Um Modelo de Recomendação de Arquivos para Sistemas de Armazenamento em Nuvem

Tamanho: px
Começar a partir da página:

Download "Um Modelo de Recomendação de Arquivos para Sistemas de Armazenamento em Nuvem"

Transcrição

1 Um Modelo de Recomedação de Arquivos para Sistemas de Armazeameto em Nuvem Alterative title: A File Recommedatio Model For Cloud Storage Systems Ricardo Batista Rodrigues Cetro de Iformática Uiversidade Federal de Perambuco (UFPE) Rodrigo E. Assad Uiversidade Federal Rural de Perambuco (UFRPE) Carlo M. R. da Silva Cetro de Iformática Uiversidade Federal de Perambuco (UFPE) Viicius C. Garcia Cetro de Iformática Uiversidade Federal de Perambuco (UFPE) Frederico A. Durão Uiversidade federal da Bahia (UFBA) Salvador, BA, Brasil Silvio R. L. Meira Cetro de Iformática Uiversidade Federal de Perambuco (UFPE) RESUMO O desevolvimeto tecológico viveciado os últimos aos proporcioou o crescimeto do uiverso digital de forma expoecial, parte desse uiverso digital ecotra-se armazeado em sistemas de armazeameto em uvem. A cada dia surgem mais destes sistemas, que oferecem o armazeameto de dados de forma distribuída com alta taxa de dispoibilidade, o que tem impucioado cada vez mais usuários a migrarem seus dados para a uvem. No etato, a grade quatidade de arquivos armazeada estes sistemas dificulta a filtragem de coteúdo relevate, demadado tempo e trabalho por parte do usuário a busca por arquivos com coteúdo similar as suas preferêcias. Diate deste ceário, esta pesquisa propõe um modelo de recomedação para sistemas de armazeameto em uvem, que tem como objetivo utilizar características da uvem associadas à técica de recomedação baseada em coteúdo. Palavras-Chave Recomedação, armazeameto em uvem, computação em uvem. ABSTRACT The techological developmet i recet years has experieced the expoetially growth of the digital uiverse, part of this digital uiverse lies stored i cloud storage systems. With each day, more of these systems come out, offerig data Permissio to make digital or hard copies of all or part of this work for persoal or classroom use is grated without fee provided that copies are ot made or distributed for profit or commercial advatage ad that copies bear this otice ad the full citatio o the first page. To copy otherwise, to republish, to post o servers or to redistribute to lists, requires prior specific permissio ad/or a fee. SBSI 2015, May 26th-29th, 2015, Goiâia, Goiás, Brazil Copyright SBC storage i a distributed maer with the proposal to provide high availability rate, what has drive more ad more users who have migrated your data to the cloud. However, the large amout of files stored i these systems makes it difficult to filter relevat cotet, requirig time ad labor by the user i searchig for files with similar cotet to your prefereces. Face of this sceario, this study proposes a model for recommedatio of files i cloud storage systems, which aims to use cloud features associated with the techique of cotet-based recommedatio. Categories ad Subject Descriptors H.4 [Iformatio Systems Applicatios]: Systems; H.3 [Iformatio Storage ad Retrieval]: Miscellaeous Geeral Terms Theory Keywords Recommedatio, cloud storage, cloud computig. 1. INTRODUÇÃO Vivemos em uma era de efervescêcia iformacioal, a cada dia se produz mais iformação e, geralmete, estas iformações são armazeadas em meios digitais. O tamaho do uiverso digital cresce de forma expoecial. Segudo relatório publicado pela EMC Corporatio 1 [22], em 2005, o volume de dados chegou a 130 exabytes; em 2010, superou 1 zettabyte e a previsão é que em 2015 chegue a quase 8 zettabytes [16]. Este uiverso digital citado em Gatz e Reise [16] expade e tora cada vez mais complexa a tarefa de filtragem de coteúdo relevate que ateda às preferêcias do usuário. Detre as técicas utilizadas a filtragem de coteúdo podemos citar os sistemas de recomedação[26]

2 Quado é preciso filtrar um grade cojuto de dados, podemos utilizar técicas de recomedação para facilitar o processo de filtragem de iformações relevates e similares com as preferêcias do usuário. Para isto, é ecessário iformações sobre o idivíduo alvo da recomedação ou sobre o ambiete que iflueciará a geração da recomedação. A partir daí, um sistema de recomedação poderá recomedar os ites que mais se aproximam das preferêcias ou características do usuário ou do seu ambiete [1] [19]. A partir da aálise da literatura e dos sistemas de armazeameto em uvem mais populares e utilizados atualmete, é otório que esses sistemas ão forecem ao usuário o serviço de recomedação de arquivos. Na maioria dos sistemas de armazeameto em uvem, a filtragem de coteúdo é realizada por sistemas de busca, ode o usuário forece termos chaves e o sistema retora arquivos com o título ou coteúdo similar aos termos apresetados pelo usuário. Por outro lado, a eorme quatidade de sistemas de recomedação que fucioam como serviço em uvem, ão utilizam características da uvem a geração de suas recomedações. Esses sistemas ormalmete possuem como objetivo recomedar ites que atedam as preferêcias dos usuários, sem cosiderar requisitos do ambiete. Neste trabalho ivestiga-se a utilização de características da uvem que podem ser usadas o processo de recomedação de arquivos em ambiete de armazeameto em uvem. 2. FUNDAMENTAÇÃO TEÓRICA O Natioal Istitute of Stadards ad Techology (NIST) 2 defie computação em uvem como um modelo que permite que um cojuto de recursos computacioais possam ser forecidos sob demada de forma a permitir que os mesmos sejam forecidos e liberados rapidamete com o míimo de esforço de gestão ou iteração do forecedor [11] [14] [23]. Etre os recursos dispoiveis a técologia em uvem, está o de armazeameto, o qual provê recursos e serviços de armazeameto baseados em servidores remotos que utilizam os pricípios da computação em uvem [32]. Armazeameto em uvem tem duas características básicas: a primeira trata da ifraestrutura da uvem, a qual baseia-se em clusters de servidores baratos; a seguda tem o objetivo de, através dos clusters de servidores, armazeameto distribuído e redudâcia de dados, fazer múltiplas cópias dos dados armazeados para alcaçar dois requisitos: alta escalabilidade e alta usabilidade [9]. A alta escalabilidade sigifica que o armazeameto em uvem pode ser dimesioado para um grade aglomerado com ceteas de ós ou peers de processameto. Alta usabilidade sigifica que o armazeameto em uvem pode tolerar falhas de ós e que estas falhas ão afetam todo o sistema [12]. 2.1 Sistemas de Recomedação De acordo com Lima at al. [2], Sistemas de Recomedação são ferrametas e técicas de software que forecem recomedação de ites [26]. As sugestões geradas por um SR podem estar relacioadas a processo de tomada de decisão em diversos cotextos, como a escolha de ites em e-commerces, coteúdo similar as preferêcia do usuário, livros, amigos em redes sociais, rotas geograficas e etc [2] [28]. Uma recomedação pode se basear as preferêcias de quem a faz e pode ser dirigida a um idivíduo específico, ou 2 para um público maior. Para a pessoa que recebe a recomedação, ela fucioa como um filtro ou uma visão particular de um uiverso de possibilidades geralmete iacessível. Ela pode levar em cosideração também a preferêcia de quem está à procura de sugestões e ão apeas de quem a faz. É possível até mesmo fazer recomedação baseada as opiiões de outras pessoas. Alguém que ão é admirador do gêero Rock pode recomedar discos baseado o que seus amigos que apreciem tal estilo costumam ouvir. Aida, a recomedação pode icluir explicações sobre como ela foi gerada para permitir que o seu recebedor a avalie [25] [26]. No uiverso dos sistemas de recomedação, existem diversas técicas e formas de gerar recomedação, detre quais destacam-se quatro técicas como pricipais e mais utilizadas: recomedação baseada em coteúdo, filtragem colaborativa e filtragem híbrida [2] [6] [15] [26]. Filtragem baseada em coteúdo: esta categoria de sistemas recomeda ao usuário ites semelhates àqueles em que ele demostrou iteresse o passado. Para tato, o sistema aalisa as descrições dos coteúdos dos ites avaliados pelo usuário para motar o seu perfil, o qual é utilizado para filtrar os demais ites da base. Esse coteúdo o qual ele se baseia são elemetos explícitos como ome, descrição, tags, coteúdo, categorização ou ratig do item a ser recomedado. Os resultados são o julgameto da relevâcia daqueles ites para o usuário, e a cosequete recomedação ou ão [24] [26]. Uma das vatages de implatar o Filtro Baseado em Coteúdo é que a quatidade de usuários o sistema ão iterfere a eficácia do SR, já que se baseia somete o histórico do que o usuário já acessou. Em cotrapartida, um sistema assim precisa de ites bem descritos, com iformação suficiete para categorizá-los. Outro problema ecotrado esse tipo de recomedação é a sugestão de ites sempre muito parecidos, limitado os usuários de cohecer ites diferetes [26] [25]. Filtragem colaborativa: a abordagem de recomedação por filtragem colaborativa foi proposta iicialmete para suprir as deficiêcias da abordagem baseada em coteúdo. Com o passar dos aos, coquistou tamaha aceitação que hoje é provavelmete a técica mais amplamete cohecida, implemetada e utilizada para sistemas de recomedação [3] [17]. Na abordagem colaborativa, em cotraste com a recomedação baseada em coteúdo, a compreesão ou cohecimeto do coteúdo dos ites é totalmete prescidível. Ao ivés de buscar ites dispoíveis com coteúdos similares aos previamete avaliados positivamete pelo usuário para idicá-los, ela se apoia iteiramete a similaridade etre os usuários do sistema para o processo de sugestão. Partido do pricípio de que as melhores recomedações para um idivíduo são aquelas feitas por pessoas com preferêcias similares às dele, o sistema idetifica estas pessoas para sugerir ites que as mesmas teham aprovado e aida ão teham sido cosumidos pelo idivíduo [26] [27]. Filtragem híbrida: são sistemas de recomedação que utilizam duas ou mais técicas, para ameizar os problemas apresetados por cada técica [26] [27]. 3. TRABALHOS RELACIONADOS Existem algus trabalhos a literatura que discutem e apresetam sistemas de recomedação em uvem. Nesta seção, serão apresetados algus SRs destacado o modelo de recomedação utilizado, objetivado avaliar as cotribuições e difereciais desta pesquisa. 112

