Motivação. integração das ferramentas em sistemas apoiando o processo completo de descoberta de conhecimento para tomada de decisão.

Tamanho: px
Começar a partir da página:

Download "Motivação. integração das ferramentas em sistemas apoiando o processo completo de descoberta de conhecimento para tomada de decisão."

Transcrição

1 Mineraçã de Dads

2 Mtivaçã Infrmatizaçã ds meis prdutivs permitiu a geraçã de grandes vlumes de dads: Transações eletrônicas; Nvs equipaments científics e industriais para bservaçã e cntrle; Dispsitivs de armazenament em massa; Aprveitament da infrmaçã permite ganh de cmpetitividade: cnheciment é pder (e pder = $$!) Recurss de análise de dads tradicinais sã inviáveis para acmpanhar esta evluçã: prcess iterativ de criaçã, teste e refinament de hipóteses;

3 Mtivaçã Gigantism d prblema de análise de dads para tmada de decisã: BD da Wal-Mart: 20 milhões de transações pr dia. Data Warehuse da Mbil: 100 TB. BD da NASA: recebe de satélites 50 GB pr hra. Sluçã: ferramentas de autmatizaçã das tarefas repetitivas e sistemática de análise de dads. ferramentas de auxíli para as tarefas cgnitivas da análise. integraçã das ferramentas em sistemas apiand prcess cmplet de descberta de cnheciment para tmada de decisã.

4 Exempl preliminar Prblema d mund ds negócis, entender perfil ds clientes: desenvlviment de nvs prduts; para cntrle de estque em psts de distribuiçã; prpaganda mal direcinada gera maires gasts e desestimula pssível interessad a prcurar as fertas adequadas; Situaçã: empresa pssui registr de tdas as transações efetuadas; mas cm aprveitar dessa riqueza de dads?

5 Descberta de cnheciment em dads (KDD) versus Data Mining Mineraçã de dads: pass d prcess de KDD que prduz um cnjunt de padrões sb um cust cmputacinal aceitável. KDD u Knwledge Discvery n Data: utiliza algritms de data mining para extrair padrões classificads cm cnheciment. incrpra também tarefas cm esclha d algritm adequad, prcessament e amstragem de dads e interpretaçã de resultads.

6 O perig da falta de interpretaçã Mrreram Sbreviveram Hspital A Hspital B % 2% Ttal O hspital A parece ser mens adequad.

7 O perig da falta de interpretaçã (cnt.) Bas cndições Mrreram Sbreviveram Hsp. A Hsp. B % 1.3% O hspital A é melhr! Más cndições Ttal Hsp. A Hsp. B Mrreram Sbreviveram % 4% Ttal

8 A busca pr causalidade Crrelaçã nã é mesm que causalidade lama e chuva sã dis cnceits relacinads, mas cm inferir que um é causa d utr? A média de idade da Flórida é grande. O clima da Flórida faz as pessas viverem mais? Explicaçã plausível: muitas pessas mudam-se pra lá quand se apsentam; O KDD se apresenta cm: prcess explratóri, iterativ e interativ. envlvend em cada pass um especialista human. tant (se nã mais) imprtante d que métd de mineraçã: auxíli a gerenciament d prcess (Knwledge Management). integraçã transparente de ferramentas.

9 A mineraçã de dads é uma abrdagem multidisciplinar Inteligência Artificial aprendizad de máquina; representaçã de cnheciment e inferência; recnheciment de padrões; Estatística: análise explratória de dads; Cmputaçã gráfica: visualizaçã de dads; Bancs de dads: integraçã, cnslidaçã e remdelagem de dads para prcessament analític (data warehusing). linguagens de cnsulta para: hipercubs de dads (OLAP). funções de mineraçã (OLAM). Ciência da gestã: técnicas de timizaçã;

10 Intersecçã de muitas disciplinas Artificial Intelligence Statistics Pattern Recgnitin DATA MINING Machine Learning Mathematical Mdeling Databases Management Science & Infrmatin Systems

11 Outr exempl de passs e saída de KDD Arquivs de Lg Páginas Web Aprendizagem Mineraçã de Dads Base de Cnheciment BD Relacinal Ex, cnheciment extraíd de um BD de supermercad: Data Warehuse Dimensina l Geraçã de Linguagem Natural N an passad, as variações de vendas mais incmuns fram: Sda Diet cm decréscim de 40% na regiã nrdeste de julh a agst Cerveja Bavaria cm cresciment de 42% nacinal de setembr a utubr;...

12 Tarefas básicas Previsã Cálcul de variáveis de interesse a partir ds valres de um cnjunt de variáveis de explicaçã; Exempls: classificaçã e regressã; Descriçã Reprtar relações entre as variáveis d mdel de frma simétrica; À princípi, está mais relacinada a prcess de KDD; Exempls: agrupament, restrições de integridade, dependências entre variáveis, análise de desvi.

13 Taxnmia de tarefas Data Mining Learning Methd Ppular Algrithms Predictin Supervised Classificatin and Regressin Trees, ANN, SVM, Genetic Algrithms Classificatin Supervised Decisin trees, ANN/MLP, SVM, Rugh sets, Genetic Algrithms Regressin Supervised Linear/Nnlinear Regressin, Regressin trees, ANN/MLP, SVM Assciatin Unsupervised Apriry, OneR, ZerR, Eclat Link analysis Unsupervised Expectatin Maximizatin, Apriry Algrithm, Graph-based Matching Sequence analysis Unsupervised Apriry Algrithm, FP-Grwth technique Clustering Unsupervised K-means, ANN/SOM Outlier analysis Unsupervised K-means, Expectatin Maximizatin (EM)

14 Exempl de previsã 1 Análise de crédit débit sem crédit x x x x x x x: exempl recusad : exempl aceit t x renda Um hiperplan paralel de separaçã: pde ser interpretad diretamente cm uma regra: se a renda é menr que t, entã crédit nã deve ser liberad Exempl: árvres de decisã; induçã de regras

15 Exempl de previsã 2 Análise de crédit débit sem crédit x x x x x x x Hiperplan blíqu: melhr separaçã: Exempls: regressã linear; perceptrn; t renda x: exempl recusad : exempl aceit

16 Exempl de previsã 3 Análise de crédit débit sem crédit x x x x x x x: exempl recusad : exempl aceit t x renda Superfície nã linear: melhr pder de classificaçã, pir interpretaçã; Exempls: perceptrns multicamadas; regressã nãlinear;

17 Exempl de previsã 4 Análise de crédit débit sem crédit x x x x x x x: exempl recusad : exempl aceit t x renda Métds basead em exempls; Exempls: k-vizinhs mais próxims; racicíni basead em cass;

18 Exempl de descriçã 1 Análise de crédit débit Agrupament Exempl: vectr quantizatin; t renda +: exempl

19 Exempl de descriçã 2 Regras de assciaçã 98% ds cnsumidres que adquiriram pneus e acessóris de autmóveis também se interessaram pr serviçs autmtivs ; descberta simétrica de relações, a cntrári de métds de classificaçã qualquer atribut pde ser uma classe u um atribut de discriminaçã;

20 Escalabilidade Amstragem reduçã de precisã; Algritms distribuíds particinar banc de dads em p partições; utilizar um prcessadr diferente para cada partiçã; utilizar um métd de cmbinaçã de resultads; Paralelism (intra-algrítimic)

21 Aplicabilidade de KDD Onde prcess de descberta de cnheciment deve ser aplicad? A tarefa é prpícia a estud de nvs experiments; nã há nenhuma utra ba alternativa de análise de dads; dispnibilidade de dads suficientes; cm nível aceitável de ruíd; especialistas dispníveis para avaliaçã d grau de interesse das descbertas btidas; seleçã de atributs; descriçã de cnheciment a priri em geral;

22 Finanças e segurança Serviçs financeirs: mineraçã de séries temprais de valres na blsa para especulaçã. mineraçã de assciaçã e grups de valres para definiçã de prtfli de investiment e plans de apsentadria. previsã de inadimplência para definir plítica de empréstim. Detecçã de fraude: descriçã multidimensinal e mineraçã de séries excepcinais de: de us de cartã de crédits para serviçs financeirs. pedids de acess a sites para segurança de sistemas. transferências de funds para lavagem de dinheir e snegaçã de impst.

23 Jgs, esprtes e recurss humans Jgs: mineraçã de regras estratégicas e táticas a partir de BD de partidas (xadrez, futebl de rbôs). Jgs, esprtes e re-engenharia de rganizações: OLAP, agrupament e mineraçã multi-dimensinal de séries de resultads para identificar fatres interns (cmpsiçã d time, tática usada) e externs (tip de adversári, lcal d jg) cntribuind a vitórias e a derrtas. Jgs de esprtes virtuais, esprtes e recrutament: previsã d desempenh e ppularidade futur de atletas, artistas e funcináris para cntrataçã e transferência.

