos resultantes do reconhecimento em relação aos grupos de fotos, os quais ilustram a freqüência de reconhecimento e também uma linha de tendência para cada caso Figura 4: Influência do tamanho do estrato BRS Figura 5: Influência do tamanho do estrato BRS Figura 6: Influência do tamanho do estrato CD Figura 7: Influência do tamanho do estrato CD Figura 8: Influência do tamanho do estrato EMB 48

7 Figura 9: Influência do tamanho do estrato NK Figura 2: Influência do tamanho do estrato RS Figura 2: Influência do tamanho do estrato MSOY 8RR 7. Conclusões Redes Neurais Artificiais em conjunto com Processamento de Imagens Digitais podem ser usadas para a identificação de variedades de soja. O modelo usado foi configurado por uma rede feedforward multicamadas com aprendizado backpropagation. Durante os testes realizados, a rede neural apresentou resultados satisfatórios, obtendo uma média de acerto acima de um terço do total de grãos analisados por variedade. Além disso, observou-se que com o aumento do número de grãos por foto ocorreu uma melhora considerável na identificação. Os resultados mostraram que o modelo foi capaz de identificar as variedades de soja e que as simulações realizadas permitiram escolher a arquitetura de RNA (número de camadas e de neurônios) com um bom desempenho. Referências [] N. M. Carvalho, J. Nakagawa, Sementes: Ciência, Tecnologia e Produção. 4. ed. Jaboticabal: Funep, 2. [2] R. C. Gonzales, R. E. Woods, Processamento de Imagens Digitais. Ed. Edgard Blücher - LTDA, São Paulo - SP, 2. [3] S. Haykin, Redes neurais: princípios e prática. 2.ed., traduzido por Paulo Martins Engel, Porto Alegre: Bookman, 2. [4] R. M. Lima, Efeito do tamanho das sementes sobre alguns atributos fisiológicos e agronômicos. Associação brasileira dos produtores de sementes: Anuários Abrasem, Brasília, DF, p , 996. [5] MATLAB Versão 7., Neural Network Toolbox 4.., Release Notes. The MathWorks, 24. [6] Ministério da Agricultura e Reforma Agrária, Brasil, Regras para análise de sementes. Brasília: SNDA/DNDV/CLAV, 365 p., 992. [7] M. A. Shahin, S. J. Symons, V. W. POYSA, Determining soya bean seed size uniformity with image analysis. Biosystems Engineering (26) 94(2), 9-98.

Reconhecimento de Caracteres Através de Redes Neurais Artificiais com Aplicação a Placas de Automóveis

Reconhecimento de Caracteres Através de Redes Neurais Artificiais com Aplicação a Placas de Automóveis Anais do XVI Encontro de Iniciação Científica e Pós-Graduação do ITA XVI ENCITA / 2010 Instituto Tecnológico de Aeronáutica São José dos Campos SP Brasil 20 de outubro de 2010 Reconhecimento de Caracteres

Leia mais

PALAVRAS-CHAVE: Massas Nodulares, Classificação de Padrões, Redes Multi- Layer Perceptron.

PALAVRAS-CHAVE: Massas Nodulares, Classificação de Padrões, Redes Multi- Layer Perceptron. 1024 UMA ABORDAGEM BASEADA EM REDES PERCEPTRON MULTICAMADAS PARA A CLASSIFICAÇÃO DE MASSAS NODULARES EM IMAGENS MAMOGRÁFICAS Luan de Oliveira Moreira¹; Matheus Giovanni Pires² 1. Bolsista PROBIC, Graduando

Leia mais

Matlab - Neural Networw Toolbox. Ana Lívia Soares Silva de Almeida

Matlab - Neural Networw Toolbox. Ana Lívia Soares Silva de Almeida 27 de maio de 2014 O que é a Neural Networw Toolbox? A Neural Network Toolbox fornece funções e aplicativos para a modelagem de sistemas não-lineares complexos que não são facilmente modelados com uma

Leia mais

MLP (Multi Layer Perceptron)

MLP (Multi Layer Perceptron) MLP (Multi Layer Perceptron) André Tavares da Silva andre.silva@udesc.br Roteiro Rede neural com mais de uma camada Codificação de entradas e saídas Decorar x generalizar Perceptron Multi-Camada (MLP -

Leia mais

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Processamento de Imagem Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Visão Computacional Não existe um consenso entre os autores sobre o correto escopo do processamento de imagens, a

Leia mais

Inteligência Artificial. Redes Neurais Artificiais

Inteligência Artificial. Redes Neurais Artificiais Curso de Especialização em Sistemas Inteligentes Aplicados à Automação Inteligência Artificial Redes Neurais Artificiais Aulas Práticas no Matlab João Marques Salomão Rodrigo Varejão Andreão Matlab Objetivos:

Leia mais

Sistema de Autenticação/Identificação Pessoal Biométrica Através da Palma da Mão com o Auxílio de Redes Neurais Artificiais

Sistema de Autenticação/Identificação Pessoal Biométrica Através da Palma da Mão com o Auxílio de Redes Neurais Artificiais Anais do 14 O Encontro de Iniciação Científica e Pós-Graduação do ITA XV ENCITA / 2009 Instituto Tecnológico de Aeronáutica São José dos Campos SP Brasil Outubro 19 a 22 2009. Sistema de Autenticação/Identificação

Leia mais

2.1.2 Definição Matemática de Imagem

2.1.2 Definição Matemática de Imagem Capítulo 2 Fundamentação Teórica Este capítulo descreve os fundamentos e as etapas do processamento digital de imagens. 2.1 Fundamentos para Processamento Digital de Imagens Esta seção apresenta as propriedades

Leia mais

Revista Hispeci & Lema On Line ano III n.3 nov. 2012 ISSN 1980-2536 unifafibe.com.br/hispecielemaonline Centro Universitário UNIFAFIBE Bebedouro-SP

Revista Hispeci & Lema On Line ano III n.3 nov. 2012 ISSN 1980-2536 unifafibe.com.br/hispecielemaonline Centro Universitário UNIFAFIBE Bebedouro-SP Reconhecimento de face utilizando banco de imagens monocromáticas e coloridas através dos métodos da análise do componente principal (PCA) e da Rede Neural Artificial (RNA) [Recognition to face using the

Leia mais

A metodologia utilizada neste trabalho consiste basicamente de três etapas: ensaio, pré-processamento e simulações.