3 Lai et al. [20] que apresetam um sistema de recomedação de programas de televisão (TV) baseado em computação em uvem e um framework map-reduce. Esta proposta de arquitetura tem como objetivo ofertar um backed escalável para suportar a demada de processameto de dados em larga escala para um sistema de recomedação. No que tage os usuários, Lai et al. [20] os agrupam de acordo com suas preferêcias, cada programa de TV recebe um peso que é atribuído de acordo com o período de tempo que o usuário o assistiu. A popularidade de um programa é idicada pelo seu peso, os programas populares em um grupo de usuários, são recomedados para usuários de outros grupos que teham semelhaças de preferêcias etre si. Nesta pesquisa os autores propõe a utilização de técicas de computação em uvem para lidar com grades cojutos de dados, devido ao seu poder computacioal e de estrutura escalável. Jug et al. [19], apresetam a plataforma CloudAdvisor de recomedação em uvem. A proposta desta plataforma é recomedar cofigurações de uvem de acordo com as preferêcias do usuário como orçameto, expectativa de desempeho e ecoomia de eergia para determiada carga de trabalho. Permitido aida, que o usuário faça comparação das recomedações recebidas, como qual é o melhor preço para a carga de serviço desejada. A plataforma tem como objetivo auxiliar o usuário a escolha dos melhores serviços e proporcioar aos provedores de serviço em uvem à oportuidade de adequação as expectativas e preferêcias dos usuários. Existem diversos sistemas de recomedação dispoíveis a Iteret, e boa parte destes sistemas estão relacioados à uvem, seja como parte de sistemas em uvem ou hospedados em servidores em uvem. Muitos deste utilizam dados da uvem em suas recomedações ou características da uvem para gerar recomedações. A proposta desta pesquisa se diferêcia das demais descritas esta seção por utilizar características da uvem a geração de suas recomedações. Desta forma, cada critério é parte da recomedação, que tem como objetivo proporcioar aos usuários a melhor utilização dos recursos em uvem dispoíveis. 4. O MODELO DE RECOMENDAÇÃO O modelo de recomedação proposto este trabalho, é composto por cico critérios, que foram utilizados o processo de recomedação. Os critérios propostos foram defiidos a partir da observação de sistemas de armazeameto em uvem. Os critérios são: Similaridade, Dispoibilidade, Taxa de Dowload, Tamaho do Arquivo e Popularidade do Arquivo. Critério Similaridade: este critério atede ao requisito referete às preferêcias do usuário. Neste critério, é calculado a similaridade etre o coteúdo de um arquivo o qual o usuário teha demostrado preferêcia e arquivos armazeados em uvem, que são cadidatos a serem recomedados. Para calcular a similaridade etre os coteúdos dos arquivos, é proposto a utilização da técica de similaridade do cosseo, que retora um valor etre 0 (zero) e 1 (um). Esta abordagem, foi proposta por ser utilizada com frequêcia a avaliação de semelhaça etre dois ites [4] [8] [21]. O cálculo de similaridade do cosseo é apresetado pela Equação 1: St = cos(θ) = A B A B (1) Na Equação 1, é calculada a similaridade etre dois arquivos, o coteúdo de cada um é represetado por um vetor (vetores A e B), de ode se obtém o produto de A e B e calcula-se a magitude dos dois vetores. As magitudes, são multiplicadas e divididas pelo produto escalar dos vetores A e B. Os arquivos que sejam similares ao arquivo que represete as preferêcias do usuário serão raqueados de acordo com o seu grau de similaridade, ou seja, quato maior o score de similaridade do arquivo, melhor raqueado ele será em referêcia aos demais similares as preferêcias do usuário. Por exemplo, caso o sistemas de recomedação ecotre dois arquivos A e B, estes similares às preferêcias do usuário e com score de similaridade igual a arquivo A = 0.8 e arquivo B = 0.5. Neste ceário, o arquivo A será melhor raqueado que o arquivo B o critério similaridade. A similaridade, tora-se imprescidível este modelo de recomedação. Para tato, este critério objetiva ateder as preferêcias dos usuários em relação à filtragem de coteúdo relevate. Critério Dispoibilidade: refere-se ao tempo em que um arquivo estará dispoível para o usuário. A dispoibilidade, este modelo, é medida em horas, ou seja a quatidade de horas em que um arquivo a ser recomedado está dispoível a uvem. Um arquivo só deve ser recomedado ao usuário se o mesmo estiver dispoível e possibilitado o seu dowload. O critério dispoibilidade represeta uma das pricipais características e aseios quato à tecologia de computação em uvem. A maioria dos usuários que migram para a uvem são atraídos pela oferta de altas taxas de dispoibilidade, elasticidade e mobilidade, que tora possível armazear arquivos em grade quatidade e que estejam dispoíveis e acessíveis a qualquer mometo a partir da coexão com a Iteret [7] [10] [23]. O cálculo do critério dispoibilidade é apresetado a Equação 2: ( ) 1 D = h (2) Na Equação 2, D é a quatidade horas em que um arquivo está dispoível a uvem, e represeta a quatidade de horas em que um arquivo pode ficar dispoível a uvem. Caso a uvem fique dispoivel durate todo o dia, será igual a 24 (vite e quatro) horas. A quatidade de horas de dispoibilidade é ormalizada em um valor etre 0 (zero) e 1 (um). O exemplo a seguir, demostra como o critério dispoibilidade cotribui para a geração de uma recomedação. Cosidere que dois arquivos A e B são similares, o arquivo A está dispoível a uvem o itervalo de tempo (14 às 16 horas), totalizado duas horas de dispoibilidade. O arquivo B está dispoível a uvem de (14 às 18 horas), totalizado quatro horas de dispoibilidade. Desta maeira, o arquivo que será melhor raqueado é o arquivo B, por estar dispoível a uvem por um tempo superior que o arquivo A, permitido o seu dowload em um espaço de tempo maior. O objetivo cetral é míimizar o risco do usuário ão poder realizar o dowload e garatir que um arquivo recomedado esteja sempre acessível ao usuário. Critério Taxa de Dowload: refere-se à taxa dispoível para a realização do dowload de um arquivo a uvem. O objetivo, é que arquivos que proporcioam melhores codições para a redução o tempo gasto o dowload sejam melhor raqueados que os demais arquivos. A cotribuição deste critério a redução do tempo gasto o dowload de um 113