24 Serviçs de infra-estrutura Descriçã multi-dimensinal e previsã cmparativa de demanda e da capacidade das fntes u equipaments para: planejar investiments e timizar rtas para evitar interrupçã de serviçs e cngestinament. definir váris níveis de qualidade de serviçs, seus preçs e seus clientes ptenciais. detecçã de fraudes. Previsã de falha de equipament para definir plítica de prevençã de falha. Mineraçã de regras de diagnóstic para análise de falha.

25 Saúde Indústria farmacêutica: previsã ds efeits de um nv remédi cmpst a partir ds efeits ds seus cmpnentes em remédis testads. Medicina e epidemilgia: mineraçã de regras de diagnóstic. previsã de predispsiçã a denças e respsta a tratament. Pesquisa em genética e bilgia mlecular: mineraçã cmparativa de seqüências de genes em células sadias e dentes (adaptaçã da mineraçã de series temprais para dads categórics). mineraçã de assciações e grups de genes baseada na sua ccrrência em várias classes de células. previsã da frma 3D de uma prteína a partir da sua seqüência de ácids-amids.

26 Tips de dads em mineraçã Data Categrical Numerical Nminal Ordinal Interval Rati

27 Exempl d prcess de descberta de cnheciment Cmpreensã d dmíni e ds bjetivs da tarefa; Interpretaçã Esclha e execuçã ds Operações resultads, algritm cm cm identificaçã de ruíds, Reduçã Criaçã d cnjunt de dads envlvend as variáveis pssível acrd de dimensinalidade, cm retrn a tarefa utliers, as passs a ser cm tratar falta de dads em cmbinaçã cumprida necessárias; anterires; de atributs; alguns camps, etc. Cnslidaçã: incrpraçã e dcumentaçã d cnheciment e cmunicaçã as

28 Passs 1., 2. e 3. Real-wrld Data Data Cnslidatin Cllect data Select data Integrate data Data Cleaning Impute missing values Reduce nise in data Eliminate incnsistencies Data Transfrmatin Nrmalize data Discretize/aggregate data Cnstruct new attributes Data Reductin Reduce number f variables Reduce number f cases Balance skewed data Well-frmed Data

29 1. Seleçã de dads e 2. préprcessament Cm seu cnheciment d dmíni, analista human decide: quais as infrmações relevantes encntram-se nas seguintes tabelas: clientes: nme, identificaçã, idade, sex, estad civil, endereç, renda, prprietári da casa; prduts: nme, identificaçã, preç, categria, quantidade em estque, quantidade encmendada; transações: identificadr de cliente, identificadr de prdut, data e hra, quantidade; Eliminar registrs incmplets, incnsistentes, etc.

30 3. Transfrmaçã de dads Agrupand infrmações em uma única tabela;

31 4. A mineraçã prpriamente dita Aplicar um algritm de aprendizad para agrupar s clientes em quatr cnjunts Idéia d algritm é dispr, em cnjunts, clientes que apresentem aspects similares; Psterirmente, s dads sã rganizads em uma planilha, nde númer d grup (1, 2, 3, u 4) é utilizad cm chave primária; A planilha calcula estatísticas de cada grup, cmparand-as cm tda ppulaçã;

32 5. Apresentaçã ds resultads Analista human: ainda precisa d seu cnheciment d dmíni para interpretar esses resultads em cnheciment marketing

33 Data Mining: Assciaçã

34 Mineraçã de Regras de Assciaçã Definiçã: Achar padrões, assciações, crrelações frequentes em cnjunts de itens u bjets em um banc de dads u utrs tip de repsitóris de infrmaçã. Aplicações: Análise de cmpras, crss-marketing, design de catálgs de prduts, clustering, classificaçã, etc. Exempls. Regra: Bdy Ηead [supprt, cnfidence]. buys(x, diapers ) buys(x, beers ) [0.5%, 60%] majr(x, CS ) & takes(x, DB ) grade(x, A ) [1%, 75%]

35 Regras de Assciaçã: Cnceits Básics Dads: (1) cnjunt de transações, (2) cada transaçã é uma lista de itens (assciads a um cliente) Achar: tdas as regras que crrelacinam a presença de um cnjunt de itens cm a presença de utr cnjunt de itens em uma mesma transaçã E.g., 98% das pessas que cmpram pneus e aut-acessóris, também fazem algum serviç autmtiv. Achar: tdas as regras X & Y Z cm um mínim de suprte e cnfiança Suprte (supprt), s, prbabilidade que uma transaçã cntenha {X & Y & Z} Cnfiança (cnfidence), c, prbabilidade cndicinal que uma transaçã que cntenha {X & Y} também cntém Z

36 Mineraçã de Regras de Assciaçã Assciações bleanas vs. quantitativas (Baseadas ns tips de valres manuseads) buys(x, SQLServer ) & buys(x, DMBk ) buys(x, DBMiner ) [0.2%, 60%] age(x, ) & incme(x, K ) buys(x, PC ) [1%, 75%] Assciações Uni-dimensinais vs. Multi-dimensinais (Baseadas nas dimensões ds dads envlvids) Análise de Nível únic vs. Múltipls níveis (Baseadas ns níveis de abstraçã) age(x, ) buys(x, laptp cmputer ) age(x, ) buys(x, cmputer )

37 Mineraçã de cnjunts de itens frequentes Achar s cnjunts de itens frequentes (itemsets frequentes): cnjunt de itens que tem um mínim de suprte Um subcnjunt de um itemset frequente, também deve ser um itemset frequente Se {A, B} é um itemset frequente, ambs {A} e {B} devem ser itemsets frequentes Achar iterativamente itemsets frequentes cm cardinalidade de 1 à k (k-itemset) Usar s itemsets frequentes para gerar as regras de assciaçã.

38 O algritm Apriri Pass de uniã(jin): C k é gerad, unind L k-1 cm ele mesm Pass de pda(prune): Qualquer (k-1)-itemset que nã seja frequente, nã pde ser um subcnjunt de um k-itemset frequente Pseud-códig: C k : itemset candidat de tamanh k L k : itemset frequente de tamanh k L 1 = {items frequentes de tamanh 1}; fr (k = 1; L k!= ; k++) d begin C k+1 = candidats gerads a partir de L k ; fr each transactin t in database d incremente cntadr de tds s candidats em C k+1 que estã cntids em t L k+1 = candidats em C k+1 cm min_supprt end

39 Database D TID Items O algritm Apriri - Exempl Scan D itemset sup. {1} 2 {2} 3 {3} 3 {4} 1 {5} 3 C 1 L 1 itemset sup {1 2} 1 {1 3} 2 {1 5} 1 {2 3} 2 {2 5} 3 {3 5} 2 C 2 C 2 L 2 itemset sup Scan D {1 3} 2 {2 3} 2 {2 5} 3 {3 5} 2 C 3 itemset Scan D L 3 {2 3 5} itemset sup {2 3 5} 2 itemset sup. {1} 2 {2} 3 {3} 3 {5} 3 itemset {1 2} {1 3} {1 5} {2 3} {2 5} {3 5}

40 Cm gerar s candidats? Supnha que s itens em L k-1 sã listads em uma rdem Pass 1: aut-uniã L k-1 (jining step) insert int C k select p.item 1, p.item 2,, p.item k-1, q.item k-1 frm L k-1 p, L k-1 q where p.item 1 =q.item 1,, p.item k-2 =q.item k-2, p.item k-1 < q.item k-1 Pass 2: pda (prune step) frall itemsets c in C k d frall (k-1)-subsets s f c d if (s is nt in L k-1 ) then delete c frm C k

41 Exempl da geraçã ds candidats L 3 ={abc, abd, acd, ace, bcd} Aut-uniã: L 3 *L 3 abcd de abc e abd acde de acd e ace Pda: acde é remvid pis ade nã está em L3 C 4 ={abcd}

42 Gargals de perfrmance n Apriri O núcle d algritm: Usa (k 1)-itemsets frequentes para gerar k-itemsets candidats Usa iterações pel BD e casament de padrões para cletar cntadres para s itemsets candidats O gargal d Apriri: geraçã ds candidats Grandes cnjunts de candidats: itemset frequentes gerarã itemsets candidats Para descbrir um padrã frequente de tamanh 100, é necessária a geraçã de candidats. Múltiplas iterações pel BD: Necessita (n +1 ) iterações, nde n é tamanh d mair padrã

43 Medidas de Interesse Medidas Objetivas suprte (supprt); e cnfiança (cnfidence) Medidas subjetivas (Silberschatz & Tuzhilin, KDD95) Uma regra (pattern) é interessante se ela é inesperada (unexpected) ; e/u utilizável (actinable) Medidas subjetivas variam de usuári para usuári, assim medidas bjetivas baseadas na estatística

44 Critica a Suprte e Cnfiança Exempl 1: Entre 5000 estudantes 3000 jgam basquete 3750 cmem cereal 2000 jgam basquete e cmem cereal jga basquete cme cereal [40%, 66.7%] é equivcad. jgam basquete nã cme cereal [20%, 33.3%] é bem mais precis.