A metodologia utilizada neste trabalho consiste basicamente de três etapas: ensaio, pré-processamento e simulações. SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GCE 20 14 a 17 Outubro de 2007 Rio de Janeiro - RJ GRUPO XIV GRUPO DE ESTUDO DE CONSERVAÇÃO DE ENERGIA ELÉTRICA UTILIZAÇÃO DE REDES

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

Processamento de Imagens para Identificação de Veículos utilizando Inteligência Artificial

Processamento de Imagens para Identificação de Veículos utilizando Inteligência Artificial Processamento de Imagens para Identificação de Veículos utilizando Inteligência Artificial André Faria Ruaro, Nader Ghoddosi Universidade Federal do Santa Catarina (UFSC) Florianópolis SC Brasil Pós-Graduação

Leia mais

RENATO DE FREITAS LARA. Departamento de Ciência da Computação - Universidade Presidente Antônio Carlos (UNIPAC) - Barbacena - MG Brasil

RENATO DE FREITAS LARA. Departamento de Ciência da Computação - Universidade Presidente Antônio Carlos (UNIPAC) - Barbacena - MG Brasil RECONHECIMENTO DE CADEIAS DE NÚMEROS NAS ETIQUETAS IDENTIFICADORAS DOS BLOCOS DE AÇO, UTILIZANDO PROCESSAMENTO DIGITAL DE IMAGENS E REDES NEURAIS ARTIFICIAIS RENATO DE FREITAS LARA Departamento de Ciência

Leia mais

SEGMENTAÇÃO DE IMAGENS EM PLACAS AUTOMOTIVAS

SEGMENTAÇÃO DE IMAGENS EM PLACAS AUTOMOTIVAS SEGMENTAÇÃO DE IMAGENS EM PLACAS AUTOMOTIVAS André Zuconelli 1 ; Manassés Ribeiro 2 1. Aluno do Curso Técnico em Informática, turma 2010, Instituto Federal Catarinense, Câmpus Videira, andre_zuconelli@hotmail.com

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

Relatório da Aula Prática sobre Redes Neurais Artificiais

Relatório da Aula Prática sobre Redes Neurais Artificiais Relatório da Aula Prática sobre Redes Neurais Artificiais Instituto de Informática UFRGS Carlos Eduardo Ramisch Cartão: 134657 INF01017 Redes Neurais e Sistemas Fuzzy Porto Alegre, 16 de outubro de 2006.

Leia mais

PROTÓTIPO DE SOFTWARE PARA APRENDIZAGEM DE REDES NEURAIS ARTIFICIAIS

PROTÓTIPO DE SOFTWARE PARA APRENDIZAGEM DE REDES NEURAIS ARTIFICIAIS Anais do XXXIV COBENGE. Passo Fundo: Ed. Universidade de Passo Fundo, Setembro de 2006. ISBN 85-7515-371-4 PROTÓTIPO DE SOFTWARE PARA APRENDIZAGEM DE REDES NEURAIS ARTIFICIAIS Rejane de Barros Araújo rdebarros_2000@yahoo.com.br

Leia mais

Apresentação final do Trabalho de Conclusão -Novembro 2002. Autenticação On-line de assinaturas utilizando Redes Neurais. Milton Roberto Heinen

Apresentação final do Trabalho de Conclusão -Novembro 2002. Autenticação On-line de assinaturas utilizando Redes Neurais. Milton Roberto Heinen Apresentação final do Trabalho de Conclusão -Novembro 2002 Autenticação On-line de assinaturas utilizando Redes Neurais Milton Roberto Heinen miltonrh@ig.com.br Motivação Falta de segurança dos sistemas

Leia mais

Processamento de Imagem. Prof. Herondino

Processamento de Imagem. Prof. Herondino Processamento de Imagem Prof. Herondino Sensoriamento Remoto Para o Canada Centre for Remote Sensing - CCRS (2010), o sensoriamento remoto é a ciência (e em certa medida, a arte) de aquisição de informações

Leia mais

APLICAÇÃO DAS TÉCNICAS DE PROCESSAMENTO DIGITAL DE IMAGENS NA CARACTERIZAÇÃO QUANTITATIVA DE MATERIAIS COMPÓSITOS

APLICAÇÃO DAS TÉCNICAS DE PROCESSAMENTO DIGITAL DE IMAGENS NA CARACTERIZAÇÃO QUANTITATIVA DE MATERIAIS COMPÓSITOS APLICAÇÃO DAS TÉCNICAS DE PROCESSAMENTO DIGITAL DE IMAGENS NA CARACTERIZAÇÃO QUANTITATIVA DE MATERIAIS COMPÓSITOS Fernando de Azevedo Silva Jean-Jacques Ammann Ana Maria Martinez Nazar Universidade Estadual

Leia mais

PRODUÇÃO INDUSTRIAL DE SUÍNOS E O USO DE REDES NEURAIS ARTIFICIAIS PARA PREDIÇÃO DE ÍNDICES ZOOTÉCNICOS NA FASE DE GESTAÇÃO E MATERNIDADE RESUMO