4 arquivo recomedado, é produzida em cojuto com o critério Tamaho do Arquivo, apresetado o próximo item. Por exemplo, o caso de termos dois arquivos similares às preferêcias do usuário, ode o arquivo A tem o seu tamaho igual a 10 (dez) Gigabytes, e o arquivo B tem o seu tamaho igual a 2 (dois) Gigabytes. Neste ceário, o arquivo A será melhor raqueado que o arquivo B, por proporcioar uma maior ecoomia o tempo gasto em seu dowload. A taxa de dowload pode modificar o raque de recomedações depededo do mometo em que a recomedação for calculada, pricipalmete em ambietes ode a taxa de dowload é oscilate. Este critério, tem valor de 0 (zero) a 3 (três) Megabits por segudo, este valor represeta a media global de taxa de dowloads apresetada pela Akamai 3. Este critério é calculado pela Equação 3: T d = s ( ) 1 Na Equação 3, a Taxa de Dowload é represetada por T d, ode s represeta à taxa de dowload em Mbps, em seguida este valor é ormalizado em um valor etre 0 (zero) e 1 (um), ode represeta o valor da media global de taxa de dowloads em Mbps. Critério Tamaho do Arquivo: este critério, correspode ao tamaho do arquivo cadidato a ser recomedado, tem como objetivo cotribuir a tarefa de ameizar o tempo gasto o dowload de um arquivo recomedado. Como explicado, o item critério Taxa de Dowload, o critério Tamaho do Arquivo, está diretamete relacioado com o critério que mesura a taxa de dowload dispoível. O raque de recomedação, mudará de acordo com a taxa dispoível para dowload. No caso, da taxa de dowload ser baixa, os arquivos com tamaho meores devem ser mais bem raqueados que seus similares que são maiores. Da mesma forma, quado a taxa de dowload é alta, os arquivos com tamahos maiores devem ser mais bem raqueados. Exemplificado, o raqueameto deste critério cosiderado que um arquivo A é similar ao arquivo B, o arquivo A têm o tamaho igual a 9 (ove) gigabytes. O arquivo B, tem tamaho igual a 2 (dois) gigabytes. Desta forma, o arquivo B será melhor raqueado por apresetar melhores codições para a realização do seu dowload (meor tamaho), cosiderado que a taxa de dowload seja baixa. O cálculo deste critério é realizado pela Equação 4: S = T ( ) 1 Na Equação 4, o critério Tamaho do Arquivo é represetado por S. O tamaho do arquivo, é medido em gigabytes, pelo fato de que boa parte dos sistemas de armazeameto em uvem limita o tamaho máximo de um arquivo que pode ser salvo em uvem e o espaço dispoível para o usuário o sistema em gigabytes. O tamaho do arquivo é multiplicado por 1, para que seja ormalizado por um valor de 0 (zero) a 1 (um), o valor 1 (um) é divido por que é o tamaho máximo de um arquivo aceito o sistema de armazeameto em uvem utilizado para implatação do modelo. Critério Popularidade: este critério, represeta a importâcia social de um arquivo a uvem, avaliado por meio 3 (3) (4) Tabela 1: Pesos dos Critérios Critério Peso Similaridade 4 Dispoibilidade 2 Taxa de Dowload 2 Tamaho do Arquivo 1 Popularidade 1 da quatidade de dowloads que foram realizados de um mesmo arquivo. Quato maior é a quatidade de dowloads realizados de um arquivo, maior será a popularidade desse arquivo a rede, resultado em um melhor raqueameto do mesmo. A seguir um exemplo sobre o raqueameto deste critério: um arquivo A é similar ao arquivo B, o arquivo A já teve dez dowloads realizados, e o arquivo B já teve dezesseis dowloads realizados. Desta forma, o aquivo B será melhor raqueado, por obter um úmero maior de dowloads efetuados o sistema de armazeameto em uvem que o arquivo A. O cálculo, deste critério é represetado pela Equação 5: R = Qd ( ) 1 Na Equação 5, o critério Popularidade do Arquivo é represetado por R. A cada dowload realizado de um determiado arquivo, o cotador de dowloads desse arquivo é icremetado em 1 (um). Este valor, é medido de 0 (zero) a, ode é a maior quatidade de dowloads realizados em um úico arquivo o sistema. O valor de é obtido a observação do histórico de dowloads de arquivos o sistema de armazeameto em uvem. No cálculo do critério, a quatidade de dowloads de um arquivo Qd é ormalizada, multiplicado Qd por 1, desta forma o valor resultate deste critério será etre 0 (zero) e 1 (um). 4.1 Pesos dos Critérios Em um mecaismo de recomedação, os critérios devem ser poderados por pesos, para compor o score de recomedação, resultado em um rakig com os ites que devem ser recomedados ao usuário. A partir, da realização de testes de execução com diferetes pesos o cálculo de recomedação que será apresetado a próxima seção, propomos a utilização dos pesos descritos a Tabela 1. Os testes realizados tiveram como objetivo verificar a variação o resultado do score fial de recomedação e quais pesos apresetaria a meor variação o score. Desta forma, os arquivos recomedados ão apresetariam uma grade variação de similaridade com as preferêcias dos usuários. Critério Similaridade: tem peso maior peso que os demais critérios, seu objetivo é garatir que o coteúdo de um arquivo recomedado ao usuário seja similar as suas preferêcias. Outro poto motivador para este critério correspoder a 40% do score de recomedação é ameizar ou solucioar um dos pricipais problemas da técica de recomedação baseada em coteúdo: a sugestão de ites sempre muito parecidos, limitado os usuários de cohecer ovos coteúdos [26] [30]. Desta forma, o modelo de recomedação atederá as preferêcias do usuário e ao mesmo tempo estará recomedado ovos coteúdos que são relacioados às preferêcia do usuário. O critério Similaridade, é medido de 0 (zero) a 1 (um), um arquivo que possua similaridade (5) 114

5 igual a 0 (zero) em comparação as preferêcias do usuário, somete será recomedado caso ele teha uma alta taxa de popularidade a rede, e mesmo assim, o arquivo ão será bem raqueado em relação aos demais que apresetem alguma similaridade com as preferêcias do usuário. Critério Dispoibilidade: tem peso 2 (dois), por ser um dos critério mais importate o modelo proposto, represeta o tempo em que um arquivo está dispoível a uvem, torado possível o dowload de um arquivo recomedado. Este critério, é essecial para a recomedação de arquivos baseada em características da uvem, por represetar uma das pricipais característica e vatages da utilização de sistemas de armazeameto em uvem. O valor do critério Dispoibilidade, será de 0 (zero) a 1 (um), um arquivo somete poderá ser recomedado ao usuário, se o mesmo estiver dispoível. Critério Taxa de Dowload: Este critério, terá o seu valor medido de 0 (zero) a 1 (um). Um arquivo que possua uma baixa taxa de dowload e seu tamaho seja maior que o tamaho dos demais arquivos similares a ele, o seu score de recomedação será meor, e cosequetemete ele ão será tão bem raqueado quato seus similares, por que o seu processo de dowload demadará mais tempo e processameto. Um arquivo com baixa taxa de dowload poderá aparecer o topo do rakig de recomedação, desde que seu tamaho seja proporcioal à baixa taxa de dowload. Para que um arquivo a uvem se tore recomedável, esse critério deve ser maior que 0 (zero), desta forma será possível realizar o dowload do arquivo. Critério Tamaho do Arquivo: Este critério, tem peso iferior aos demais critérios, por ão ser um critério crítico. Assim, um arquivo que teha o tamaho igual ao máximo aceito pelo ambiete, poderá ser recomedado se à taxa de dowload for alta, garatido bom desempeho o dowload do arquivo. Critério Popularidade: Este critério, tem o seu peso iferior aos demais critérios, por ão ser um critério crítico. Portato, um arquivo que ão seja popular a uvem poderá ser recomedado ao usuário, o mesmo ocorre com os arquivos ovos a rede, se o arquivo for bem raqueado os outros critérios do modelo. 5. AVALIAÇÃO Para a avaliação do modelo proposto, foi implemetado um protótipo como parte do sistema de armazeameto em uvem Ustore 4. Foram implemetados, os critérios propostos o modelo RecCloud e o cálculo de recomedação. O Ustore, é uma ferrameta de armazeameto em uvem baseada em uma arquitetura P2P híbrida que tem como objetivo armazear dados com baixo custo e de forma que os mesmos ão se torem idispoíveis com evetuais problemas a rede [13] [29]. O mecaismo de recomedação do Ustore é baseado em coteúdo. No Ustore, as preferêcias dos usuários são represetadas por arquivos que o usuário teha adicioado em sua cota o sistema. O sistema de recomedação, apreseta recomedações baseadas a similaridade etre o arquivo de preferêcia do usuário e os arquivos armazeados a uvem. Para que o usuário receba uma recomedação, ela deve ser solicitada a partir de um arquivo em sua cota Detalhes da Implemetação Critério Similaridade: a similaridade é calculada a partir do coteúdo dos arquivos, que são extraídos pelo Apache Lucee versão e o Apache Tika versão Critério Dispoibilidade: o Ustore, cada cliete possui um horário de fucioameto determiado iicialmete, que é utilizado para garatir a dispoibilidade. Para chegar ao valor da taxa de dispoibilidade de um cliete, subtraímos o tempo total possível para um cliete estar dispoível em um dia (24 horas), pelo tempo em que o cliete ficou o-lie. Desta forma, obtemos a quatidade de horas em que um cliete esteve dispoível durate o dia Critério Taxa de Dowload: é obtida a partir da observação do dowload de um arquivo qualquer, a partir de iformações sobre o tempo gasto o dowload do arquivo e seu tamaho, chegamos à taxa de dowload da rede em KBps Kilobits por segudo. Para termos de avaliação, a taxa máxima de dowload utilizada foi a média global de taxa de dowloads 3 (três) Megabits por segudo. Caso à taxa do usuário apresete um valor maior que a média global, o critério Taxa de Dowload será igual a 1 (um), represeta que este critério recebeu o valor máximo o cálculo da recomedação. Critério Tamaho do Arquivo: é obtido a base do Ustore em KiloBytes e covertido em GigaBytes. Para termos de avaliação da proposta, o tamaho máximo de um úico arquivo o ambiete foi estabelecido em 10 GigaBytes. Desta forma, se um arquivo apresetar tamaho superior ao limite máximo estabelecido, este receberá o valor 1 (um), que represeta a maior taxa poderada do critério Tamaho do Arquivo. Critério Popularidade do Arquivo: é represetada pela quatidade de vezes em que foram realizados dowload de um arquivo. No Ustore, a quatidade de vezes em que foi realizado o dowload de um arquivo pode ser obtida diretamete a base de dados do sistema. Para termos de avaliação desta proposta, atribuímos a quatidade de 10 dowloads, como a maior quatidade de dowloads realizados de um úico arquivo a rede. 5.2 Detalhes da Avaliação Para avaliação deste trabalho, foi utilizada uma base de dados composta por (mil e quatrocetos) artigos acadêmicos. Para a realização dos testes, foi ecessário que os arquivos recebessem uma classificação que idisse quais são os mais relevates para o raque de recomedação que será gerado. Para fazer essa classificação o cojuto de dados, foi utilizada a similaridade etre o cotexto dos artigos com o coteúdo dos artigos utilizados para represetar as preferêcias do usuário. Desta forma, todos os artigos que forem relacioados ao termo sistemas de recomedação, foram cosiderados relevates para o raque de recomedação. O resultado, foi de 462 (Quatrocetos e sesseta e dois) artigos foram cosiderados relevates para esta avaliação, represetado 33% da base de dados utilizada a realização dos testes. Na avaliação, foi utilizada a metodologia proposta por Jai [18], ode é defedido que para realizar uma avaliação é preciso defiir objetivos, métricas, fatores e íveis [22]. As métricas escolhidas para avaliar o desempeho do modelo 5 https://lucee.apache.org/core/