45 Critica a Suprte e Cnfiança Exempl 1: jga basquete cme cereal [40%, 66.7%] é equivcad prque a prcentagem ttal de estudante que cmem cereal é 75% que é mair que 66.7%. jgam basquete nã cme cereal [20%, 33.3%] é bem mais precis, embra cm menr suprte (supprt) e cnfiança (cnfidence). basketball nt basketball sum(rw) cereal nt cereal sum(cl.)

46 Crítica a Suprte e Cnfiança (Cnt.) Exempl 2: X e Y: psitivamente crrelacinad, X e Z, negativamente relacinand suprte e cnfiança de X=>Z dmina É necessária uma medida de dependência u crrelaçã P( A B) crr A, B = P( A) P( B) X Y Z Rule Supprt Cnfidence X=>Y 25% 50% X=>Z 37.50% 75% P(B A)/P(B) é também chamada de lift da regra A => B

47 Outra medida de interesse Interesse (crrelaçã, lift) P( A B) P( A) P( B) Clcand ambs P(A) e P(B) em cnsideraçã P(A^B)=P(B)*P(A), se A e B sã events independentes A e B sã negativamente crrelacinads, se valr e menr que 1; cas cntrári A e B sã psitivamente crrelacinads X Y Z Itemset Supprt Interest X,Y 25% 2 X,Z 37.50% 0.9 Y,Z 12.50% 0.57

48 Intrduçã à Análise de Agrupaments

49 Agrupament (Clustering) Métds usads para a cnstruçã de grups de bjets cm base nas semelhanças e diferenças entre s mesms de tal maneira que s grups btids sã s mais hmgênes e bem separads pssíveis. Duas grandes classes de prblemas em classificaçã: classificaçã supervisinada classificaçã supervisinada. A classificaçã nã supervisinada se prpõe a encntrar classes hmgêneas a partir de um cnjunt de indivídus. Objetiv: s indivídus semelhantes devem pertencer a mesma classe. É um bjetiv intuitiv mas nã é uma definiçã precisa da nçã de classe.

50 Agrupament (Clustering) Agrupar para que? Existe classes naturais e desafi é encntra-las. Deseja-se cnstruir as classes segund estruturas classificatórias (impstas). Encntrar classes úteis para usuári. Simplificaçã ds dads. Geraçã de Hipóteses. Prediçã cm base ns grups frmads. O que é um grup? Nã existe uma única definiçã satisfatória: Cesã interna.

51 Agrupament (Clustering) (a) (b) (c) (d) a) Grups cess e islads b) Grups islads mas nã cess c) Grups cess cm váris pnts intermediáris d) Nã existência de grups naturais

52 Principais Etapas da Frmaçã de Agrupaments a) Aquisiçã ds dads 1) Seleçã das bservações (indivídus, bjets, cass, itens) 2) Seleçã das variáveis (caracteres, descritres) e das crrespndentes escalas 3) Cnstruçã da Tabela de Dads b) Pré-prcessament ds dads 1) Mudança de escala 2) Nrmalizaçã 3) Extraçã de caracteres c) Cnstruçã da Tabela de Dads d) Cálcul da Prximidade 1) Esclha de um Índice de Prximidade 2) Cnstruçã da Matriz de Prximidades e) Seleçã de um Algritm de Frmaçã de Grups em funçã d tip de agrupament desejad f) Análise e Interpretaçã ds Resultads

53 Análise de agrupament Métds de análise Métds estatístics (incluind s métds hierárquics e nã-hierárquics), tais cm k-means, k-mdes, e utrs. Redes neurais (teria da ressnância adaptativa [ART], mapas autrganizáveis [SOM]). Lógica difusa. Algritms genétics. Métds divisivs versus

54 Análise de agrupament Númer de agrupaments Nã há uma frma ótima de calcular Heuristicas sã usadas frequentemente Observar quã esparss sã s grups Númer de grups = (n/2) 1/2 (n: númer de pnts) Use critéri de infrmaçã de Akaike Use critéri de infrmaçã bayesian A mairia ds métds de análise de agrupaments envlvem us de uma medida de distância para calcular quã pert estã s pares de itens Distância Euclidiana versus Manhattan

55 Análise de agrupament Algritm k-means k : númer pré-determinad de agrupaments Algritm Pass 0: determinaçã d valr de k Pass 1: geraçã aleatória de k pnts cm pnts inciais ds agrupaments (centróide) Pass 2: atribuir a cada pnt seu centróide mais próxim Pass 3: recmputar s nvs agrupaments Pass de repetiçã: Repetir s passs 3 e 4 até que algum critéri de cnvergência seja

56 Análise de agrupament algritm k-means Step 1 Step 2 Step 3

57 SPSS PASW Mdeler (frmerly Clementine) RapidMiner Sftware SAS / SAS Enterprise Miner Micrsft Excel R Cmercial SPSS - PASW SAS - Enterprise Miner IBM - Intelligent Miner StatSft Statistical Data Miner Livre u gratuit Weka RapidMiner Yur wn cde Weka (nw Pentah) KXEN MATLAB Other cmmercial tls KNIME Micrsft SQL Server Other free tls Zementis Oracle DM Statsft Statistica Salfrd CART, Mars, ther Orange Angss C4.5, C5.0, See5 Bayesia Insightful Miner/S-Plus (nw TIBCO) Megaputer Viscvery Clari Analytics Miner3D Thinkanalytics Ttal (w/ thers) Alne Fnte: KDNuggets.cm, May 2009

58 Mits em mineraçã de dads A mineraçã de dads Frnece sluções e previsões instantâneas Nã é viável para aplicações de negóci Requer um BD separad e dedicad Só pde ser feit pr aqueles cm grau avançad Serve apenas para grandes empresas cm muits clientes É utr nme para estatística.

59 Errs cmuns 1. Seleçã d prblema errad para mineraçã 2. Ignrar que seu superir acredita ser mineraçã de dads e que ela realmente é. 3. Nã ter temp suficiente para aquisições, seleçã e preparaçã de dads 4. Olhar apenas para resultads agregads e nã em registrs individuais 5. Ser negligente em manter s

60 Errs cmuns (cnt.) 1. Ignrar descbertas suspeitas (bas u ruins) e passar para a frente. 2. Executar algritms de mineraçã repetidamente e cegamente, sem pensar n próxim pass. 3. Acreditar ingenuamente em tud que fi dit sbre s dads. 4. Acreditar ingenuamente em tud que fi dit sbre as análises de mineraçã. 5. Medir s resultads de frma diferente d seu superir.

Aproveitamento da informação permite ganho de competitividade: conhecimento é poder (e poder = $$!)

Aproveitamento da informação permite ganho de competitividade: conhecimento é poder (e poder = $$!) Data Mining Prfessr Jrge Mreira jmreirajr@htmail.cm Mtivaçã A infrmatizaçã ds meis prdutivs permitiu a geraçã de grandes vlumes de dads: Transações eletrônicas; Nvs equipaments científics e industriais

Leia mais

Descoberta de Conhecimento em Bases de Dados e Mineração de Dados

Descoberta de Conhecimento em Bases de Dados e Mineração de Dados Descberta de Cnheciment em Bases de Dads e Mineraçã de Dads Rdrig Leite Durães (rdrig_l_d@yah.cm.br) Rteir Mtivaçã Exempl preliminar Cnceits básics Prcess de kdd Métds de mineraçã de dads Técnicas Exempls

Leia mais

Os novos usos da tecnologia da informação nas empresas Sistemas de Informação

Os novos usos da tecnologia da informação nas empresas Sistemas de Informação Os nvs uss da tecnlgia da infrmaçã nas empresas Sistemas de Infrmaçã Prf. Marcel da Silveira Siedler siedler@gmail.cm SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL FACULDADE DE TECNOLOGIA SENAC PELOTAS Planejament

Leia mais

CRONOGRAMA DELPHI para turmas Aproximadamente 84 horas - aulas de 2 horas

CRONOGRAMA DELPHI para turmas Aproximadamente 84 horas - aulas de 2 horas CRONOGRAMA DELPHI para turmas Aprximadamente 84 hras - aulas de 2 hras Primeira Parte Lógica de Prgramaçã 5 aulas 10 hras AULA 1 OBJETIVO 1. Cnceits básics: Algritm, Tips de Variáveis, Tips e Expressões

Leia mais

Prefeitura Municipal de Belo Horizonte Vox Mercado Pesquisa e Projetos Ltda. Dados da organização

Prefeitura Municipal de Belo Horizonte Vox Mercado Pesquisa e Projetos Ltda. Dados da organização Data de elabraçã da ficha: Jun 2007 Prefeitura Municipal de Bel Hriznte Vx Mercad Pesquisa e Prjets Ltda. Dads da rganizaçã Nme: Prefeitura Municipal de Bel Hriznte Endereç: Av. Afns Pena, 1212 - Cep.

Leia mais

Workflow. José Palazzo Moreira de Oliveira. Mirella Moura Moro

Workflow. José Palazzo Moreira de Oliveira. Mirella Moura Moro Pdems definir Wrkflw cm: Wrkflw Jsé Palazz Mreira de Oliveira Mirella Mura Mr "Qualquer tarefa executada em série u em paralel pr dis u mais membrs de um grup de trabalh (wrkgrup) visand um bjetiv cmum".