PRODUÇÃO INDUSTRIAL DE SUÍNOS E O USO DE REDES NEURAIS ARTIFICIAIS PARA PREDIÇÃO DE ÍNDICES ZOOTÉCNICOS NA FASE DE GESTAÇÃO E MATERNIDADE RESUMO PRODUÇÃO INDUSTRIAL DE SUÍNOS E O USO DE REDES NEURAIS ARTIFICIAIS PARA PREDIÇÃO DE ÍNDICES ZOOTÉCNICOS NA FASE DE GESTAÇÃO E MATERNIDADE RESUMO HÉLITON PANDORFI 1 IRAN JOSÉ OLIVEIRA DA SILVA 2 JEFFERSON

Leia mais

Relatório de uma Aplicação de Redes Neurais

Relatório de uma Aplicação de Redes Neurais UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTACAÇÃO ESPECIALIZAÇÃO EM ENGENHARIA DE SISTEMAS DISCIPLINA: REDES NEURAIS PROFESSOR: MARCOS

Leia mais

3 Metodologia de Previsão de Padrões de Falha

3 Metodologia de Previsão de Padrões de Falha 3 Metodologia de Previsão de Padrões de Falha Antes da ocorrência de uma falha em um equipamento, ele entra em um regime de operação diferente do regime nominal, como descrito em [8-11]. Para detectar

Leia mais

Aula 2 Aquisição de Imagens

Aula 2 Aquisição de Imagens Processamento Digital de Imagens Aula 2 Aquisição de Imagens Prof. Dr. Marcelo Andrade da Costa Vieira mvieira@sc.usp.br EESC/USP Fundamentos de Imagens Digitais Ocorre a formação de uma imagem quando

Leia mais

Filtragem. pixel. perfil de linha. Coluna de pixels. Imagem. Linha. Primeiro pixel na linha

Filtragem. pixel. perfil de linha. Coluna de pixels. Imagem. Linha. Primeiro pixel na linha Filtragem As técnicas de filtragem são transformações da imagem "pixel" a "pixel", que dependem do nível de cinza de um determinado "pixel" e do valor dos níveis de cinza dos "pixels" vizinhos, na imagem

Leia mais

Universidade Federal do Rio de Janeiro - IM/DCC & NCE

Universidade Federal do Rio de Janeiro - IM/DCC & NCE Universidade Federal do Rio de Janeiro - IM/DCC & NCE Processamento de Imagens Tratamento da Imagem - Filtros Antonio G. Thomé thome@nce.ufrj.br Sala AEP/033 Sumário 2 Conceito de de Filtragem Filtros

Leia mais

CBPF Centro Brasileiro de Pesquisas Físicas. Nota Técnica

CBPF Centro Brasileiro de Pesquisas Físicas. Nota Técnica CBPF Centro Brasileiro de Pesquisas Físicas Nota Técnica Aplicação de Física Médica em imagens de Tomografia de Crânio e Tórax Autores: Dário Oliveira - dario@cbpf.br Marcelo Albuquerque - marcelo@cbpf.br

Leia mais

Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais

Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais Elisângela Lopes de Faria (a) Marcelo Portes Albuquerque (a) Jorge Luis González Alfonso (b) Márcio Portes Albuquerque (a) José

Leia mais

Localização de placas em imagens de veículos. Resumo

Localização de placas em imagens de veículos. Resumo Localização de placas em imagens de veículos Geovane Hilário Linzmeyer Curso de Inteligência Computacional Pontifícia Universidade Católica do Paraná Curitiba, dezembro de 2005 Resumo Um dos maiores problemas

Leia mais

Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445)

Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445) Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445) Prof. Hélio Pedrini Instituto de Computação UNICAMP 2º Semestre de 2015 Roteiro 1 Morfologia Matemática Fundamentos Matemáticos Operadores

Leia mais

Tratamento da Imagem Transformações (cont.)

Tratamento da Imagem Transformações (cont.) Universidade Federal do Rio de Janeiro - IM/DCC & NCE Tratamento da Imagem Transformações (cont.) Antonio G. Thomé thome@nce.ufrj.br Sala AEP/133 Tratamento de Imagens - Sumário Detalhado Objetivos Alguns

Leia mais

Comparação entre a Máscara de Nitidez Cúbica e o Laplaciano para Realce de Imagens Digitais

Comparação entre a Máscara de Nitidez Cúbica e o Laplaciano para Realce de Imagens Digitais Comparação entre a Máscara de Nitidez Cúbica e o Laplaciano para Realce de Imagens Digitais Wesley B. Dourado, Renata N. Imada, Programa de Pós-Graduação em Matemática Aplicada e Computacional, FCT, UNESP,

Leia mais

Análise de Tendências de Mercado por Redes Neurais Artificiais

Análise de Tendências de Mercado por Redes Neurais Artificiais Análise de Tendências de Mercado por Redes Neurais Artificiais Carlos E. Thomaz 1 e Marley M.B.R. Vellasco 2 1 Departamento de Engenharia Elétrica (IAAA), FEI, São Paulo, Brasil 2 Departamento de Engenharia

Leia mais

Processamento Digital de Imagens

Processamento Digital de Imagens Processamento Digital de Imagens Israel Andrade Esquef a Márcio Portes de Albuquerque b Marcelo Portes de Albuquerque b a Universidade Estadual do Norte Fluminense - UENF b Centro Brasileiro de Pesquisas

Leia mais

3DODYUDVFKDYH Visão Computacional, Inteligência Artificial, Redes Neurais Artificiais.

3DODYUDVFKDYH Visão Computacional, Inteligência Artificial, Redes Neurais Artificiais. 80,7(0$'(9, 23$5$5(&21+(&,0(172'(3(d$(080 7$%8/(,52'(;$'5(= Sérgio Faustino Ribeiro Juracy Emanuel M. da França Marcelo Alves de Barros José Homero Feitosa Cavalcanti Universidade Federal da Paraíba CCT/COPIN/NEUROLAB-CT/DTM

Leia mais

Figura 01: Aplicações do Filtro Espacial Passa-Baixa.