6 RecCloud, estão descritas a seguir: Tempo gasto o Dowload: foram efetuados dowloads dos arquivos recomedados e medido o tempo gasto para realizar cada dowload. Os resultados obtidos, serão comparados com o tempo gasto o dowload de arquivos recomedados utilizado o modelo de recomedação baseado em coteúdo do Ustore. Precisão: é a taxa de ites relevates recomedados o resultado. É dada, através da proporção etre o úmero de arquivos relevates recomedados e o úmero total de arquivos recomedados [4] [21] [31]. O cálculo da métrica Precisão é apresetado a Equação 6 P recisao = {arqrelevates} {arqrecomedados} {arqrecomedados} Na Equação 6, arqrelevates é a quatidade de arquivos recomedados que fazem parte do raque de relevâcia, e arqrecomedados é a quatidade de arquivos recomedados para cada solicitação de recomedação. O resultado, é represetado por valores etre 0 (zero) e 1 (um), quato mais próximo de 1 (um), mais preciso é o sistema. Recall: é a taxa de ites relevates recomedados em relação à quatidade total de ites relevates [21]. O cálculo da métrica Recall é apresetado a Equação 7. Recall = {arqrelevates} {arqrecomedados} {arqrelevates} Na Equação 7, arqrelevates é a quatidade de arquivos recomedados que fazem parte do raque de relevâcia, e arqrecomedados é a quatidade de arquivos recomedados para cada solicitação. O resultado é represetado por valores etre 0 (zero) e 1 (um), quato mais próximo de 1 (um) mais o sistema satisfaz a solicitação da recomedação. F-measure: é a média poderada das taxas de Precisão e Recall. O cáculo da métrica F-measure é apresetado a Equação 8 F measure α = (1 + α) precisao recall (α precisao) + recall Nesta avaliação, as taxas de Precisão e Recall têm o mesmo fator de importâcia. desta forma, o valor de α é igual a 1 (um). Logo, esta fução só retorará um valor o itervalo etre 0 (zero) e 1 (um). Como parâmetros para comparação, foram cosideradas satisfatórias taxas de Precisão de 0.40 e Recall de 0.42, resultados semelhates obtidos por Blak et al. [5], Taaka et al. [31] e Zhag et al. [33]. 5.3 Céarios de Availiação A avaliação deste trabalho, foi realizada em um sistema real de armazeameto em uvem (Ustore). Na execução, foram motados dois ceários da seguite forma: Ceário I: O objetivo foi avaliar o desempeho do modelo RecCloud. Foram solicitadas recomedações para dez diferetes arquivos e avaliada a quatidade de arquivos recomedado para cada solicitação. Foram avaliadas as métricas Precisão, Recall e F-Measure observado os arquivos recebidos como recomedação. Os raques de recomedação aalisados, foram divididos em três íveis, o primeiro ível retorado 5 (cico) arquivos, o segudo ível retorado 10 (dez) arquivos e ível três retorado 15 (quize) arquivos como recomedação. Foram solicitadas recomedações (6) (7) (8) Tabela 2: Resultados do ceário I Nível I Nível II Nível III Precisão Recall F-measure para 10 (dez) artigos o modelo RecCloud, estas solicitações resultaram respectivamete em 50 (ciqueta), 100 (cem) e 150 (ceto e ciqueta) artigos recomedados. Ceário II: o objetivo foi medir o tempo gasto o dowload de arquivos recomedados e comparar os resultados com um modelo baseado em coteúdo. Com isso, foi possível avaliar se o modelo proposto atigiu um dos objetivos, que é ameizar o tempo gasto o dowload dos arquivos recomedados. Neste ceário, avaliamos a métrica Tempo Gasto o Dowload, foram solicitadas recomedações para 10 (dez) artigos diferetes o modelo RecCloud e o modelo baseado em coteúdo do Ustore, estas solicitações resultaram em 100 (cem) artigos recomedados, 50 (ciqueta) por cada modelo. Nesta métrica, foram utilizados raques de recomedação com 5 (cico) artigos retorados para cada solicitação de recomedação. 5.4 Resultados Ceário I: Na Tabela 2, são apresetados os resultados obtidos as taxas de Precisão, Recall e F-measure, estes resultados foram alcaçados utilizado o modelo RecCloud para cada solicitação de recomedação e variado a quatidade de arquivos recomedados para cada solicitação os ívelis I, II e III. A partir dos resultados apresetados a Tabela 2, foi observado que a melhor taxa de precisão obtida foi de 0.68 o ível I, ode foram retorados 5 (cico) artigos para cada solicitação de recomedação. Os resultados obtidos a métrica de precisão foram superiores aos resultados utilizados como referêcia para termos de comparação. A melhor taxa de recall obtida foi de 0.42 o ível III, ode foram retorados 15 (quize) artigos para cada solicitação de recomedação. A melhor taxa de Recall obtida esta avaliação foi similar à taxa obtida o trabalho de Zhag et al. [33]. A partir das taxas de Precisão e Recall, foi calculada a taxa de F-Measure, ode foi obtido como melhor taxa o valor 0.42, este valor foi obtido o ível III. Aalisado os resultados apresetados, foi observado que o melhor resultado da taxa de Precisão foi obtido em ível diferete do ível ode foi obtida a melhor taxa de Recall, e que, a maioria dos arquivos relevates recomedados estava o iício dos raques de recomedação. Este ceário, justifica-se pelo critério de similaridade, que represeta 40% de cada recomedação. Desta forma, os artigos com maiores taxas de similaridade ficaram o iício dos raques e os artigos que mesmo tedo a sua taxa de similaridade baixa foram classificados como recomedáveis e foram recomedados o fial dos raques de recomedação. A partir da comparação dos resultados apresetados o decorrer deste trabalho com resultados ecotrados a literatura, como, por exemplo, os trabalhos de Blak et al. [5], Taaka et al. [31] e Zhag et al. [33], pode-se cocluir que a proposta apresetada por este trabalho obteve resultados satisfatórios a geração de recomedações em sistemas de armazeameto em uvem, utilizado características do 116

7 Tabela 3: Resultados do ceário II Média Máximo Míimo RecCloud RecUstore ambiete associadas à técica de recomedação baseada em coteúdo. Ceário II: este ceário, foram realizadas dez solicitações de recomedações para 10 (dez) artigos diferetes o modelo RecCloud e o modelo baseado em coteúdo do Ustore, estas solicitações resultaram em 100 (cem) artigos recomedados 50 (ciqueta) arquivos recomedados por cada modelo. Foi aalisado, o tempo gasto o dowload de cada arquivo recomedado. Na Tabela 3, é apresetada uma comparação do resultado obtidado em cada modelo (média, máximo e o míimo de tempo gasto os dowloads realizados). A partir dos resultados apresetados a Tabela 3 em milissegudos, foi observado que, o modelo proposto este trabalho proporcioou redução o tempo gasto o dowload dor arquivos recomedados. A redução média de tempo gasto os dowloads foi de 207,06 milissegudos, o que represeta uma redução de 17,8%. 6. CONCLUSÃO A avaliação realizada este trabalho obteve resultados próximos aos resultados ecotrados a literaturado sobre avaliação de sistemas de recomedação. Desta forma, é possível cosideração como relevates às cotribuições apresetadas por esta pesquisa. O escopo deste trabalho, ão abrage todas as possíveis características da uvem e de sistemas de armazeameto em uvem que podem ser utilizadas a geração de recomedações. Desta forma, como trabalhos futuros podem ser adicioados ovos critérios ao modelo de recomedação, assim como, realizar a avaliação do modelo com outras técicas de avaliação de sistemas de recomedação. 7. REFERÊNCIAS [1] L. M. d. L. A. V. F. P. R. T. e. A. C. S. Adriao de Oliveira Tito, Arley Ramalho Rodrigues Ristar. Recroute: Uma proposta de aplicativo para recomeda de rotas de ibus utilizado iformas cotextuais dos usuos. Aais do X Simp Brasileiro de Sistemas de Iformas, pages , [2] T. B. M. d. S. Alezy Oliveira Lima, Ricardo Alexadre Afoso. Plataforma pguide: um modelo de recomeda para usuos ms. Aais do X Simp Brasileiro de Sistemas de Iforma, pages 73 84, [3] A. Asari, S. Essegaier, ad R. Kohli. Iteret recommedatio systems. JOURNAL OF MARKETING RESEARCH, 37(3): , [4] R. A. Baeza-Yates ad B. Ribeiro-Neto. Moder Iformatio Retrieval. Addiso-Wesley Logma Publishig Co., Ic., Bosto, MA, USA, [5] I. Blak, L. Rokach, ad G. Shai. Leveragig the citatio graph to recommed keywords. I Proceedigs of the 7th ACM Coferece o Recommeder Systems, RecSys 13, pages , New York, NY, USA, ACM. [6] R. Burke. Hybrid recommeder systems: Survey ad experimets. User Modelig ad User-Adapted Iteractio, 12(4): , [7] J. F. S. Carvalho. Um mapeameto sistematico de estudos em cloud computig. Master s thesis, Uiversidade Federal de Perambuco (UFPE), [8] Y.-C. Che, H.-C. Huag, ad Y.-M. Huag. Commuity-based program recommedatio for the ext geeratio electroic program guide. Cosumer Electroics, IEEE Trasactios o, 55(2): , [9] C. M. R. da Silva, J. L. C. da Silva, R. M. Melo, R. B. Rodrigues, L. R. Lucie, S. P. D. Melo, A. Colares, ad V. C. Garcia. A privacy maturity model for cloud storage services. I 2014 IEEE 7th Iteratioal Coferece o Cloud Computig, Achorage, AK, USA, Jue 27 - July 2, 2014, pages , [10] C. M. R. da Silva, J. L. C. da Silva, R. B. Rodrigues, G. M. M. Campos, L. M. Nascimeto, ad V. C. Garcia. Security threats i cloud computig models: Domais ad proposals. I 2013 IEEE Sixth Iteratioal Coferece o Cloud Computig, Sata Clara, CA, USA, Jue 28 - July 3, 2013, pages , [11] C. M. R. da Silva, J. L. C. da Silva, R. B. Rodrigues, L. M. Nascimeto, ad V. C. Garcia. Systematic mappig study o security threats i cloud computig. CoRR, abs/ , [12] J. Deg, J. Hu, A. Liu, ad J. Wu. Research ad applicatio of cloud storage. I Itelliget Systems ad Applicatios (ISA), d Iteratioal Workshop o, pages 1 5, [13] R. F. A. F. J. G. V. T. F. Dur F. Assad. Usto.re: A private cloud storage software system. I F. Daiel, P. Dolog, ad Q. Li, editors, Web Egieerig, volume 7977 of Lecture Notes i Computer Sciece, pages Spriger Berli Heidelberg, [14] N. C. L. R. e Edmir Parada Vasques Prado. Caractericas dos servi de computa em uvem usados por orgaizas brasileiras. Aais do X Simp Brasileiro de Sistemas de Iforma, pages , [15] P. L. d. G. e. J. P. d. A. Ferado M. Figueira Filho. Um sistema de recomeda para fs de discussa web baseado a estimativa da expertise e a classifica colaborativa de coteudo. Aais do V Simp Brasileiro de Sistemas de Iforma, pages , [16] J. Gatz ad D. Reisel. Extractig value from chaos state of the uiverse : A executivesummary., Juho [17] J. L. Herlocker. Uderstadig ad improvig automated collaborative filterig systems. PhD thesis, Uiversity of Miesota, AAI [18] R. K. Jai. The Art of Computer Systems Performace Aalysis: Techiques for Experimetal Desig, Measuremet, Simulatio, ad Modelig. Wiley, 1 editio, Apr [19] G. Jug, T. Mukherjee, S. Kude, H. Kim, N. Sharma, ad F. Goetz. Cloudadvisor: A recommedatio-as-a-service platform for cloud cofiguratio ad pricig. I Services (SERVICES), 203 IEEE Nith World Cogress o, pages , [20] C.-F. Lai, J.-H. Chag, C.-C. Hu, Y.-M. Huag, ad 117