Leia mais

HARDWARE e SOFTWARE. O Computador é composto por duas partes: uma parte física (hardware) e outra parte lógica (software).

HARDWARE e SOFTWARE. O Computador é composto por duas partes: uma parte física (hardware) e outra parte lógica (software). HARDWARE e SOFTWARE O Cmputadr é cmpst pr duas partes: uma parte física (hardware) e utra parte lógica (sftware). Vcê sabe qual é a diferença entre "Hardware" e "Sftware"? Hardware: é nme dad a cnjunt

Leia mais

5. PLANEJAMENTO E ORGANIZAÇÃO DA MANUTENÇÃO:

5. PLANEJAMENTO E ORGANIZAÇÃO DA MANUTENÇÃO: 5. PLANEJAMENTO E ORGANIZAÇÃO DA MANUTENÇÃO: 5.1 INTRODUÇÃO A rganizaçã da manutençã era cnceituada, até há puc temp, cm planejament e administraçã ds recurss para a adequaçã à carga de trabalh esperada.

Leia mais

Todos os direitos reservados Versão 1.2

Todos os direitos reservados Versão 1.2 Guia de Relatóris Tds s direits reservads Versã 1.2 1 Guia de Relatóris Índice 1 Pedids... 3 1.1 Mnitr de Pedids... 3 1.2 Pedids... 4 1.3 Estatísticas de Pedids... 5 1.4 Acess e Cnsum... 7 1.5 Pedids pr

Leia mais

Projetos, Programas e Portfólios

Projetos, Programas e Portfólios Prjets, Prgramas e Prtfólis pr Juliana Klb em julianaklb.cm Prjet Segund PMBOK (2008): um prjet é um esfrç temprári empreendid para criar um nv prdut, serviç u resultad exclusiv. Esta definiçã, apesar

Leia mais

3. TIPOS DE MANUTENÇÃO:

3. TIPOS DE MANUTENÇÃO: 3. TIPOS DE MANUTENÇÃO: 3.1 MANUTENÇÃO CORRETIVA A manutençã crretiva é a frma mais óbvia e mais primária de manutençã; pde sintetizar-se pel cicl "quebra-repara", u seja, repar ds equipaments após a avaria.

Leia mais

é a introdução de algo novo, que atua como um vetor para o desenvolvimento humano e melhoria da qualidade de vida

é a introdução de algo novo, que atua como um vetor para o desenvolvimento humano e melhoria da qualidade de vida O que é invaçã? Para a atividade humana: é a intrduçã de alg nv, que atua cm um vetr para desenvlviment human e melhria da qualidade de vida Para as empresas: invar significa intrduzir alg nv u mdificar

Leia mais

MASTERCOMP ESCOLA DE INFORMÁTICA

MASTERCOMP ESCOLA DE INFORMÁTICA www.mastercmp.net 1 www.mastercmp.net www.mastercmp.net INFORMAÇO ES ADICIONAIS DO CURSO DE PROMODEL E MS PROJECT Prgramaçã: Carga hrária: 32 Hras Lcal: Sã Sebastiã d Paraís MG Prgramas usads n curs: MS

Leia mais

PLATAFORMA EMPRESAS PELO CLIMA

PLATAFORMA EMPRESAS PELO CLIMA PLATAFORMA EMPRESAS PELO CLIMA CAMINHO PARA ELABORAÇÃO DE AGENDAS EMPRESARIAIS EM ADAPTAÇÃO ÀS MUDANÇAS DO CLIMA Prpsta de Framewrk Resultad d diálg crrid em 26 de junh de 2013, n Fórum Latin-American

Leia mais

Modelagem, qualificação e distribuição em um padrão para geoinformações

Modelagem, qualificação e distribuição em um padrão para geoinformações Mdelagem, qualificaçã e distribuiçã em um padrã para geinfrmações Julia Peixt 14h, 14 de junh de 2010. Mtivaçã Acerv de dads desde 1994 em diferentes áreas de pesquisa; Muitas pessas fazend muits trabalhs

Leia mais

Unidade 7: Sínteses de evidências para políticas

Unidade 7: Sínteses de evidências para políticas Unidade 7: Sínteses de evidências para plíticas Objetiv da Unidade Desenvlver um entendiment cmum d que é uma síntese de evidências para plíticas, que inclui e cm pde ser usada 3 O que é uma síntese de

Leia mais

Matemática / 1ª série / ICC Prof. Eduardo. Unidade 1: Fundamentos. 1 - Introdução ao Computador

Matemática / 1ª série / ICC Prof. Eduardo. Unidade 1: Fundamentos. 1 - Introdução ao Computador Unidade 1: Fundaments 1 - Intrduçã a Cmputadr Cnceits básics e Terminlgias O cmputadr é uma máquina eletrônica capaz de realizar uma grande variedade de tarefas cm alta velcidade e precisã, desde que receba

Leia mais

Proposta. Treinamento Lean Thinking Mentalidade Enxuta. Apresentação Executiva

Proposta. Treinamento Lean Thinking Mentalidade Enxuta. Apresentação Executiva Treinament Lean Thinking Mentalidade Enxuta www.masterhuse.cm.br Prpsta Cm Treinament Lean Thinking Mentalidade Enxuta Apresentaçã Executiva Treinament Lean Thinking Mentalidade Enxuta Cpyright 2011-2012

Leia mais

Âmbito do Documento. Modelo de Comunicação. Modelo de Comunicação. Prescrição Eletrónica Médica - Aplicação

Âmbito do Documento. Modelo de Comunicação. Modelo de Comunicação. Prescrição Eletrónica Médica - Aplicação Mdel de Cmunicaçã Prescriçã Eletrónica Médica - Aplicaçã Âmbit d Dcument O presente dcument traduz mdel de cmunicaçã entre Centr de Suprte da SPMS e clientes da aplicaçã de Prescriçã Eletrónica Médica

Leia mais

TESTE DE SOFTWARE (Versão 2.0)

TESTE DE SOFTWARE (Versão 2.0) Universidade Luterana d Brasil Faculdade de Infrmática Disciplina de Engenharia de Sftware Prfessr Luís Fernand Garcia www.garcia.pr.br TESTE DE SOFTWARE (Versã 2.0) 9 Teste de Sftware Imprtância Dependência

Leia mais

PM 3.5 Versão 2 PdC Versão 1

PM 3.5 Versão 2 PdC Versão 1 Prcediment de Cmercializaçã Cntrle de Alterações SAZONALIZAÇÃO DE CONTRATO INICIAL E DE ENERGIA ASSEGURADA PM 3.5 Versã 2 PdC Versã 1 Alterad Layut d dcument. Alterad term de Prcediment de Mercad para

Leia mais

Ontologias: da Teoria à Prática

Ontologias: da Teoria à Prática Ontlgias: da Teria à Prática I Escla de Ontlgias UFAL-USP Endhe Elias e Olav Hlanda Núcle de Excelência em Tecnlgias Sciais - NEES Universidade Federal de Alagas UFAL Rteir Mtivaçã Ontlgias Engenharia

Leia mais

INTRODUÇÃO A LOGICA DE PROGRAMAÇÃO

INTRODUÇÃO A LOGICA DE PROGRAMAÇÃO INTRODUÇÃO A LOGICA DE PROGRAMAÇÃO A Lógica de Prgramaçã é necessária à tdas as pessas que ingressam u pretendem ingressar na área de Tecnlgia da Infrmaçã, send cm prgramadr, analista de sistemas u suprte.

Leia mais

ISO 9001:2008 alterações à versão de 2000

ISO 9001:2008 alterações à versão de 2000 ISO 9001:2008 alterações à versã de 2000 Já passaram quase it ans desde que a versã da ISO 9001 d an 2000 fi publicada, que cnduziu à necessidade de uma grande mudança para muitas rganizações, incluind

Leia mais

H. Problemas/outras situações na ligação com a Segurança Social;

H. Problemas/outras situações na ligação com a Segurança Social; Mdel de Cmunicaçã Certificads de Incapacidade Temprária Âmbit d Dcument O presente dcument traduz mdel de cmunicaçã entre Centr de Suprte da SPMS e clientes n âmbit ds CIT Certificads de Incapacidade Temprária.

Leia mais

Segmentação de Imagem

Segmentação de Imagem em pr bjectiv dividir a imagem em regiões u bjects segund um critéri Frequentemente resultad nã é uma imagem mas um cnjunt de regiões/bjects A precisã da fase de segmentaçã determina sucess u falha ds

Leia mais

Academia FI Finanças

Academia FI Finanças Academia FI Finanças A Academia é melhr caminh para especializaçã dentr de um tema n ERP da SAP. Para quem busca uma frmaçã cm certificaçã em finanças, mais indicad é participar da próxima Academia de

Leia mais

CONCORRÊNCIA AA Nº 05/2009 BNDES ANEXO II PROJETO BÁSICO: JORNADA AGIR

CONCORRÊNCIA AA Nº 05/2009 BNDES ANEXO II PROJETO BÁSICO: JORNADA AGIR CONCORRÊNCIA AA Nº 05/2009 BNDES ANEXO II PROJETO BÁSICO: JORNADA AGIR 1. Históric da Jrnada AGIR Ns ambientes crprativs atuais, a adçã de um mdel de gestã integrada é uma decisã estratégica n api às tmadas

Leia mais

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006.