Figura 01: Aplicações do Filtro Espacial Passa-Baixa. 791 IMPLEMENTAÇÃO DE TÉCNICAS DE PRÉ-PROCESSAMENTO E PROCESSAMENTO DE IMAGENS PARA RADIOGRAFIAS CARPAIS Rafael Lima Alves 1 ; Michele Fúlvia Angelo 2 Bolsista PROBIC, Graduando em Engenharia de Computação,

Leia mais

Trabalho 2 Fundamentos de computação Gráfica

Trabalho 2 Fundamentos de computação Gráfica Trabalho 2 Fundamentos de computação Gráfica Processamento de Imagens Aluno: Renato Deris Prado Tópicos: 1- Programa em QT e C++ 2- Efeitos de processamento de imagens 1- Programa em QT e C++ Para o trabalho

Leia mais

Transformada de Hough. Cleber Pivetta Gustavo Mantovani Felipe Zottis

Transformada de Hough. Cleber Pivetta Gustavo Mantovani Felipe Zottis Transformada de Hough Cleber Pivetta Gustavo Mantovani Felipe Zottis A Transformada de Hough foi desenvolvida por Paul Hough em 1962 e patenteada pela IBM. Originalmente, foi elaborada para detectar características

Leia mais

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001 47 5 Redes Neurais O trabalho em redes neurais artificiais, usualmente denominadas redes neurais ou RNA, tem sido motivado desde o começo pelo reconhecimento de que o cérebro humano processa informações

Leia mais

Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica

Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica João Paulo Teixeira*, José Batista*, Anildio Toca**, João Gonçalves**, e Filipe Pereira** * Departamento de Electrotecnia

Leia mais

Normalização Espacial de Imagens Frontais de Face

Normalização Espacial de Imagens Frontais de Face Normalização Espacial de Imagens Frontais de Face Vagner do Amaral 1 e Carlos Eduardo Thomaz 2 Relatório Técnico: 2008/01 1 Coordenadoria Geral de Informática Centro Universitário da FEI São Bernardo do

Leia mais

RECONHECIMENTO DE VARIEDADES DE SOJA POR MEIO DO PROCESSAMENTO DE IMAGENS DIGITAIS USANDO REDES NEURAIS ARTIFICIAIS

RECONHECIMENTO DE VARIEDADES DE SOJA POR MEIO DO PROCESSAMENTO DE IMAGENS DIGITAIS USANDO REDES NEURAIS ARTIFICIAIS RECONHECIMENTO DE VARIEDADES DE SOJA POR MEIO DO PROCESSAMENTO DE IMAGENS DIGITAIS USANDO REDES NEURAIS ARTIFICIAIS OLEG KHATCHATOURIAN 1, FÁBIO R. R. PADILHA 2 RESUMO: Neste trabalho, foi aplicado o processamento

Leia mais

UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS

UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS Obter uma imagem temática a partir de métodos de classificação de imagens multi- espectrais 1. CLASSIFICAÇÃO POR PIXEL é o processo de extração

Leia mais

INSPEÇÃO INDUSTRIAL ATRAVÉS DE VISÃO

INSPEÇÃO INDUSTRIAL ATRAVÉS DE VISÃO UNIVERSIDADE REGIONAL DE BLUMENAU CENTRO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE CIÊNCIAS DA COMPUTAÇÃO BACHARELADO INSPEÇÃO INDUSTRIAL ATRAVÉS DE VISÃO COMPUTACIONAL MAURÍCIO EDGAR STIVANELLO BLUMENAU

Leia mais

Reconhecimento de padrões de calibração em estereofotogrametria através de redes neurais

Reconhecimento de padrões de calibração em estereofotogrametria através de redes neurais UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA POLITÉCNICA DEPARTAMENTO DE ELETRÔNICA E DE COMPUTAÇÃO Reconhecimento de padrões de calibração em estereofotogrametria através de redes neurais Autor: Juliana

Leia mais

RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS ATRAVÉS DE CÂMERAS IP

RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS ATRAVÉS DE CÂMERAS IP RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS ATRAVÉS DE CÂMERAS IP Caio Augusto de Queiroz Souza caioaugusto@msn.com Éric Fleming Bonilha eric@digifort.com.br Gilson Torres Dias gilson@maempec.com.br Luciano

Leia mais

COPPE/UFRJ. CPE 721 - Redes Neurais Feedforward Prof.: Luiz Calôba

COPPE/UFRJ. CPE 721 - Redes Neurais Feedforward Prof.: Luiz Calôba COPPE/UFRJ CPE 721 - Redes Neurais Feedforward Prof.: Luiz Calôba PROGRAMA PARA DEMONSTRAÇÃO DO PROCESSO DE APRENDIZADO DOS NEURÔNIOS DA CAMADA INTERMEDIÁRIA DE UMA REDE NEURAL FEEDFORWARD DE 2 CAMADAS,

Leia mais

RECONHECIMENTO DE OBJETOS CONTIDOS EM IMAGENS ATRAVÉS DE REDES NEURAIS

RECONHECIMENTO DE OBJETOS CONTIDOS EM IMAGENS ATRAVÉS DE REDES NEURAIS RECONHECIMENTO DE OBJETOS CONTIDOS EM IMAGENS ATRAVÉS DE REDES NEURAIS LUIZ EDUARDO NICOLINI DO PATROCÍNIO NUNES Departamento de Engenharia Mecânica Universidade de Taubaté PEDRO PAULO LEITE DO PRADO Departamento

Leia mais

TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA

TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS

Leia mais

UNIJUÍ - UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL FÁBIO RONEI RODRIGUES PADILHA

UNIJUÍ - UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL FÁBIO RONEI RODRIGUES PADILHA UNIJUÍ - UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL FÁBIO RONEI RODRIGUES PADILHA RECONHECIMENTO DE VARIEDADES DE SOJA ATRAVÉS DO PROCESSAMENTO DE IMAGENS DIGITAIS USANDO REDES NEURAIS