8 H.-C. Chao. Cprs: A cloud-based program recommedatio system for digital tv platforms. Future Geer. Comput. Syst., 27(6): , Jue [21] S. Lee, D. Lee, ad S. Lee. Persoalized dtv program recommedatio system uder a cloud computig eviromet. IEEE Tras. o Cosum. Electro., 56(2): , May [22] M. A. S. Machado. Uma abordagem para idexacao e buscas full-text baseadas em cotedo em sistemas de armazeameto em uvem. Master s thesis, Uiversidade Federal de Perambuco (UFPE), [23] P. Mell ad T. Grace. The NIST Defiitio of Cloud Computig. Techical report, Natioal Istitute of Stadards ad Techology, Iformatio Techology Laboratory, July [24] M. J. Pazzai ad D. Billsus. Learig ad revisig user profiles: The idetificatio of iterestig web sites. Machie Learig, 27(3): , [25] W. O. F. G. M. M. C. V. C. G. F. A. D. R. E. A. Ricardo Batista Rodrigues, Carlo M. R. da Silva. A cloud-based recommedatio system. I B. White ad P. Isaías, editors, Proceedigs of the IADIS Iteratioal Coferece WWW/Iteret 2013, pages , Fort Worth, Texas, USA, October [26] F. Ricci, L. Rokach, B. Shapira, ad P. B. Kator, editors. Recommeder Systems Hadbook. Spriger, [27] R. B. Rodrigues. Reccloud: Um modelo de recomeda de arquivos para sistemas de armazeameto em uvem. Master s thesis, Uiversidade Federal de Perambuco (UFPE), [28] R. B. Rodrigues, F. A. Dur V. C. Garcia, C. M. R. da Silva, R. R. Souza, ad R. E. Assad. A cloud-based recommedatio model. I 7th Euro America Coferece o Telematics ad Iformatio Systems, EATIS 14, Valparaiso, Chile - April 02-04, 2014, page 23, [29] M. S. P. J. T. G. V. A. R. Silva, A. Machado. Desevolvedo aplicativos peer-to-peer (p2p) o cotexto de data storage para ambietes de cloud computig. Computa, S. B., editor, SBSI., [30] N. Stormer, H.; Werro ad D. Risch. Recommedig products with a fuzzy classificatio. CollECTeR Europe, [31] M. G. M. Thiago Fujisaka Taaka. Classifica de revises para costru de perfm sistemas de recomeda. I Webmedia 2012 XVIII Simp Brasileiro de Sistemas Multima e Web, [32] W. Zeg, Y. Zhao, K. Ou, ad W. Sog. Research o cloud storage architecture ad key techologies. I Proceedigs of the 2Nd Iteratioal Coferece o Iteractio Scieces: Iformatio Techology, Culture ad Huma, ICIS 09, pages , New York, NY, USA, ACM. [33] Z. Zhag, S. Shag, S. R. Kulkari, ad P. Hui. Improvig augmeted reality usig recommeder systems. I Proceedigs of the 7th ACM Coferece o Recommeder Systems, RecSys 13, pages , New York, NY, USA, ACM. 118

A File Recommendation Model For Cloud Storage Systems

A File Recommendation Model For Cloud Storage Systems Associatio for Iformatio Systems AIS Electroic Library (AISeL) SBIS 2015 Proceedigs Brazilia Symposium o Iformatio Systems (SBIS) 5-2015 A File Recommedatio Model For Cloud Storage Systems Ricardo Batista

Leia mais

SISTEMA DE MEDIÇÃO DE DESEMPENHO

SISTEMA DE MEDIÇÃO DE DESEMPENHO CAPÍTULO 08 SISTEMA DE MEDIÇÃO DE DESEMPENHO Simplificação Admiistrativa Plaejameto da Simplificação Pré-requisitos da Simplificação Admiistrativa Elaboração do Plao de Trabalho Mapeameto do Processo Mapeameto

Leia mais

1.4- Técnicas de Amostragem

1.4- Técnicas de Amostragem 1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto

Leia mais

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE Debora Jaesch Programa de Pós-Graduação em Egeharia de Produção

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO

Leia mais

Modelo Matemático para Estudo da Viabilidade Econômica da Implantação de Sistemas Eólicos em Propriedades Rurais

Modelo Matemático para Estudo da Viabilidade Econômica da Implantação de Sistemas Eólicos em Propriedades Rurais Modelo Matemático para Estudo da Viabilidade Ecoômica da Implatação de Sistemas Eólicos em Propriedades Rurais Josiae Costa Durigo Uiversidade Regioal do Noroeste do Estado do Rio Grade do Sul - Departameto

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil Carteiras de Míimo VAR ( Value at Risk ) o Brasil Março de 2006 Itrodução Este texto tem dois objetivos pricipais. Por um lado, ele visa apresetar os fudametos do cálculo do Value at Risk, a versão paramétrica

Leia mais

Sistema Computacional para Medidas de Posição - FATEST

Sistema Computacional para Medidas de Posição - FATEST Sistema Computacioal para Medidas de Posição - FATEST Deise Deolido Silva, Mauricio Duarte, Reata Ueo Sales, Guilherme Maia da Silva Faculdade de Tecologia de Garça FATEC deisedeolido@hotmail.com, maur.duarte@gmail.com,

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I JIRibeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção É uma ciêcia

Leia mais

Aplicação de geomarketing em uma cidade de médio porte

Aplicação de geomarketing em uma cidade de médio porte Aplicação de geomarketig em uma cidade de médio porte Guilherme Marcodes da Silva Vilma Mayumi Tachibaa Itrodução Geomarketig, segudo Chasco-Yrigoye (003), é uma poderosa metodologia cietífica, desevolvida

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS Miistério do Plaejameto, Orçameto e GestãoSecretaria de Plaejameto e Ivestimetos Estratégicos AJUSTE COMPLEMENTAR ENTRE O BRASIL E CEPAL/ILPES POLÍTICAS PARA GESTÃO DE INVESTIMENTOS PÚBLICOS CURSO DE AVALIAÇÃO

Leia mais

M = 4320 CERTO. O montante será

M = 4320 CERTO. O montante será PROVA BANCO DO BRASIL / 008 CESPE Para a veda de otebooks, uma loja de iformática oferece vários plaos de fiaciameto e, em todos eles, a taxa básica de juros é de % compostos ao mês. Nessa situação, julgue

Leia mais

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum Otimização e complexidade de algoritmos: problematizado o cálculo do míimo múltiplo comum Custódio Gastão da Silva Júior 1 1 Faculdade de Iformática PUCRS 90619-900 Porto Alegre RS Brasil gastaojuior@gmail.com

Leia mais

QUALIDADE APLICADA EM LABORATÓRIO DE METROLOGIA: INCERTEZA DE MEDIÇÃO EM BLOCOS PADRÃO

QUALIDADE APLICADA EM LABORATÓRIO DE METROLOGIA: INCERTEZA DE MEDIÇÃO EM BLOCOS PADRÃO QUALIDADE APLICADA EM LABORATÓRIO DE METROLOGIA: INCERTEZA DE MEDIÇÃO EM BLOCOS PADRÃO Dr. Olívio Novaski Uiversidade Estadual de Campias - UNICAMP - DEF CP 6122 CEP 13083-970 CAMPINAS - SP - BRASIL MSc.

Leia mais

ALOCAÇÃO DE VAGAS NO VESTIBULAR PARA OS CURSOS DE GRADUAÇÃO DE UMA INSTITUIÇÃO DE ENSINO SUPERIOR

ALOCAÇÃO DE VAGAS NO VESTIBULAR PARA OS CURSOS DE GRADUAÇÃO DE UMA INSTITUIÇÃO DE ENSINO SUPERIOR ALOCAÇÃO DE VAGAS NO VESTIBULAR PARA OS CURSOS DE GRADUAÇÃO DE UMA INSTITUIÇÃO DE ENSINO SUPERIOR Alexadre Stamford da Silva Programa de Pós-Graduação em Egeharia de Produção PPGEP / UFPE Uiversidade Federal

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate(f_c_a@uol.com.br)

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1 MAC122 Pricípios de Desevolvimeto de Algoritmos EP o. 1 Prof. Dr. Paulo Mirada 1 Istituto de Matemática e Estatística (IME) Uiversidade de São Paulo (USP) 1. Estrutura dos arquivos de images o formato

Leia mais

Esta Norma estabelece o procedimento para calibração de medidas materializadas de volume, de construção metálica, pelo método gravimétrico.