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006. DISCIPLINA: Matemática 1- BIBLIOGRAFIA INDICADA Bibliteca Virtual Pearsn MACEDO, Luiz Rbert de, CASTANHEIRA, Nelsn Pereira, ROCHA, Alex. Tópics de matemática aplicada. Curitiba: Ibpex, 2006. PARKIN, Michael.

Leia mais

Aula 11 Bibliotecas de função

Aula 11 Bibliotecas de função Universidade Federal d Espírit Sant Centr Tecnlógic Departament de Infrmática Prgramaçã Básica de Cmputadres Prf. Vítr E. Silva Suza Aula 11 Biblitecas de funçã 1. Intrduçã À medida que um prgrama cresce

Leia mais

Desenho centrado em utilização

Desenho centrado em utilização Desenh centrad em utilizaçã Engenharia de Usabilidade Prf.: Clarind Isaías Pereira da Silva e Pádua Departament de Ciência da Cmputaçã - UFMG Desenh centrad em utilizaçã Referências Cnstantine, L.L., &

Leia mais

INDICE DE PREÇOS TURISTICO. Desenvolvido no quadro do Programa Comum de Estatística CPLP com o apoio técnico do INE de Portugal

INDICE DE PREÇOS TURISTICO. Desenvolvido no quadro do Programa Comum de Estatística CPLP com o apoio técnico do INE de Portugal INDICE DE PREÇOS TURISTICO Desenvlvid n quadr d Prgrama Cmum de Estatística CPLP cm api técnic d INE de Prtugal Estrutura da Apresentaçã INTRODUÇÃO. METODOLOGIA. FORMA DE CÁLCULO. PROCESSO DE TRATAMENTO.

Leia mais

Aliança Estratégica com a Delta Dezembro, 2011. Uma Consistente História de Investimento

Aliança Estratégica com a Delta Dezembro, 2011. Uma Consistente História de Investimento Aliança Estratégica cm a Delta Dezembr, 2011 Uma Cnsistente História de Investiment 1 Agenda Resum da Operaçã 1 Benefícis da Operaçã 2 2 Disclaimer O material a seguir é uma apresentaçã cnfidencial cntend

Leia mais

3 Aplicações dos Modelos de Análise de Crédito

3 Aplicações dos Modelos de Análise de Crédito 3 Aplicações ds Mdels de Análise de Crédit Pdem ser citads cm principais estuds realizads para previsã de inslvência de pessas jurídicas: Estud de Tamari O estud fi realizad n final da década de 50 e fi

Leia mais

Vensis PCP. Rua Américo Vespúcio, 71 Porto Alegre / RS (51) 3012-4444 comercial@vensis.com.br www.vensis.com.br

Vensis PCP. Rua Américo Vespúcio, 71 Porto Alegre / RS (51) 3012-4444 comercial@vensis.com.br www.vensis.com.br Vensis PCP Vensis PCP O PCP é módul de planejament e cntrle de prduçã da Vensis. Utilizad n segment industrial, módul PCP funcina de frma ttalmente integrada a Vensis ERP e permite às indústrias elabrar

Leia mais

Novo Sistema Almoxarifado

Novo Sistema Almoxarifado Nv Sistema Almxarifad Instruções Iniciais 1. Ícnes padrões Existem ícnes espalhads pr td sistema, cada um ferece uma açã. Dentre eles sã dis s mais imprtantes: Realiza uma pesquisa para preencher s camps

Leia mais

MANUAL DO USUÁRIO EVENTOS

MANUAL DO USUÁRIO EVENTOS SISTEMA DE INFORMAÇÃO E GESTÃO INTEGRADA POLICIAL Elabrad: Equipe SAG Revisad: Data: 17-09-2008 Data: Aprvad: Data: A autenticaçã d dcument cnsta n arquiv primári da Qualidade Referencia: Help_Online_Events.dc

Leia mais

CURSO PREPARATÓRIO PARA CERTIFICAÇÃO

CURSO PREPARATÓRIO PARA CERTIFICAÇÃO Cnteúd prgramátic CURSO PREPARATÓRIO PARA CERTIFICAÇÃO Este é cnteúd prgramátic d curs preparatóri n nv prgrama CDO-0001 para a certificaçã CmpTIA CDIA+. CONCEITUAL ECM Apresentaçã ds cnceits envlvids

Leia mais

PIM TECNOLOGIA EM GERENCIAMENTO DE REDES DE COMPUTADORES (GR3P30)

PIM TECNOLOGIA EM GERENCIAMENTO DE REDES DE COMPUTADORES (GR3P30) UNIP Brasília - Crdenaçã CG/CW/GR/AD Senhres Aluns, Seguem infrmações imprtantes sbre PIM: 1. O QUE É? - Os PIM (Prjet Integrad Multidisciplinar) sã prjets brigatóris realizads els aluns ds curss de graduaçã

Leia mais

Aplicações Clinicas. Patologia Clínica. Luís Lito

Aplicações Clinicas. Patologia Clínica. Luís Lito 0 Aplicações Clinicas Patlgia Clínica Luís Lit 1 Evluçã 1. 1993 - Infrmatizaçã parcial d Lab. de Química Clinica 2. 1996 - Inici da infrmatizaçã d Serviç de Patlgia Clínica Clinidata (sistema UNIX/COBOL

Leia mais

Vensis Manutenção. Rua Américo Vespúcio, 71 Porto Alegre / RS (51) 3012-4444 comercial@vensis.com.br www.vensis.com.br

Vensis Manutenção. Rua Américo Vespúcio, 71 Porto Alegre / RS (51) 3012-4444 comercial@vensis.com.br www.vensis.com.br Vensis Manutençã Vensis Manutençã É módul que permite gerenciament da manutençã de máquinas e equipaments. Prgramaçã de manutenções preventivas u registr de manutenções crretivas pdem ser feits de frma

Leia mais

Artigo 12 Como montar um Lava Jato

Artigo 12 Como montar um Lava Jato Artig 12 Cm mntar um Lava Jat Antigamente era cmum bservar as pessas, n final de semana, cm seus carrs, bucha e sabã nas mãs. Apesar de ainda haver pessas que preferem fazer serviç suj szinhas, s lava

Leia mais

Integração com coletores de ponto, catracas, dispositivos de abertura de portas, fechaduras eletromagnéticas,

Integração com coletores de ponto, catracas, dispositivos de abertura de portas, fechaduras eletromagnéticas, Vsft ids Acess Web Cntrle de acess e pnt A Vsft desenvlveu uma sluçã baseada em sftware e hardware para cntrle de acess e u pnt que pde ser utilizada pr empresas de qualquer prte. Cm us da tecnlgia bimétrica

Leia mais

Código: Data: Revisão: Página: SUMÁRIO

Código: Data: Revisão: Página: SUMÁRIO UC_REQ-MK_ACF-001 27/01/2015 00 1 / 12 SUMÁRIO INTRODUÇÃO... 2 Objetiv... 2 Públic Alv... 2 Escp... 2 Referências... 2 DESCRIÇÃO GERAL DO PRODUTO... 2 Características d Usuári... 2 Limites, Supsições e

Leia mais

Profa. Dra. Silvia M de Paula

Profa. Dra. Silvia M de Paula Prfa. Dra. Silvia M de Paula Espelhs Esférics Certamente tds nós já estivems diante de um espelh esféric, eles sã superfícies refletras que têm a frma de calta esférica. Em nss ctidian ficams diante de

Leia mais

WORKSHOPS SOBRE AS POSSIBILIDADES DE COOPERAÇÃO / CONCENTRAÇÃO NO SECTOR AUXILIAR NAVAL

WORKSHOPS SOBRE AS POSSIBILIDADES DE COOPERAÇÃO / CONCENTRAÇÃO NO SECTOR AUXILIAR NAVAL WORKSHOPS SOBRE AS POSSIBILIDADES DE COOPERAÇÃO / CONCENTRAÇÃO NO SECTOR AUXILIAR NAVAL ÍNDICE I. Apresentaçã e bjectivs d wrkshp II. III. Resultads ds inquérits Ambiente cmpetitiv Negóci Suprte Prcesss

Leia mais

1 Institucional. 1.1 Sobre a Vensis. 1.2 Missão, Políticas e Valores. 1.2.1 Missão. 1.2.2 Política da Qualidade

1 Institucional. 1.1 Sobre a Vensis. 1.2 Missão, Políticas e Valores. 1.2.1 Missão. 1.2.2 Política da Qualidade Institucinal 1 Institucinal 1.1 Sbre a Vensis A Vensis é uma empresa especializada n desenvlviment de sluções integradas para gestã de empresas. Atuand n mercad de tecnlgia da infrmaçã desde 1998, a empresa

Leia mais

Nome do programa, pesquisa ou produto: Projeto Censo GIFE 2005/2006

Nome do programa, pesquisa ou produto: Projeto Censo GIFE 2005/2006 1 GIFE Grup de Instituts, Fundações e Empresas Dads da rganizaçã Data de elabraçã da ficha: Fev 2008 Nme: GIFE Grup de Instituts, Fundações e Empresas Endereç: Av. Brigadeir Faria Lima, 2.413 1º andar

Leia mais

Diferenciais do QlikView Versus Tecnologias Tradicionais

Diferenciais do QlikView Versus Tecnologias Tradicionais Diferenciais d QlikView Versus Tecnlgias Tradicinais Índice Tecnlgia MOLAP... 3 Demanda criaçã de Datawarehuse... 3 Númer limitad de dimensões... 3 Inflexível... 3 Cnsultas smente nline... 3 Tecnlgia ROLAP...