Leia mais

Fotografia Digital Obtenção da Imagem e Impressão

Fotografia Digital Obtenção da Imagem e Impressão Fotografia Digital Obtenção da Imagem e Impressão 1 Diferenças entre o CCD e o Filme: O filme como já vimos, é uma película de poliéster, coberta em um dos lados por uma gelatina de origem animal com partículas

Leia mais

Como enviar fotos de câmeras digitais

Como enviar fotos de câmeras digitais Como enviar fotos de câmeras digitais Se as fotos que você deseja enviar para o Geo-Obras foram capturadas com uma câmera digital, será necessário copiá-las para o computador. A maioria dos modelos utiliza

Leia mais

Curso de Redes Neurais utilizando o MATLAB

Curso de Redes Neurais utilizando o MATLAB Curso de Redes Neurais utilizando o MATLAB Victoria Yukie Matsunaga Belém-Pará-Brasil 2012 Esta apostila tem como principal objetivo fornecer um material de auxílio ao Curso de Redes Neurais utilizando

Leia mais

Redes Neurais. Profa. Flavia Cristina Bernardini

Redes Neurais. Profa. Flavia Cristina Bernardini Redes Neurais Profa. Flavia Cristina Bernardini Introdução Cérebro & Computador Modelos Cognitivos Diferentes Cérebro Computador Seqüência de Comandos Reconhecimento de Padrão Lento Rápido Rápido Lento

Leia mais

SISTEMA AUTOMÁTICO DE PULVERIZAÇÃO UTILIZANDO TÉCNICAS DE PROCESSAMENTO DIGITAL DE IMAGENS. PERNOMIAN, Viviane Araujo. DUARTE, Fernando Vieira

SISTEMA AUTOMÁTICO DE PULVERIZAÇÃO UTILIZANDO TÉCNICAS DE PROCESSAMENTO DIGITAL DE IMAGENS. PERNOMIAN, Viviane Araujo. DUARTE, Fernando Vieira REVISTA CIENTÍFICA ELETRÔNICA DE AGRONOMIA ISSN 1677-0293 PERIODICIDADE SEMESTRAL ANO III EDIÇÃO NÚMERO 5 JUNHO DE 2004 -------------------------------------------------------------------------------------------------------------------------------

Leia mais

PROCESSAMENTO DIGITAL DE IMAGENS

PROCESSAMENTO DIGITAL DE IMAGENS PROCESSAMENTO DIGITAL DE IMAGENS Msc. Daniele Carvalho Oliveira Doutoranda em Ciência da Computação - UFU Mestre em Ciência da Computação UFU Bacharel em Ciência da Computação - UFJF FILTRAGEM ESPACIAL

Leia mais

Aplicações Práticas com Redes Neurais Artificiais em Java

Aplicações Práticas com Redes Neurais Artificiais em Java com em Java Luiz D Amore e Mauro Schneider JustJava 2009 17 de Setembro de 2009 Palestrantes Luiz Angelo D Amore luiz.damore@metodista.br Mauro Ulisses Schneider mauro.schneider@metodista.br http://blog.mauros.org

Leia mais

UBER: Uma ferramenta para realce de microcalcificações mamárias

UBER: Uma ferramenta para realce de microcalcificações mamárias Departamento de Sistemas e Computação FURB Curso de Ciência da Computação Trabalho de Conclusão de Curso 2013/2 UBER: Uma ferramenta para realce de microcalcificações mamárias Acadêmico: Jackson Krause

Leia mais

Classificação de Imagens Tomográficas de Ciência dos Solos Utilizando Redes Neurais e Combinação de Classificadores

Classificação de Imagens Tomográficas de Ciência dos Solos Utilizando Redes Neurais e Combinação de Classificadores Classificação de Imagens Tomográficas de Ciência dos Solos Utilizando Redes Neurais e Combinação de Classificadores Fabricio Aparecido Breve Prof. Dr. Nelson Delfino d Ávila Mascarenhas Apresentação Objetivos

Leia mais

Simulação Gráfica. Morfologia Matemática. Julio C. S. Jacques Junior

Simulação Gráfica. Morfologia Matemática. Julio C. S. Jacques Junior Simulação Gráfica Morfologia Matemática Julio C. S. Jacques Junior Morfologia Palavra denota uma área da biologia que trata com a forma e a estrutura de animais e plantas. No contexto de Morfologia Matemática:

Leia mais

DETECÇÃO E RECONHECIMENTO DE FACE UTILIZANDO O MATLAB

DETECÇÃO E RECONHECIMENTO DE FACE UTILIZANDO O MATLAB 0 UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA CURSO DE CIÊNCIA DA COMPUTAÇÃO DEISE SANTANA MAIA DETECÇÃO E RECONHECIMENTO DE FACE UTILIZANDO O MATLAB VITÓRIA DA CONQUISTA - BA 2014 1 DEISE SANTANA MAIA

Leia mais

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS Curso: Informática Disciplina: Redes Neurais Prof. Fernando Osório E-mail: osorio@exatas.unisinos.br EXEMPLO DE QUESTÕES DE PROVAS ANTIGAS 1. Supondo que

Leia mais

REDES NEURAIS PARA IDENTIFICAÇÃO DE PADRÕES NA DETECÇÃO DE QUEIMADAS NA FLORESTA AMAZÔNICA

REDES NEURAIS PARA IDENTIFICAÇÃO DE PADRÕES NA DETECÇÃO DE QUEIMADAS NA FLORESTA AMAZÔNICA REDES NEURAIS PARA IDENTIFICAÇÃO DE PADRÕES NA DETECÇÃO DE QUEIMADAS NA FLORESTA AMAZÔNICA Luiz Pinheiro Duarte Neto 1, Lauro Yasumasa Nakayama 2, Juliano João Bazzo 3 1 Instituto Nacional de Pesquisas