Esta Norma estabelece o procedimento para calibração de medidas materializadas de volume, de construção metálica, pelo método gravimétrico. CALIBRAÇÃO DE MEDIDAS MATERIALIZADAS DE VOLUME PELO MÉTODO GRAVIMÉTRICO NORMA N o 045 APROVADA EM AGO/03 N o 01/06 SUMÁRIO 1 Objetivo 2 Campo de Aplicação 3 Resposabilidade 4 Documetos Complemetes 5 Siglas

Leia mais

BASES DE DADOS I LTSI/2. Universidade da Beira Interior, Departamento de Informática Hugo Pedro Proença, 2010/2011

BASES DE DADOS I LTSI/2. Universidade da Beira Interior, Departamento de Informática Hugo Pedro Proença, 2010/2011 BASES DE DADOS I LTSI/2 Uiversidade da Beira Iterior, Departameto de Iformática Hugo Pedro Proeça, 200/20 Modelo Coceptual Modelo Coceptual de uma Base de Dados Esquematização dos dados ecessários para

Leia mais

Artículo técnico CVM-NET4+ Cumpre com a normativa de Eficiência Energética. Novo analisador de redes e consumo multicanal Situação actual

Artículo técnico CVM-NET4+ Cumpre com a normativa de Eficiência Energética. Novo analisador de redes e consumo multicanal Situação actual 1 Artículo técico Joatha Azañó Departameto de Gestão Eergética e Qualidade de Rede CVM-ET4+ Cumpre com a ormativa de Eficiêcia Eergética ovo aalisador de redes e cosumo multicaal Situação actual As ormativas

Leia mais

4 Teoria da Localização 4.1 Introdução à Localização

4 Teoria da Localização 4.1 Introdução à Localização 4 Teoria da Localização 4.1 Itrodução à Localização A localização de equipametos públicos pertece a uma relevate liha da pesquisa operacioal. O objetivo dos problemas de localização cosiste em determiar

Leia mais

Guia do Professor. Matemática e Saúde. Experimentos

Guia do Professor. Matemática e Saúde. Experimentos Guia do Professor Matemática e Saúde Experimetos Coordeação Geral Elizabete dos Satos Autores Bárbara N. Palharii Alvim Sousa Karia Pessoa da Silva Lourdes Maria Werle de Almeida Luciaa Gastaldi S. Souza

Leia mais

Tabela Price - verdades que incomodam Por Edson Rovina

Tabela Price - verdades que incomodam Por Edson Rovina Tabela Price - verdades que icomodam Por Edso Rovia matemático Mestrado em programação matemática pela UFPR (métodos uméricos de egeharia) Este texto aborda os seguites aspectos: A capitalização dos juros

Leia mais

MINISTÉRIO DAS CIDADES, ORDENAMENTO DO TERRITÓRIO E AMBIENTE Instituto do Ambiente PROCEDIMENTOS ESPECÍFICOS DE MEDIÇÃO DE RUÍDO AMBIENTE

MINISTÉRIO DAS CIDADES, ORDENAMENTO DO TERRITÓRIO E AMBIENTE Instituto do Ambiente PROCEDIMENTOS ESPECÍFICOS DE MEDIÇÃO DE RUÍDO AMBIENTE MINISÉRIO DAS CIDADES, ORDENAMENO DO ERRIÓRIO E AMBIENE Istituto do Ambiete PROCEDIMENOS ESPECÍFICOS DE MEDIÇÃO DE RUÍDO AMBIENE Abril 2003 . Equadrameto O presete documeto descreve a metodologia a seguir

Leia mais

Calendário de inspecções em Manutenção Preventiva Condicionada com base na Fiabilidade

Calendário de inspecções em Manutenção Preventiva Condicionada com base na Fiabilidade Caledário de ispecções em Mauteção Prevetiva Codicioada com base a Fiabilidade Rui Assis Faculdade de Egeharia da Uiversidade Católica Portuguesa Rio de Mouro, Portugal rassis@rassis.com http://www.rassis.com

Leia mais

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis rassis@rassis.com http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular

Leia mais

Influência do ruído aéreo gerado pela percussão de pavimentos na determinação de L n,w

Influência do ruído aéreo gerado pela percussão de pavimentos na determinação de L n,w Ifluêcia do ruído aéreo gerado pela percussão de pavimetos a determiação de,w iogo M. R. Mateus CONTRAruído Acústica e Cotrolo de Ruído, Al. If.. Pedro, Nº 74-1º C, 3030 396 Coimbra Tel.: 239 403 666;

Leia mais

Fundamentos de Bancos de Dados 3 a Prova

Fundamentos de Bancos de Dados 3 a Prova Fudametos de Bacos de Dados 3 a Prova Prof. Carlos A. Heuser Dezembro de 2007 Duração: 2 horas Prova com cosulta Questão 1 (Costrução de modelo ER - Peso 3) Deseja-se costruir um sistema WEB que armazee

Leia mais

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA INE 5111- ESTATÍSTICA APLICADA I - TURMA 534 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA 1. Aalise as situações descritas abaixo e decida se a pesquisa deve ser feita por

Leia mais

SIMULAÇÃO DO SISTEMA DE ENERGIA DE UM VEÍCULO

SIMULAÇÃO DO SISTEMA DE ENERGIA DE UM VEÍCULO SMULAÇÃO DO SSTEMA DE ENEGA DE UM VEÍULO Luiz Gustavo Gusmão Soeiro Fiat Automóveis luiz.soeiro@fiat.com.br ESUMO O trabalho tem como objetivo viabilizar uma simulação computacioal para se determiar o

Leia mais

Plano de Aula. Teste de Turing. Definição. Máquinas Inteligentes. Definição. Inteligência Computacional: Definições e Aplicações

Plano de Aula. Teste de Turing. Definição. Máquinas Inteligentes. Definição. Inteligência Computacional: Definições e Aplicações Potifícia Uiversidade Católica do Paraá Curso de Especialização em Iteligêcia Computacioal 2004/2005 Plao de Aula Iteligêcia Computacioal: Defiições e Aplicações Luiz Eduardo S. Oliveira, Ph.D. soares@ppgia.pucpr.br

Leia mais

PROTÓTIPO DE MODELO DE DIMENSIONAMENTO DE ESTOQUE

PROTÓTIPO DE MODELO DE DIMENSIONAMENTO DE ESTOQUE ROTÓTIO DE MODELO DE DIMENSIONAMENTO DE ESTOQUE Marcel Muk E/COE/UFRJ - Cetro de Tecologia, sala F-18, Ilha Uiversitária Rio de Jaeiro, RJ - 21945-97 - Telefax: (21) 59-4144 Roberto Citra Martis, D. Sc.

Leia mais

Um Protocolo Híbrido de Anti-colisão de Etiquetas para Sistemas RFID

Um Protocolo Híbrido de Anti-colisão de Etiquetas para Sistemas RFID XXIX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT 11, 2-5 DE OUTUBRO DE 211, CURITIBA, PR Um Protocolo Híbrido de Ati-colisão de Etiquetas para Sistemas RFID Bruo A. de Jesus, Rafael C. de Moura, Liliae

Leia mais

LAYOUT CONSIDERAÇÕES GERAIS DEFINIÇÃO. Fabrício Quadros Borges*

LAYOUT CONSIDERAÇÕES GERAIS DEFINIÇÃO. Fabrício Quadros Borges* LAYOUT Fabrício Quadros Borges* RESUMO: O texto a seguir fala sobre os layouts que uma empresa pode usar para sua arrumação e por coseguite ajudar em solucioar problemas de produção, posicioameto de máquias,

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

Uma Metodologia de Busca Otimizada de Transformadores de Distribuição Eficiente para qualquer Demanda

Uma Metodologia de Busca Otimizada de Transformadores de Distribuição Eficiente para qualquer Demanda 1 Uma Metodologia de Busca Otimizada de Trasformadores de Distribuição Eficiete para qualquer Demada A.F.Picaço (1), M.L.B.Martiez (), P.C.Rosa (), E.G. Costa (1), E.W.T.Neto () (1) Uiversidade Federal

Leia mais

5 Proposta de Melhoria para o Sistema de Medição de Desempenho Atual

5 Proposta de Melhoria para o Sistema de Medição de Desempenho Atual 49 5 Proposta de Melhoria para o Sistema de Medição de Desempeho Atual O presete capítulo tem por objetivo elaborar uma proposta de melhoria para o atual sistema de medição de desempeho utilizado pela

Leia mais

Pesquisa Operacional

Pesquisa Operacional Faculdade de Egeharia - Campus de Guaratiguetá esquisa Operacioal Livro: Itrodução à esquisa Operacioal Capítulo 6 Teoria de Filas Ferado Maris fmaris@feg.uesp.br Departameto de rodução umário Itrodução

Leia mais

O SETOR DE PESQUISAS DE MARKETING,OPINIÃO E MÍDIA NO BRASIL

O SETOR DE PESQUISAS DE MARKETING,OPINIÃO E MÍDIA NO BRASIL O SETOR DE PESQUISAS DE MARKETING,OPINIÃO E MÍDIA NO BRASIL THE SECTOR OF MARKETING RESEARCH,OPINION AND MEDIA IN BRAZIL RESUMO Com base em dados da ABEP, o artigo faz um relato da evolução do setor de