Leia mais

Objeto de Avaliação Caraterísticas e Estrutura Critérios Gerais de Classificação. Tipologia / nº itens. A prova está organizada em cinco grupos:

Objeto de Avaliação Caraterísticas e Estrutura Critérios Gerais de Classificação. Tipologia / nº itens. A prova está organizada em cinco grupos: ESCOLA SECUNDÁRIA PADRE BENJAMIM SALGADO An Letiv 2011/2012 INFORMAÇÃO PROVA DE EQUIVALÊNCIA À FREQUÊNCIA Disciplina: Bilgia - Códig 302 Nível de Ensin: Secundári Frmaçã: Específica Mdalidade: Prva Escrita

Leia mais

REQUISITOS PRINCIPAIS: Regulamentação final sobre controles preventivos de alimentos para consumo humano Visão rápida

REQUISITOS PRINCIPAIS: Regulamentação final sobre controles preventivos de alimentos para consumo humano Visão rápida O FDA ferece esta traduçã cm um serviç para um grande públic internacinal. Esperams que vcê a ache útil. Embra a agência tenha tentad bter uma traduçã mais fiel pssível à versã em inglês, recnhecems que

Leia mais

SGCT - Sistema de Gerenciamento de Conferências Tecnológicas

SGCT - Sistema de Gerenciamento de Conferências Tecnológicas SGCT - Sistema de Gerenciament de Cnferências Tecnlógicas Versã 1.0 09 de Setembr de 2009 Institut de Cmputaçã - UNICAMP Grup 02 Andre Petris Esteve - 070168 Henrique Baggi - 071139 Rafael Ghussn Can -

Leia mais

PROJETO 22ª MOSTRA ESTUDANTIL TECNOLÓGICA Dias 22 e 23 DE OUTUBRO DE 2014 CURSO: GESTÃO EMPRESARIAL

PROJETO 22ª MOSTRA ESTUDANTIL TECNOLÓGICA Dias 22 e 23 DE OUTUBRO DE 2014 CURSO: GESTÃO EMPRESARIAL PROJETO 22ª MOSTRA ESTUDANTIL TECNOLÓGICA Dias 22 e 23 DE OUTUBRO DE 2014 CURSO: GESTÃO EMPRESARIAL Objetivs: Gestã Empresarial Desenvlver cmpetências para atuar n gerenciament de prjets, prestand cnsultria

Leia mais

IBOConsole Recuperação do Banco de Dados. Ferramenta de manutenção para recuperação de banco de dados.

IBOConsole Recuperação do Banco de Dados. Ferramenta de manutenção para recuperação de banco de dados. IBOCnsle Recuperaçã d Banc de Dads Ferramenta de manutençã para recuperaçã de banc de dads. 2 IBOCnsle ÍNDICE MAINTENANCE... 3 VALIDATION... 4 BACKUP/RESTORE... 6 BACKUP... 7 RESTORE... 10 3 IBOCnsle MAINTENANCE

Leia mais

Análise Preditiva com o SQL Server 2008

Análise Preditiva com o SQL Server 2008 Análise Preditiva cm SQL Server 2008 Artig Técnic d SQL Server Autr: Graeme Malclm (Cnteúd Mestre) Revisres Técnics: Rni Karassik e Dnald Farmer Editr d Prjet: Janne Hdgins Publicad: Nvembr de 2007 Aplica-se

Leia mais

Integração com coletores de ponto, catracas, dispositivos de abertura de portas, fechaduras eletromagnéticas,

Integração com coletores de ponto, catracas, dispositivos de abertura de portas, fechaduras eletromagnéticas, Vsft ids Pnt Web Cntrle de acess e pnt A Vsft desenvlveu uma sluçã baseada em sftware e hardware para cntrle de acess e u pnt que pde ser utilizada pr empresas de qualquer prte. Cm us da tecnlgia bimétrica

Leia mais

1- Introdução. 1.1 - Um pouco da história e conceitos de Business Intelligence

1- Introdução. 1.1 - Um pouco da história e conceitos de Business Intelligence Resum Este dcument trata d cnceit, técnicas e tecnlgias relacinadas a Business Intelligence. Após uma intrduçã as cnceits e há um puc da história d Business Intelligence n primeir capítul, sã explrads

Leia mais

ALTERAÇÕES NO SISTEMA ORION

ALTERAÇÕES NO SISTEMA ORION ALTERAÇÕES NO SISTEMA ORION Orin Versã 7.74 TABELAS Clientes Na tela de Cadastr de Clientes, fi inserid btã e um camp que apresenta códig que cliente recebeu após cálcul da Curva ABC. Esse btã executa

Leia mais

Vensis Associação Vensis ERP Entidades, Sindicatos e Federações.

Vensis Associação Vensis ERP Entidades, Sindicatos e Federações. Vensis Assciaçã Vensis ERP Entidades, Sindicats e Federações. Vensis Assciaçã O Vensis Assciaçã é um sistema desenvlvid para entidades cm sindicats, assciações, federações, fundações e utras de natureza

Leia mais

GESTÃO DE PROJETOS. Uma visão geral Baseado nas diretrizes do PMI

GESTÃO DE PROJETOS. Uma visão geral Baseado nas diretrizes do PMI GESTÃO DE PROJETOS Uma visã geral Bead n diretrizes d PMI 1 Intrduçã Objetiv da Apresentaçã O bjetiv é frnecer uma visã geral ds prcesss de Gestã de Prjets aplicads à Gestã de Empreendiments. O que é Prjet?

Leia mais

Banco de Dados. DIEGO BARCELOS RODRIGUES dbarcelos@ifes.edu.br 2015 (2015/1) 1. Ifes - Campus Cachoeiro de Itapemirim

Banco de Dados. DIEGO BARCELOS RODRIGUES dbarcelos@ifes.edu.br 2015 (2015/1) 1. Ifes - Campus Cachoeiro de Itapemirim Ifes - Campus Cacheir de Itapemirim Banc de Dads DIEGO BARCELOS RODRIGUES dbarcels@ifes.edu.br 2015 (2015/1) 1 Agenda Breve revisã ds Cnceits Básics SQL (Linguagem de Cnsulta Estruturada) Subdivisões da

Leia mais

^i * aesíqn e=> ~omunícc3ç:c30

^i * aesíqn e=> ~omunícc3ç:c30 ^i * aesíqn e=> ~munícc3ç:c30 CONTRATO DE LICENÇA DE USO DO SISTEMA - SUBMIT CMS Web Site da Prefeitura de Frei Martinh - Paraíba 1. IDENTIFICAÇÃO DAS PARTES CONTRATANTE Prefeitura Municipal de Frei Martinh

Leia mais

WINDOWS AZURE E ISVS UM GUIA PARA OS RESPONSÁVEIS PELAS DECISÕES DAVID CHAPPELL JULHO DE 2009 PATROCINADO PELA MICROSOFT CORPORATION

WINDOWS AZURE E ISVS UM GUIA PARA OS RESPONSÁVEIS PELAS DECISÕES DAVID CHAPPELL JULHO DE 2009 PATROCINADO PELA MICROSOFT CORPORATION WINDOWS AZURE E ISVS UM GUIA PARA OS RESPONSÁVEIS PELAS DECISÕES DAVID CHAPPELL JULHO DE 2009 PATROCINADO PELA MICROSOFT CORPORATION SUMÁRIO ISVs e cmputaçã em nuvem... 2 Breve visã geral d Windws Azure...