Leia mais

ferramentas da imagem digital

ferramentas da imagem digital ferramentas da imagem digital illustrator X photoshop aplicativo ilustração vetorial aplicativo imagem digital 02. 16 imagem vetorial X imagem de rastreio imagem vetorial traduz a imagem recorrendo a instrumentos

Leia mais

MORFOLOGIA MATEMÁTICA. Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR

MORFOLOGIA MATEMÁTICA. Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR MORFOLOGIA MATEMÁTICA Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR Outubro/2015 Morfologia Matemática Morfologia na Biologia Estudo da estrutura dos animais e plantas;

Leia mais

UNIVERSIDADE FEDERAL DO PAMPA ALEXANDRE AMARAL MOREIRA

UNIVERSIDADE FEDERAL DO PAMPA ALEXANDRE AMARAL MOREIRA UNIVERSIDADE FEDERAL DO PAMPA ALEXANDRE AMARAL MOREIRA RECONHECIMENTO DE PLACAS DE VEÍCULOS ATRAVÉS DA APLICAÇÃO DE TÉCNICAS DE PROCESSAMENTO DE IMAGENS E REDES NEURAIS ARTIFICIAIS Bagé 2013 ALEXANDRE

Leia mais

Aula 2 RNA Arquiteturas e Treinamento

Aula 2 RNA Arquiteturas e Treinamento 2COP229 Aula 2 RNA Arquiteturas e Treinamento 2COP229 Sumário 1- Arquiteturas de Redes Neurais Artificiais; 2- Processos de Treinamento; 2COP229 1- Arquiteturas de Redes Neurais Artificiais -Arquitetura:

Leia mais

Introdução ao processamento de imagens e OCTAVE. Julio C. S. Jacques Junior juliojj@gmail.com

Introdução ao processamento de imagens e OCTAVE. Julio C. S. Jacques Junior juliojj@gmail.com Introdução ao processamento de imagens e OCTAVE Julio C. S. Jacques Junior juliojj@gmail.com Octave www.gnu.org/software/octave/ Linguagem Interpretada (similar ao MATLAB... portabilidade) Voltada para

Leia mais

Detecção de Canaletas em Imagens de Géis de Eletroforese utilizando Filtro de Kalman

Detecção de Canaletas em Imagens de Géis de Eletroforese utilizando Filtro de Kalman Detecção de Canaletas em Imagens de Géis de Eletroforese utilizando Filtro de Kalman Alessandra A. Paulino, Maurílio Boaventura, Depto de Ciências de Computação e Estatística, IBILCE, UNESP, São José do

Leia mais

Teoria : Estruturas de Dados. Estrutura Vetorial. Quais tipos de dados são representados por estruturas vetoriais? Mapa temático:

Teoria : Estruturas de Dados. Estrutura Vetorial. Quais tipos de dados são representados por estruturas vetoriais? Mapa temático: Universidade do Estado de Santa Catarina UDESC Centro de ciências Humanas e da Educação FAED Mestrado em Planejamento Territorial e Desenvolvimento Socio- Ambiental - MPPT Disciplina: Geoprocessamento

Leia mais

Renato Ramos da Silva RECONHECIMENTO DE IMAGENS DIGITAIS UTILIZANDO REDES NEURAIS ARTIFICIAIS

Renato Ramos da Silva RECONHECIMENTO DE IMAGENS DIGITAIS UTILIZANDO REDES NEURAIS ARTIFICIAIS Renato Ramos da Silva RECONHECIMENTO DE IMAGENS DIGITAIS UTILIZANDO REDES NEURAIS ARTIFICIAIS Monografia de Graduação apresentada ao Departamento de Ciência da Computação da Universidade Federal de Lavras

Leia mais

Reconhecimento de Padrões Utilizando Filtros Casados

Reconhecimento de Padrões Utilizando Filtros Casados Detecção e estimação de sinais Reconhecimento de Padrões Utilizando Filtros Casados Aline da Rocha Gesualdi Mello, José Manuel de Seixas, Márcio Portes de Albuquerque, Eugênio Suares Caner, Marcelo Portes

Leia mais

Universidade Federal do Rio de Janeiro. Escola Politécnica. Departamento de Eletrônica e de Computação

Universidade Federal do Rio de Janeiro. Escola Politécnica. Departamento de Eletrônica e de Computação Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Eletrônica e de Computação Reconhecimento de Caracteres de Placa Veicular Usando Redes Neurais Autor: Orientador: Allan Almeida

Leia mais

ESTUDO DOS DADOS DA LIXIVIAÇÃO DOS MATERIAIS DE ELETRODOS DE PILHAS EM HCl POR REDE NEURAL

ESTUDO DOS DADOS DA LIXIVIAÇÃO DOS MATERIAIS DE ELETRODOS DE PILHAS EM HCl POR REDE NEURAL ESTUDO DOS DADOS DA LIXIVIAÇÃO DOS MATERIAIS DE ELETRODOS DE PILHAS EM HCl POR REDE NEURAL Macêdo, M. I. F 1, Rosa, J. L. A. 2, Gonçalves, F. 2, Boente, A. N. P. 2 1 Laboratório de Tecnologia de Materiais,

Leia mais

Introdução do Processamento de Imagens. Julio C. S. Jacques Junior juliojj@gmail.com

Introdução do Processamento de Imagens. Julio C. S. Jacques Junior juliojj@gmail.com Introdução do Processamento de Imagens Julio C. S. Jacques Junior juliojj@gmail.com Porque processar uma imagem digitalmente? Melhoria de informação visual para interpretação humana Processamento automático

Leia mais

A implementação e o estudo. de redes neurais artificiais em ferramentas de software comerciais,

A implementação e o estudo. de redes neurais artificiais em ferramentas de software comerciais, Artigos A implementação e o estudo de redes neurais artificiais em ferramentas de software comerciais Cleber Gustavo Dias Professor do Departamento de Ciências Exatas Uninove. São Paulo SP [Brasil] diascg@uninove.br