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

SISTEMA DE AMORTIZAÇÃO FRANCÊS DESENVOLVIDO ATRAVÉS DA LINGUAGEM DE PROGRAMAÇÃO JAVA¹

SISTEMA DE AMORTIZAÇÃO FRANCÊS DESENVOLVIDO ATRAVÉS DA LINGUAGEM DE PROGRAMAÇÃO JAVA¹ SISTEMA DE AMORTIZAÇÃO FRANCÊS DESENVOLVIDO ATRAVÉS DA RESUMO LINGUAGEM DE PROGRAMAÇÃO JAVA¹ Deis C. L. Costa² Edso C. Cruz Guilherme D. Silva Diogo Souza Robhyso Deys O presete artigo forece o ecadeameto

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades:

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades: CURTOSE O que sigifica aalisar um cojuto quato à Curtose? Sigifica apeas verificar o grau de achatameto da curva. Ou seja, saber se a Curva de Freqüêcia que represeta o cojuto é mais afilada ou mais achatada

Leia mais

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO Ferado Mori DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA Resumo [Atraia o leitor com um resumo evolvete, em geral, uma rápida visão geral do

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

A AUTO-AVALIAÇÃO DE INSTITUIÇÕES DE ENSINO SUPERIOR: UMA IMPORTANTE CONTRIBUIÇÃO PARA A GESTÃO EDUCACIONAL

A AUTO-AVALIAÇÃO DE INSTITUIÇÕES DE ENSINO SUPERIOR: UMA IMPORTANTE CONTRIBUIÇÃO PARA A GESTÃO EDUCACIONAL A AUTO-AVALIAÇÃO DE INSTITUIÇÕES DE ENSINO SUPERIOR: UMA IMPORTANTE CONTRIBUIÇÃO PARA A GESTÃO EDUCACIONAL Adré Luís Policai Freitas Uiversidade Estadual do Norte Flumiese, Brasil. INTRODUÇÃO Os úmeros

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

PLANEJAMENTO DE CENTRAIS DE DISTRIBUIÇÃO A PARTIR DA ANÁLISE DO NÍVEL DE SERVIÇO E DA CAPACIDADE PRODUTIVA

PLANEJAMENTO DE CENTRAIS DE DISTRIBUIÇÃO A PARTIR DA ANÁLISE DO NÍVEL DE SERVIÇO E DA CAPACIDADE PRODUTIVA PLANEJAMENTO DE CENTRAIS DE DISTRIBUIÇÃO A PARTIR DA ANÁLISE DO NÍVEL DE SERVIÇO E DA CAPACIDADE PRODUTIVA Taylor Motedo Machado Uiversidade de Brasília/Mestrado em Trasportes Campus Uiversitário - SG-12,

Leia mais

Greg Horine Rio de Janeiro 2009

Greg Horine Rio de Janeiro 2009 Greg Horie Rio de Jaeiro 2009 Sumário Resumido Itrodução...1 Parte I Dado partida ao gereciameto de projeto...5 1 Paorama de Gereciameto de Projeto...7 2 O Gerete de Projeto...19 3 Elemetos esseciais para

Leia mais

APLICAÇÃO DO MÉTODO DE INTEGRAÇÃO TRAPEZOIDAL EM SISTEMAS ELÉTRICOS

APLICAÇÃO DO MÉTODO DE INTEGRAÇÃO TRAPEZOIDAL EM SISTEMAS ELÉTRICOS AT49-07 - CD 6-07 - PÁG.: APLICAÇÃO DO MÉTODO DE INTEGAÇÃO TAPEZOIDAL EM SISTEMAS ELÉTICOS J.. Cogo A.. C. de Oliveira IEE - EFEI Uiv. Taubaté Artigo apresetado o Semiário de Pesquisa EFEI 983 ESUMO Este

Leia mais

UM ESTUDO DO MODELO ARBITRAGE PRICING THEORY (APT) APLICADO NA DETERMINAÇÃO DA TAXA DE DESCONTOS

UM ESTUDO DO MODELO ARBITRAGE PRICING THEORY (APT) APLICADO NA DETERMINAÇÃO DA TAXA DE DESCONTOS UM ESTUDO DO MODELO ARBITRAGE PRICING THEORY (APT) APLICADO NA DETERMINAÇÃO DA TAXA DE DESCONTOS Viícius Atoio Motgomery de Mirada e-mail: vmotgomery@hotmail.com Edso Oliveira Pamploa e-mail: pamploa@iem.efei.rmg.br

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

Fundamentos de Bancos de Dados 3 a Prova

Fundamentos de Bancos de Dados 3 a Prova Fudametos de Bacos de Dados 3 a Prova Prof. Carlos A. Heuser Dezembro de 2008 Duração: 2 horas Prova com cosulta Questão (Costrução de modelo ER) Deseja-se projetar uma base de dados que dará suporte a

Leia mais

CONTRIBUIÇÕES DA MODELAGEM MATEMÁTICA PARA O ENSINO MÉDIO: ÂNGULO DE VISÃO DAS CORES DO ARCO-ÍRIS

CONTRIBUIÇÕES DA MODELAGEM MATEMÁTICA PARA O ENSINO MÉDIO: ÂNGULO DE VISÃO DAS CORES DO ARCO-ÍRIS CONTRIBUIÇÕES DA MODELAGEM MATEMÁTICA PARA O ENSINO MÉDIO: ÂNGULO DE VISÃO DAS CORES DO ARCO-ÍRIS Profª. Drª. Vailde Bisogi UNIFRA vailde@uifra.br Prof. Rodrigo Fioravati Pereira UNIFRA prof.rodrigopereira@gmail.com

Leia mais

MODELAMENTO DE COLISÃO USANDO ANÁLISE NÃO LINEAR

MODELAMENTO DE COLISÃO USANDO ANÁLISE NÃO LINEAR MODELAMENTO DE COLISÃO USANDO ANÁLISE NÃO LINEAR César Atoio Aparicio S. João Lirai Joas de Carvalho Departameto de Eergia Mecâica, Uiversidade de São Paulo São Carlos Av. do Trabalhador São-carlese, 400,

Leia mais

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y.

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y. DEPARTAMENTO...: ENGENHARIA CURSO...: PRODUÇÃO DISCIPLINA...: ENGENHARIA ECONÔMICA / MATEMÁTICA FINANCEIRA PROFESSORES...: WILLIAM FRANCINI PERÍODO...: NOITE SEMESTRE/ANO: 2º/2008 Aula 7 CONTEÚDO RESUMIDO

Leia mais

Capítulo 2 Análise Descritiva e Exploratória de Dados

Capítulo 2 Análise Descritiva e Exploratória de Dados UNIVERSIDADE FEDERAL DE SÃO CARLOS C E N T R O D E C I Ê N C I A S E X A T A S E D E T E C N O L O G I A D E P A R T A M E N T O D E E S T A T Í S T I C A INTRODUÇÃO AO PLANEJAMENTO E ANÁLISE ESTATÍSTICA

Leia mais

ANÁLISE DO RETORNO ELÁSTICO EM DOBRAMENTO DE CHAPAS VIA MÉTODO DOS ELEMENTOS FINITOS

ANÁLISE DO RETORNO ELÁSTICO EM DOBRAMENTO DE CHAPAS VIA MÉTODO DOS ELEMENTOS FINITOS ANÁLISE DO ETONO ELÁSTICO EM DOBAMENTO DE CHAPAS VIA MÉTODO DOS ELEMENTOS FINITOS Alexadre Tácito Malavolta Escola de Egeharia de São Carlos, Av. Trabalhador São-Carlese 400, CEP 13566-590, São Carlos

Leia mais

Revisão 01-2011. Exercícios Lista 01 21/02/2011. Questão 01 UFRJ - 2006

Revisão 01-2011. Exercícios Lista 01 21/02/2011. Questão 01 UFRJ - 2006 Aluo(a): Professor: Chiquiho Revisão 0-20 Exercícios Lista 0 2/02/20 Questão 0 UFRJ - 2006 Dois estados produzem trigo e soja. Os gráficos abaixo represetam a produção relativa de grãos de cada um desses

Leia mais

GESTÃO DA CADEIA DE SUPRIMENTOS E A SEGURANÇA DO ALIMENTO: UMA PESQUISA EXPLORATÓRIA NA CADEIA EXPORTADORA DE CARNE SUÍNA

GESTÃO DA CADEIA DE SUPRIMENTOS E A SEGURANÇA DO ALIMENTO: UMA PESQUISA EXPLORATÓRIA NA CADEIA EXPORTADORA DE CARNE SUÍNA GESTÃO DA CADEIA DE SUPRIMENTOS E A SEGURANÇA DO ALIMENTO: UMA PESQUISA EXPLORATÓRIA NA CADEIA EXPORTADORA DE CARNE SUÍNA Edso Talamii CEPAN, Uiversidade Federal do Rio Grade do Sul, Av. João Pessoa, 3,

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

Dois Exemplos da Aplicação da Técnica TOPSIS para Tomada de Decisão

Dois Exemplos da Aplicação da Técnica TOPSIS para Tomada de Decisão Revista de Sistemas de Iformação da FSM. 8 (20) pp. 3-35 http://www.fsma.edu.br/si/sistemas.html Dois Exemplos da plicação da Técica TOPSIS para Tomada de Decisão Reato. Krohlig, & Talles T.M. de Souza

Leia mais

Aplicação de Técnicas de Visão Computacional para Avaliar Qualidade de Radiografias Odontológicas

Aplicação de Técnicas de Visão Computacional para Avaliar Qualidade de Radiografias Odontológicas Aplicação de Técicas de Visão Computacioal para Avaliar Qualidade de Radiografias Odotológicas Costa R. M., Seba Patto V., Souza, R. G. Istituto de Iformática Uiversidade Federal de Goiás (UFG) Caixa Postal

Leia mais

Parte I - Projecto de Sistemas Digitais

Parte I - Projecto de Sistemas Digitais Parte I - Projecto de Sistemas Digitais Na disciplia de sistemas digitais foram estudadas técicas de desevolvimeto de circuitos digitais ao ível da porta lógica, ou seja, os circuito digitais projectados,