Leia mais

Regulamento para realização do Trabalho de Conclusão de Curso

Regulamento para realização do Trabalho de Conclusão de Curso Universidade Federal d Ceará Campus de Sbral Curs de Engenharia da Cmputaçã Regulament para realizaçã d Trabalh de Cnclusã de Curs Intrduçã Este dcument estabelece as regras básicas para funcinament das

Leia mais

Passo 1: Definição do tipo de crédito

Passo 1: Definição do tipo de crédito Manual Cm avaliar risc de crédit de um cliente Índice Intrduçã O que é risc de crédit? Pass 1: Definiçã d tip de crédit Pass 2: Cm elabrar uma ficha de crédit Pass 3: Métds para avaliar risc de crédit

Leia mais

Versão 14.0 Junho 2015 www.psr-inc.com Contato: sddp@psr-inc.com. Representação mais detalhada da operação em cada estágio: 21 blocos

Versão 14.0 Junho 2015 www.psr-inc.com Contato: sddp@psr-inc.com. Representação mais detalhada da operação em cada estágio: 21 blocos Versã 14.0 Junh 2015 www.psr-inc.cm Cntat: sddp@psr-inc.cm SDDP VERSÃO 14.0 Nvidades Representaçã mais detalhada da peraçã em cada estági: 21 blcs Tradicinalmente, a peraçã de cada estági (semana u mês)

Leia mais

API de Integração E-Zoop Documentação de uso

API de Integração E-Zoop Documentação de uso API de Integraçã E-Zp Dcumentaçã de us Data de Atualizaçã: 10/06/2015 Índice 1. Intrduçã... 1 2. Características... 2 Cadastr de características... 2 Exclusã de características... 4 Listagem de características...

Leia mais

A Importância de Sistemas de Informação para a Competitividade Logística

A Importância de Sistemas de Informação para a Competitividade Logística A Imprtância de Sistemas de Infrmaçã para a Cmpetitividade Lgística Paul Nazári 1. Intrduçã O avanç da tecnlgia de infrmaçã (TI) ns últims ans vem permitind às empresas executarem perações que antes eram

Leia mais

Sua hora chegou. Faça a sua jogada. REGULAMENTO. Prêmio de Empreendedorismo James McGuire 2016

Sua hora chegou. Faça a sua jogada. REGULAMENTO. Prêmio de Empreendedorismo James McGuire 2016 Sua hra chegu. Faça a sua jgada. REGULAMENTO Prêmi de Empreendedrism James McGuire 2016 Salvadr, nvembr de 2015. REGULAMENTO Prêmi de Empreendedrism James McGuire 2016 é uma cmpetiçã interna da Laureate

Leia mais

Cursos Profissionais de Nível Secundário (Decreto-Lei n.º 74/2004, de 26 de Março)

Cursos Profissionais de Nível Secundário (Decreto-Lei n.º 74/2004, de 26 de Março) REFERENCIAL DE FORMAÇÃO Curss Prfissinais de Nível Secundári (Decret-Lei n.º 74/2004, de 26 de Març) Família Prfissinal: 07 - Infrmática 1. QUALIFICAÇÕES / SAÍDAS PROFISSIONAIS As qualificações de nível

Leia mais

Curso de Extensão: Finanças Corporativas

Curso de Extensão: Finanças Corporativas 1. Apresentaçã Curs de Extensã: Finanças Crprativas Uma crpraçã é, genericamente, caracterizada pela tmada de duas decisões fundamentais, a de financiament e a de investiment. O prcess de seleçã, análise

Leia mais

MTur Sistema Artistas do Turismo. Manual do Usuário

MTur Sistema Artistas do Turismo. Manual do Usuário MTur Sistema Artistas d Turism Manual d Usuári Índice 1. INTRODUÇÃO... 3 2. DESCRIÇÃO DO SISTEMA... 3 3. ACESSAR O SISTEMA... 4 4. UTILIZANDO O SISTEMA... 9 4.1. CADASTRAR REPRESENTANTE... 9 4.2. CADASTRAR

Leia mais

Gestão do Escopo 1. Planejamento da Gestão do Escopo: 2. Definição do Escopo: 3. Elaboração da EDT(EAP): 4. Verificação do Escopo:

Gestão do Escopo 1. Planejamento da Gestão do Escopo: 2. Definição do Escopo: 3. Elaboração da EDT(EAP): 4. Verificação do Escopo: Gestã d Escp 1. Planejament da Gestã d Escp: i. Autrizaçã d prjet ii. Definiçã d escp (preliminar) iii. Ativs em cnheciments rganizacinais iv. Fatres ambientais e rganizacinais v. Plan d prjet i. Plan

Leia mais

Fundamentos de Informática 1ºSemestre

Fundamentos de Informática 1ºSemestre Fundaments de Infrmática 1ºSemestre Aula 4 Prf. Nataniel Vieira nataniel.vieira@gmail.cm SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL FACULDADE DE TECNOLOGIA SENAC PELOTAS Descrevend Sistemas de um Cmputadr

Leia mais

Desempenho de Vendas 1º Trimestre/2015

Desempenho de Vendas 1º Trimestre/2015 Sã Paul, Brasil, 13 de abril de 2015 - O GPA [BM&FBOVESPA: PCAR4 (PN); NYSE: CBD] e Via Varej S.A. [BM&FBOVESPA:VVAR3 e VVAR11] anunciam desempenh das vendas d 1º trimestre de 2015. Desempenh de Vendas

Leia mais

Legenda da Mensagem de Resposta à Verificação de Elegibilidade (respostaelegibilidade)

Legenda da Mensagem de Resposta à Verificação de Elegibilidade (respostaelegibilidade) Legenda da Mensagem de Respsta à Verificaçã de Elegibilidade (respstaelegibilidade) Mensagem : Respta à verificaçã de elegibilidade (respstaelegibilidade) - Flux : Operadra para Prestadr Códig da mensagem

Leia mais

Operação Metalose orientações básicas à população

Operação Metalose orientações básicas à população Operaçã Metalse rientações básicas à ppulaçã 1. Quem é respnsável pel reclhiment de prduts adulterads? As empresas fabricantes e distribuidras. O Sistema Nacinal de Vigilância Sanitária (Anvisa e Vigilâncias

Leia mais

AULA 3 GERENCIAMENTO DE CUSTOS E GESTÃO DE OPERAÇÕES PARA A QUALIDADE TOTAL. Prof. Glauce Almeida Figueira

AULA 3 GERENCIAMENTO DE CUSTOS E GESTÃO DE OPERAÇÕES PARA A QUALIDADE TOTAL. Prof. Glauce Almeida Figueira AULA 3 GERENCIAMENTO DE CUSTOS E GESTÃO DE OPERAÇÕES PARA A QUALIDADE TOTAL Prf. Glauce Almeida Figueira EMENTA AULA TÓPICOS 31/08 Intrduçã a Cntabilidade de Custs ; Terminlgia Cntábil; Tips de Custei;

Leia mais

PLATAFORMA EMPRESAS PELO CLIMA

PLATAFORMA EMPRESAS PELO CLIMA PLATAFORMA EMPRESAS PELO CLIMA CICLO DE ELABORAÇÃO DE AGENDAS EMPRESARIAIS EM ADAPTAÇÃO ÀS MUDANÇAS DO CLIMA Prpsta de Framewrk A partir d diálg crrid em 26 de junh de 2013, n Fórum Latin-American de Adaptaçã

Leia mais

Apresentação do Curso

Apresentação do Curso At endi m ent acl i ent e Apr es ent aç ãdc ur s Apresentaçã d Curs O curs Atendiment a Cliente fi elabrad cm bjetiv de criar cndições para que vcê desenvlva cmpetências para: Identificar s aspects que

Leia mais

EIKON DOCUMENTS - ESPECIFICAÇÃO TÉCNICA

EIKON DOCUMENTS - ESPECIFICAÇÃO TÉCNICA EIKON DOCUMENTS - ESPECIFICAÇÃO TÉCNICA VERSÃO Eikn Dcuments 2007 Service Pack 5 (2.9.5) Fevereir de 2010 DATA DE REFERÊNCIA DESCRIÇÃO Sftware para implantaçã de sistemas em GED / ECM (Gerenciament Eletrônic

Leia mais

Supply Chain Game. EXERCÍCIOS PRÁTICOS DE LOGÍSTICA E CADEIA DE SUPRIMENTOS Autor: Prof. Dr. Daniel Bertoli Gonçalves

Supply Chain Game. EXERCÍCIOS PRÁTICOS DE LOGÍSTICA E CADEIA DE SUPRIMENTOS Autor: Prof. Dr. Daniel Bertoli Gonçalves Supply Chain Game EXERCÍCIOS PRÁTICOS DE LOGÍSTICA E CADEIA DE SUPRIMENTOS Autr: Prf. Dr. Daniel Bertli Gnçalves Exercíci Prátic Simuland Cadeias de Supriments v2.0 Lcal: em sala de aula Material Necessári:

Leia mais

Número de cédula profissional (se médico); Nome completo; 20/06/2014 1/7

Número de cédula profissional (se médico); Nome completo; 20/06/2014 1/7 Mdel de Cmunicaçã Sistema Nacinal de Vigilância Epidemilógica Âmbit d Dcument O presente dcument traduz mdel de cmunicaçã entre Centr de Suprte da SPMS e clientes d Sistema Nacinal de Vigilância Epidemilógica.