Leia mais

GUIA PADRONIZAÇÃO DE IMAGENS NO INDICADOR CRM

GUIA PADRONIZAÇÃO DE IMAGENS NO INDICADOR CRM GUIA PADRONIZAÇÃO DE IMAGENS NO INDICADOR CRM ÍNDICE ITEM Página 1. Objetivo... 3 2. Padrões de Proporção... 3 3. Qualidade das Imagens... 6 4. Fotos Panorâmicas... 7 5. Youtube... 8 Página 2 de 9 1. Objetivo

Leia mais

Introdução ao Processamento de Imagens

Introdução ao Processamento de Imagens Introdução ao PID Processamento de Imagens Digitais Introdução ao Processamento de Imagens Glaucius Décio Duarte Instituto Federal Sul-rio-grandense Engenharia Elétrica 2013 1 de 7 1. Introdução ao Processamento

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS COLEGIADO DO CURSO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO - CECAU BRUNO MENDES DE TOLEDO CARGAS

UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS COLEGIADO DO CURSO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO - CECAU BRUNO MENDES DE TOLEDO CARGAS UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS COLEGIADO DO CURSO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO - CECAU BRUNO MENDES DE TOLEDO CARGAS CONTROLE DE NÍVEL DE UM SISTEMA DE TANQUES ACOPLADOS UTILIZANDO

Leia mais

Palavras-chave: Mortalidade Infantil, Análise Multivariada, Redes Neurais.

Palavras-chave: Mortalidade Infantil, Análise Multivariada, Redes Neurais. UMA ANÁLISE COMPARATIVA DE MODELOS PARA CLASSIFICAÇÃO E PREVISÃO DE SOBREVIVÊNCIA OU ÓBITO DE CRIANÇAS NASCIDAS NO RIO DE JANEIRO EM 2006 NO PRIMEIRO ANO DE VIDA Mariana Pereira Nunes Escola Nacional de

Leia mais

Medição da Altura das Cunhas de Fricção dos Vagões Utilizando Processamento Digital de Imagem

Medição da Altura das Cunhas de Fricção dos Vagões Utilizando Processamento Digital de Imagem ARTIGO Medição da Altura das Cunhas de Fricção dos Vagões Utilizando Processamento Digital de Imagem Leonardo Borges de Castro 1 *, Dr. João Marques Salomão 2 e Me. Douglas Almonfrey 2 1 VALE - Engenharia

Leia mais

Configurando Color Sttings - no CS3 Shift + Ctrl + K

Configurando Color Sttings - no CS3 Shift + Ctrl + K GCR Photoshop CS3 Cores Digitais Primeiramente, vamos entender como é possível substituir o CMY por preto apenas nas áreas cinzas e escuras sem influenciar nas outras cores da foto. Quando um scanner captura

Leia mais

Detecção e Rastreamento de Objetos coloridos em vídeo utilizando o OpenCV

Detecção e Rastreamento de Objetos coloridos em vídeo utilizando o OpenCV Detecção e Rastreamento de Objetos coloridos em vídeo utilizando o OpenCV Bruno Alberto Soares OLIVEIRA 1,3 ; Servílio Souza de ASSIS 1,3,4 ; Izadora Aparecida RAMOS 1,3,4 ; Marlon MARCON 2,3 1 Estudante

Leia mais

Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais

Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais Redes Neurais Artificiais Prof. Wilian Soares João Vitor Squillace Teixeira Ciência da Computação Universidade

Leia mais

Aula 6 - Segmentação de Imagens Parte 2. Prof. Adilson Gonzaga

Aula 6 - Segmentação de Imagens Parte 2. Prof. Adilson Gonzaga Aula 6 - Segmentação de Imagens Parte 2 Prof. Adilson Gonzaga 1 Motivação Extração do Objeto Dificuldades Super segmentação over-segmentation 1) Segmentação por Limiarização (Thresholding Global): Efeitos

Leia mais

RECONHECIMENTO AUTOMÁTICO DE PLACAS DE VEÍCULOS UTILIZANDO PROCESSAMENTO DIGITAL DE IMAGENS E INTELIGÊNCIA ARTIFICIAL

RECONHECIMENTO AUTOMÁTICO DE PLACAS DE VEÍCULOS UTILIZANDO PROCESSAMENTO DIGITAL DE IMAGENS E INTELIGÊNCIA ARTIFICIAL 133 RECONHECIMENTO AUTOMÁTICO DE PLACAS DE VEÍCULOS UTILIZANDO PROCESSAMENTO DIGITAL DE IMAGENS E INTELIGÊNCIA ARTIFICIAL Guilherme Stéfano Silva de Souza; Paulo Henrique Passella Acadêmicos do Curso de

Leia mais

INSPEÇÃO INDUSTRIAL ATRAVÉS DE VISÃO

INSPEÇÃO INDUSTRIAL ATRAVÉS DE VISÃO UNIVERSIDADE REGIONAL DE BLUMENAU CENTRO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE CIÊNCIAS DA COMPUTAÇÃO BACHARELADO INSPEÇÃO INDUSTRIAL ATRAVÉS DE VISÃO COMPUTACIONAL MAURÍCIO EDGAR STIVANELLO BLUMENAU

Leia mais

IDENTIFICAÇÃO BIOMÉTRICA ATRAVÉS DA IMPRESSÃO DIGITAL USANDO REDES NEURAIS ARTIFICIAIS

IDENTIFICAÇÃO BIOMÉTRICA ATRAVÉS DA IMPRESSÃO DIGITAL USANDO REDES NEURAIS ARTIFICIAIS IDENTIFICAÇÃO BIOMÉTRICA ATRAVÉS DA IMPRESSÃO DIGITAL USANDO REDES NEURAIS ARTIFICIAIS Renan Corio Mazi Instituto Tecnológico da Aeronáutica ITA Rua: João Batista Soares Queiroz Júnior, 2296, apto. 54