Leia mais

Fundamentos de Bancos de Dados 3 a Prova

Fundamentos de Bancos de Dados 3 a Prova Fudametos de Bacos de Dados 3 a Prova Prof. Carlos A. Heuser Julho de 2008 Duração: 2 horas Prova com cosulta Questão (Costrução de modelo ER - Peso 2 Deseja-se costruir um sistema WEB que armazee a comuicação

Leia mais

Juros Simples e Compostos

Juros Simples e Compostos Juros Simples e Compostos 1. (G1 - epcar (Cpcar) 2013) Gabriel aplicou R$ 6500,00 a juros simples em dois bacos. No baco A, ele aplicou uma parte a 3% ao mês durate 5 6 de um ao; o baco B, aplicou o restate

Leia mais

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA Paulo César de Resede ANDRADE Lucas Moteiro CHAVES 2 Devail Jaques de SOUZA 2 RESUMO: Este trabalho apreseta a teoria do teste de Galto

Leia mais

Programando em C++ Joel Saade. Novatec Editora Ltda. www.novateceditora.com.br

Programando em C++ Joel Saade. Novatec Editora Ltda. www.novateceditora.com.br Programado em C++ Joel Saade Novatec Editora Ltda. www.ovateceditora.com.br Programado em C++ Capítulo 1 Itrodução Este capítulo trata, de forma breve, a história de C e C++. Apreseta a estrutura básica

Leia mais

CONTRIBUIÇÃO DA PESQUISA DE MARKETING PARA A DEFINIÇÃO DE ESTRATÉGIAS DE APREÇAMENTO DE BENS E SERVIÇOS

CONTRIBUIÇÃO DA PESQUISA DE MARKETING PARA A DEFINIÇÃO DE ESTRATÉGIAS DE APREÇAMENTO DE BENS E SERVIÇOS Af-Revista 03 Completa 4 cores:layout 1 10/9/09 4:09 PM Page 28 CONTRIBUIÇÃO DA PESQUISA DE MARKETING PARA A DEFINIÇÃO DE ESTRATÉGIAS DE APREÇAMENTO DE BENS E SERVIÇOS CONTRIBUTION OF MARKETING RESEARCH

Leia mais

[Type the document subtitle] Análise Técnica Principais conceitos, indicadores e formações gráficas

[Type the document subtitle] Análise Técnica Principais conceitos, indicadores e formações gráficas Aálise Técica Coceitos [Type the documet subtitle] Aálise Técica Pricipais coceitos, idicadores e formações gráficas A Aálise Técica (AT) tem por objetivo forecer idicações dos movimetos ou formação de

Leia mais

ATIVIDADE DE CÁLCULO, FÍSICA E QUÍMICA ZERO

ATIVIDADE DE CÁLCULO, FÍSICA E QUÍMICA ZERO ATIVIDADE DE CÁLCULO, FÍSICA E QUÍMICA ZERO Rita Moura Fortes proeg.upm@mackezie.com.br Uiversidade Presbiteriaa Mackezie, Escola de Egeharia, Departameto de Propedêutica de Egeharia Rua da Cosolação,

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

OTIMIZAÇÃO DA OPERAÇÃO DE TORRES DE RESFRIAMENTO

OTIMIZAÇÃO DA OPERAÇÃO DE TORRES DE RESFRIAMENTO OTIMIZAÇÃO DA OPERAÇÃO DE TORRES DE RESFRIAMENTO Kelle Roberta de Souza (1) Egeheira Química pela UNIMEP, Especialista em Gestão Ambietal pela UFSCar, Mestre em Egeharia e Tecologia Ambietal pela Uiversidad

Leia mais

Precificação orientada ao mercado: uma abordagem econométrica e de otimização

Precificação orientada ao mercado: uma abordagem econométrica e de otimização Precificação orietada ao mercado: uma abordagem ecoométrica e de otimização Rodrigo Araldo Scarpel (ITA) rodrigo@ita.br Resumo A estratégia de determiação do preço sedo customizada por marca, categoria,

Leia mais

Rejane Corrrea da Rocha. Matemática Financeira

Rejane Corrrea da Rocha. Matemática Financeira Rejae Corrrea da Rocha Matemática Fiaceira Uiversidade Federal de São João del-rei 0 Capítulo 5 Matemática Fiaceira Neste capítulo, os coceitos básicos de Matemática Fiaceira e algumas aplicações, dos

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA Prof. Gilmar Boratto Material de apoio para o curso de Admiistração. ÍNDICE CONCEITOS BÁSICOS...- 2-1- CONCEITO DE FLUXO DE CAIXA...- 2-2-A MATEMÁTICA FINANCEIRA E SEUS OBJETIVOS...-

Leia mais

(1) Escola Politécnica da Universidade de São Paulo (2) E. J. Robba Consultoria & Cia. Ltda.

(1) Escola Politécnica da Universidade de São Paulo (2) E. J. Robba Consultoria & Cia. Ltda. Otimização da Qualidade de Forecimeto pela Localização de Dispositivos de Proteção e Seccioameto em Redes de Distribuição Nelso Kaga () Herá Prieto Schmidt () Carlos C. Barioi de Oliveira () Eresto J.

Leia mais

Banco de Dados. Linguagem SQL

Banco de Dados. Linguagem SQL Baco de Dados Liguagem SQL 1 A liguagem SQL: história Em juho de 1970, o matemático Edgar Frak Codd, publicou o artigo "A Relatioal Model of Data for Large Shared Data Baks" a revista "Commuicatios of

Leia mais

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo. UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital

Leia mais

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço 4 Matemática Alexader dos Satos Dutra Igrid Regia Pellii Valeço Professor SUMÁRIO Reprodução proibida. Art. 84 do Código Peal e Lei 9.60 de 9 de fevereiro de 998. Módulo 0 Progressão aritmérica.................................

Leia mais

RESISTORES E RESISTÊNCIAS

RESISTORES E RESISTÊNCIAS ELETICIDADE CAPÍTULO ESISTOES E ESISTÊNCIAS No Capítulo estudamos, detre outras coisas, o coceito de resistêcia elétrica. Vimos que tal costitui a capacidade de um corpo qualquer se opôr a passagem de

Leia mais

1. GENERALIDADES 2. CHEIA DE PROJETO

1. GENERALIDADES 2. CHEIA DE PROJETO Capítulo Previsão de Echetes. GENERALIDADES Até agora vimos quais as etapas do ciclo hidrológico e como quatificá-las. O problema que surge agora é como usar estes cohecimetos para prever, a partir de

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

Goiânia, 07 a 10 de outubro. Mini Curso. Tópicos em passeios aleatórios. Ms. Valdivino Vargas Júnior - Doutorando/IME/USP

Goiânia, 07 a 10 de outubro. Mini Curso. Tópicos em passeios aleatórios. Ms. Valdivino Vargas Júnior - Doutorando/IME/USP Goiâia, 07 a 10 de outubro Mii Curso Tópicos em passeios aleatórios Ms. Valdivio Vargas Júior - Doutorado/IME/USP TÓPICOS EM PASSEIOS ALEATÓRIOS VARGAS JÚNIOR,V. 1. Itrodução Cosidere a seguite situação

Leia mais

O uso de questionários em trabalhos científicos

O uso de questionários em trabalhos científicos 1. Itrodução O uso de questioários em trabalhos cietíficos Um questioário é tão somete um cojuto de questões, feito para gerar os dados ecessários para se verificar se os objetivos de um projeto foram

Leia mais

Modelando o Tempo de Execução de Tarefas em Projetos: uma Aplicação das Curvas de Aprendizagem

Modelando o Tempo de Execução de Tarefas em Projetos: uma Aplicação das Curvas de Aprendizagem 1 Modelado o Tempo de Execução de Tarefas em Projetos: uma Aplicação das Curvas de Apredizagem RESUMO Este documeto aborda a modelagem do tempo de execução de tarefas em projetos, ode a tomada de decisão

Leia mais

ANÁLISE DO PERFIL DOS FUNDOS DE RENDA FIXA DO MERCADO BRASILEIRO

ANÁLISE DO PERFIL DOS FUNDOS DE RENDA FIXA DO MERCADO BRASILEIRO III SEMEAD ANÁLISE DO PERFIL DOS FUNDOS DE RENDA FIXA DO MERCADO BRASILEIRO José Roberto Securato (*) Alexadre Noboru Chára (**) Maria Carlota Moradi Seger (**) RESUMO O artigo trata da dificuldade de

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013 ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0

Leia mais

Modelo Matemático para Estudo da Viabilidade Econômica da Implantação de Biodigestores em Propriedades Rurais

Modelo Matemático para Estudo da Viabilidade Econômica da Implantação de Biodigestores em Propriedades Rurais Aais do CNMAC v.2 ISSN 1984-820X Modelo Matemático para Estudo da Viabilidade Ecoômica da Implatação de Biodigestores em Propriedades Rurais Eliaa Walker Depto de Física, Estatística e Matemática, DEFEM,

Leia mais

PROBLEMA DE DESLOCAMENTO DE VIATURAS MILITARES PELA REDE FERROVIÁRIA FEDERAL (UMA ABORDAGEM EM PROGRAMAÇÃO LINEAR)

PROBLEMA DE DESLOCAMENTO DE VIATURAS MILITARES PELA REDE FERROVIÁRIA FEDERAL (UMA ABORDAGEM EM PROGRAMAÇÃO LINEAR) PROBLEMA DE DESLOCAMENTO DE VIATURAS MILITARES PELA REDE FERROVIÁRIA FEDERAL (UMA ABORDAGEM EM PROGRAMAÇÃO LINEAR) NEI CARLOS DOS SANTOS ROCHA ALBA REGINA MORETTI 2 LUIZ HENRIQUE DA COSTA ARAÚJO CARLA

Leia mais