Leia mais

Principais Informações

Principais Informações Principais Infrmações Quem é Benefix Sistemas? Frmada pr ex-executivs e equipe de tecnlgia da Xerx d Brasil, que desenvlvem e suprtam sluções e estratégias invadras para setr públic, especializada dcuments

Leia mais

SEGURANÇA NO TRABALHO CONTRATADOS E TERCEIROS DO CLIENTE

SEGURANÇA NO TRABALHO CONTRATADOS E TERCEIROS DO CLIENTE Flha 1 de 8 Rev. Data Cnteúd Elabrad pr Aprvad pr 0 16/06/2004 Emissã inicial englband a parte técnica d GEN PSE 004 Luiz C. Sants Cmitê da Qualidade 1 31/01/2006 Revisã geral Luiz C. Sants Cmitê da Qualidade

Leia mais

MANUAL PARA ELABORAÇÃO DE ARTIGOS CIENTÍFICOS

MANUAL PARA ELABORAÇÃO DE ARTIGOS CIENTÍFICOS MANUAL PARA ELABORAÇÃO DE ARTIGOS CIENTÍFICOS Sã Paul 2013 1 1 INTRODUÇÃO Este Manual tem a finalidade de servir à nrmalizaçã da elabraçã de Trabalhs de Cnclusã de Curs TCC pr mei de artigs científics,

Leia mais

Boletim Comercial. Tema: BC003 Plano de Disponibilidade Ilimitada de Recursos UV. Introdução

Boletim Comercial. Tema: BC003 Plano de Disponibilidade Ilimitada de Recursos UV. Introdução Bletim Cmercial Tema: BC003 Plan de Dispnibilidade Ilimitada de Recurss UV Intrduçã Sistemas de cura UV sã cada vez mais presentes em indústrias que imprimem grandes vlumes de materiais, independente d

Leia mais

Supply Chain Game. EXERCÍCIOS PRÁTICOS DE LOGÍSTICA E CADEIA DE SUPRIMENTOS Autor: Prof. Dr. Daniel Bertoli Gonçalves

Supply Chain Game. EXERCÍCIOS PRÁTICOS DE LOGÍSTICA E CADEIA DE SUPRIMENTOS Autor: Prof. Dr. Daniel Bertoli Gonçalves Supply Chain Game EXERCÍCIOS PRÁTICOS DE LOGÍSTICA E CADEIA DE SUPRIMENTOS Autr: Prf. Dr. Daniel Bertli Gnçalves Exercíci Prátic 1 Simuland uma Cadeia e planejand seus estques Lcal: em sala de aula Material

Leia mais

Guia Sphinx: Instalação, Reposição e Renovação

Guia Sphinx: Instalação, Reposição e Renovação Guia Sphinx: Instalaçã, Repsiçã e Renvaçã V 5.1.0.8 Instalaçã Antes de instalar Sphinx Se vcê pssuir uma versã anterir d Sphinx (versões 1.x, 2.x, 3.x, 4.x, 5.0, 5.1.0.X) u entã a versã de Demnstraçã d

Leia mais

MANUAL DO USUÁRIO FINANCEIRO

MANUAL DO USUÁRIO FINANCEIRO SIGIO Sistema Integrad de Gestã de Imprensa Oficial MANUAL DO USUÁRIO FINANCEIRO S I G I O M A N U A L D O U S U Á R I O P á g i n a 2 Cnteúd 1 Intrduçã... 3 2 Acess restrit a sistema... 4 2.1 Tips de

Leia mais

GESTÃO DE LABORATÓRIOS

GESTÃO DE LABORATÓRIOS Seminári Luanda, 26,27,28,29 e 30 de Mai de 2014 - Htel **** Guia Prática GESTÃO DE LABORATÓRIOS Finanças Assegure uma gestã eficaz de tdas as áreas 40 hras de Frmaçã Especializada Cnceits ecnómic-financeirs

Leia mais

Modelo de Negócios. TRABALHO REALIZADO POR: Antonio Gome- 2007009 // Jorge Teixeira - 2008463

Modelo de Negócios. TRABALHO REALIZADO POR: Antonio Gome- 2007009 // Jorge Teixeira - 2008463 Mdel de Negócis Trabalh n âmbit da disciplina de Mdelaçã de dads. Criaçã de uma platafrma utilizand as tecnlgias SQL PHP e Javascript.. TRABALHO REALIZADO POR: Antni Gme- 2007009 // Jrge Teixeira - 2008463

Leia mais

DISCIPLINA: Matemática e Matemática Aplicada

DISCIPLINA: Matemática e Matemática Aplicada DISCIPLINA: Matemática e Matemática Aplicada 1- BIBLIOGRAFIA INDICADA Bibliteca Virtual Pearsn MACEDO, Luiz Rbert de, CASTANHEIRA, Nelsn Pereira, ROCHA, Alex. Tópics de matemática aplicada. Curitiba: Ibpex,

Leia mais

Glossário das Metas Prioritárias 2010 Versão 1.2.14 Agosto/2010

Glossário das Metas Prioritárias 2010 Versão 1.2.14 Agosto/2010 Meta Priritária 5 Implantar métd de gerenciament de rtinas (gestã de prcesss de trabalh) em pel mens 50% das unidades judiciárias de 1º grau. Esclareciment da Meta Nã estã sujeits a esta meta s tribunais

Leia mais

GERENCIAMENTO DE DOCUMENTOS, CONTEÚDO E PROCESSOS GED/ECM. Solução de Gestão Eletrônica de Documentos Acadêmicos

GERENCIAMENTO DE DOCUMENTOS, CONTEÚDO E PROCESSOS GED/ECM. Solução de Gestão Eletrônica de Documentos Acadêmicos GERENCIAMENTO DE DOCUMENTOS, CONTEÚDO E PROCESSOS GED/ECM Sluçã de Gestã Eletrônica de Dcuments Acadêmics OBJETIVOS DA SOLUÇÃO BENEFÍCIOS GERAIS A Sluçã ECMDOC de Gestã de Dcuments Acadêmics, tem cm principais

Leia mais

REGULAMENTO CONCURSO DE IDEIAS OESTECIM A MINHA EMPRESA

REGULAMENTO CONCURSO DE IDEIAS OESTECIM A MINHA EMPRESA 1. Intrduçã e Objetivs a) O Cncurs de Ideias OESTECIM a minha empresa pretende ptenciar apareciment de prjets invadres na regiã d Oeste sempre numa perspetiva de desenvlviment ecnómic e scial. b) O Cncurs

Leia mais

PROGRAMA DESENVOLVIMENTO RURAL CONTINENTE 2014-2020. DESCRIÇÃO DA AÇÃO Versão: 1 Data: 28/10/2013

PROGRAMA DESENVOLVIMENTO RURAL CONTINENTE 2014-2020. DESCRIÇÃO DA AÇÃO Versão: 1 Data: 28/10/2013 PROGRAMA DESENVOLVIMENTO RURAL CONTINENTE 2014-2020 DESCRIÇÃO DA AÇÃO Versã: 1 Data: 28/10/2013 M5. ORGANIZAÇÃO DA PRODUÇÃO AÇÃO 5.1. CRIAÇÃO DE AGRUPAMENTOS E ORGANIZAÇÃO DE PRODUTORES NOTA INTRODUTÓRIA

Leia mais

INSTITUTO DE EXCELÊNCIA EM EDUCAÇÃO DE SAÚDE IEES. Excelência na Formação através da Experiência e Aplicação MARKETING FARMACÊUTICO PRÁTICO

INSTITUTO DE EXCELÊNCIA EM EDUCAÇÃO DE SAÚDE IEES. Excelência na Formação através da Experiência e Aplicação MARKETING FARMACÊUTICO PRÁTICO E IEES I EDUCAÇÃO DE SAÚDE INSTITUTO DE EXCELÊNCIA EM EDUCAÇÃO DE SAÚDE IEES Excelência na Frmaçã através da Experiência e Aplicaçã MARKETING FARMACÊUTICO PRÁTICO 1.CARGA HORÁRIA 32 Hras 2.DATA E LOCAL

Leia mais

- COMO PROCURAR EMPREGO -

- COMO PROCURAR EMPREGO - GUIA PRÁTICO - COMO PROCURAR EMPREGO - e 1 de 7 Técnicas de Prcura de Empreg...3 1. Aut Avaliaçã...3 2. Meis de Divulgaçã de Ofertas de Empreg...3 3. Carta de Apresentaçã...4 4. Curriculum Vitae...4 4.1.1.

Leia mais

ENCONTROCAS 2º SEMESTRE 2012 - ORIENTAÇÕES GERAIS PARA O CURSO DE PEDAGOGIA. O ENCONTROCAS é um evento semestral realizado pelo Instituto Superior de

ENCONTROCAS 2º SEMESTRE 2012 - ORIENTAÇÕES GERAIS PARA O CURSO DE PEDAGOGIA. O ENCONTROCAS é um evento semestral realizado pelo Instituto Superior de Faculdade de Ciências Sciais Aplicadas de Bel Hriznte Institut Superir de Educaçã Curs de Pedaggia ENCONTROCAS 2º SEMESTRE 2012 - ORIENTAÇÕES GERAIS PARA O CURSO DE PEDAGOGIA O ENCONTROCAS é um event semestral

Leia mais