Leia mais

Desenvolvimento de um Sistema Híbrido para Rastreamento

Desenvolvimento de um Sistema Híbrido para Rastreamento Desenvolvimento de um Sistema Híbrido para Rastreamento de Objetos aplicado ao Futebol de Robôs Eduardo W. Basso 1, Diego M. Pereira 2, Paulo Schreiner 2 1 Laboratório de Robótica Inteligente Instituto

Leia mais

Radar de Penetração no Solo e Meio- Ambiente

Radar de Penetração no Solo e Meio- Ambiente UNIVERSIDADE DE SÃO PAULO INSTITUTO DE ASTRONOMIA, GEOFÍSICA E CIÊNCIAS ATMOSFÉRICAS DEPARTAMENTO DE GEOFÍSICA Curso 3ª Idade Radar de Penetração no Solo e Meio- Ambiente Vinicius Rafael Neris dos Santos

Leia mais

DESENVOLVIMENTO DE UM MÉTODO MONTE CARLO NÃO PARAMÉTRICO PARA GERAR IMAGENS SINTÉTICAS DE OSSOS TRABECULARES J. W. Vieira, V. Leal Neto, J. M.

DESENVOLVIMENTO DE UM MÉTODO MONTE CARLO NÃO PARAMÉTRICO PARA GERAR IMAGENS SINTÉTICAS DE OSSOS TRABECULARES J. W. Vieira, V. Leal Neto, J. M. DESENVOLVIMENTO DE UM MÉTODO MONTE CARLO NÃO PARAMÉTRICO PARA GERAR IMAGENS SINTÉTICAS DE OSSOS TRABECULARES J. W. Vieira, V. Leal Neto, J. M. Lima Filho, J. R. S. Cavalcanti e F. R. A. Lima INTRODUÇÃO

Leia mais

Sistemas de Informação Geográfica (SIG) para Agricultura de Precisão

Sistemas de Informação Geográfica (SIG) para Agricultura de Precisão 01 Sistemas de Informação Geográfica (SIG) para Agricultura de Precisão Rodrigo G. Trevisan¹; José P. Molin² ¹ Eng. Agrônomo, Mestrando em Engenharia de Sistemas Agrícolas (ESALQ-USP); ² Prof. Dr. Associado

Leia mais

Sensores de Imagem ivu

Sensores de Imagem ivu Sensores de Imagem ivu www.bannerengineering.com.br Sensor de Visão ivu com interface integrada Sensor de imagem para inspeções de aprovação/rejeição ou leitura de código de barras Interface Gráfica do

Leia mais

Seleção Retangular Esta é uma das ferramentas mais usadas. A seleção será indicada pelas linhas tracejadas que fazem a figura de um retângulo.

Seleção Retangular Esta é uma das ferramentas mais usadas. A seleção será indicada pelas linhas tracejadas que fazem a figura de um retângulo. O que é o Gimp? O GIMP é um editor de imagens e fotografias. Seus usos incluem criar gráficos e logotipos, redimensionar fotos, alterar cores, combinar imagens utilizando o paradigma de camadas, remover

Leia mais

Estudos para Localização de Faltas em Redes Subterrâneas Integrando o Software PSCAD/EMTDC e Ferramentas Inteligentes

Estudos para Localização de Faltas em Redes Subterrâneas Integrando o Software PSCAD/EMTDC e Ferramentas Inteligentes 1 Estudos para ização de Faltas em Redes Subterrâneas Integrando o Software PSCAD/EMTDC e Ferramentas Inteligentes D. S. Gastaldello, A. N. Souza, H. L. M. do Amaral, M. G. Zago e C. C. O. Ramos Resumo--

Leia mais

Filtragem Espacial. (Processamento Digital de Imagens) 1 / 41

Filtragem Espacial. (Processamento Digital de Imagens) 1 / 41 Filtragem Espacial (Processamento Digital de Imagens) 1 / 41 Filtragem Espacial Filtragem espacial é uma das principais ferramentas usadas em uma grande variedade de aplicações; A palavra filtro foi emprestada

Leia mais

Anais do IX Congresso Brasileiro de Redes Neurais / Inteligência Computacional (IX CBRN) Ouro Preto 25-28 de Outubro de 2009

Anais do IX Congresso Brasileiro de Redes Neurais / Inteligência Computacional (IX CBRN) Ouro Preto 25-28 de Outubro de 2009 SISTEMA NEURAL DE DETECÇÃO DE PLACAS DE VEÍCULOS AUTOMOTORES EM IMAGENS DIGITALIZADAS Luís Victor Cascão, José M. de Seixas Laboratório de Proces de Sinais COPPE/Poli - Universidade Federal do Rio de Janeiro

Leia mais

Infra estrutura da Tecnologia da Informação

Infra estrutura da Tecnologia da Informação Infra estrutura da Tecnologia da Informação Capítulo 3 Adaptado do material de apoio ao Livro Sistemas de Informação Gerenciais, 7ª ed., de K. Laudon e J. Laudon, Prentice Hall, 2005 CEA460 Gestão da Informação

Leia mais

Análise de componentes independentes aplicada à avaliação de imagens radiográficas de sementes

Análise de componentes independentes aplicada à avaliação de imagens radiográficas de sementes Análise de componentes independentes aplicada à avaliação de imagens radiográficas de sementes Isabel Cristina Costa Leite 1 2 3 Thelma Sáfadi 2 Maria Laene Moreira de Carvalho 4 1 Introdução A análise

Leia mais

Classificação Automática dos Usuários da Rede Social Acadêmica Scientia.Net

Classificação Automática dos Usuários da Rede Social Acadêmica Scientia.Net Classificação Automática dos Usuários da Rede Social Acadêmica Scientia.Net Vinícius Ponte Machado 1, Bruno Vicente Alves de Lima 2, Heloína Alves Arnaldo 3, Sanches Wendyl Ibiapina Araújo 4 Departamento

Leia mais