Capítulo 4 CONSERVAÇÃO DA MASSA E DA ENERGIA

Tamanho: px
Começar a partir da página:

Download "Capítulo 4 CONSERVAÇÃO DA MASSA E DA ENERGIA"

Transcrição

1 Capítulo 4 COSERAÇÃO DA MASSA E DA EERGIA 4.1. Equações para um Sstema Fechao Defnções Consere o volume materal e uma aa substânca composta por espéces químcas lustrao na Fgura 4.1, one caa espéce é representaa por uma fgura geométrca stnta. O sstema fechao é composto pelos mesmos átomos, vsto que não há ntercâmbo e massa com a vznhança. Fgura 4.1. olume materal com espéces químcas stntas. As equações e conservação a massa e um componente e a energa aplcaas a este sstema são aas por: m (4.1.1) m R E Q W (4.1.) one m é a massa o componente, m R é a massa o componente geraa no volume e controle (por exemplo, por meo e uma reação químca) e E a energa total o sstema (energas cnétca e nterna). Q e W são o calor transfero para ou o sstema e o trabalho realzao pelo ou sobre o 1 Copyrght 010. Jaer R. Barbosa Jr.

2 sstema. A convenção e snas prega que Q > 0 se for transfero ao sstema, Q < 0 se for transfero o sstema, W < 0 se for realzao pelo sstema, W > 0 se for realzao sobre o sstema. Por unae e tempo, as equações (4.1.1) e (4.1.) poem ser escrtas na forma: m mr (4.1.3) t E Q W (4.1.4) t t ou m R (4.1.5) one E Q W (4.1.6) R é a taxa e proução (ou e consumo) e massa o componente no sstema (kg() /s), Q é a taxa e transferênca e calor no sstema e W é a taxa com a qual trabalho é realzao pelo sstema (ambas em W) Propreaes ntensvas e extensvas Massa e energa são propreaes globas, pertnentes ao sstema como um too. Chamamo-las propreaes extensvas, ou seja, que epenem o tamanho o sstema (Çengel e Boles, 006). Contuo, poemos efn-las em função e parâmetros locas, específcos por unae e massa total o sstema. Tas parâmetros ou propreaes são os ntensvos e sua ntegração no volume o sstema resulta na propreae extensva corresponente. A massa o componente e a energa total o sstema escrtas em função e propreaes ntensvas são aas por: m X (4.1.7) E e (4.1.8) one X é a fração mássca o componente. Conserano toos os componentes a mstura, é possível mostrar que: m m X X (4.1.9) as equações acma, é a ensae mássca o sstema, efna localmente com o auxílo a Hpótese o Contínuo (Fox e MacDonal, 1998): m lm 0 (4.1.10) Copyrght 010. Jaer R. Barbosa Jr.

3 A equação (4.1.9) permte entfcar, localmente, as seguntes gualaes: 1 (4.1.11) e X 1 1 (.1.1) Além sso, conserano o prncípo e conservação a massa total o sstema, sto é, a mstura, tem-se que: e m 0 (4.1.13) 1 R 0 (4.1.14) a equação (4.1.8), e é a energa específca (J/kg) o sstema: 1 e u 1 v v u v (4.1.15) one u é a energa nterna específca e a seguna parcela é a energa cnétca específca, a qual está assocaa ao movmento macroscópco local o sstema. Alternatvamente, por efnção, a energa nterna é resultao e contrbuções no nível molecular, quas sejam: as energas cnétcas as moléculas calculaas com relação a um referencal se eslocano com velocae v, as energas cnétcas e rotação e e vbração as moléculas e as energas e nteração entre as moléculas (Br et al., 00). Em função e propreaes ntensvas, as equações (4.1.5) e (4.1.6) poem ser re-escrtas na forma: X R (4.1.16) e Q W (4.1.17) Da mesma manera, a conservação a massa total a mstura poe ser escrta na forma: 0 (4.1.18) 3 Copyrght 010. Jaer R. Barbosa Jr.

4 .. Equações para um Sstema Aberto (Forma Integral)..1. Teorema e Transporte e Reynols Um sstema aberto (ou volume e controle, ) é uma regão pré-etermnaa o espaço que permte o ntercâmbo e massa com a vznhança através e sua frontera. Desta forma, para se escrever os prncípos e conservação a massa e a energa para este sstema, é necessáro contablzar a entraa e a saía as propreaes ntensvas corresponentes com a massa transportaa pela frontera o sstema. A obtenção as equações e conservação para um é realzaa a partr as equações e conservação para um sstema fechao, aplcano-se o Teorema e Transporte e Reynols. Consere a Fgura 4. em que é mostrao um sstema fechao (ou seja, um volume materal e partículas e fluo, ) em um nstante t. este mesmo nstante, entfca-se a frontera o volume e controle,, o qual conce com o volume materal e engloba toas as partículas e fluo. A caa porção e área nfntesmal a frontera o, é possível assocar um vetor untáro normal nˆ apontano para fora o sstema. Em um nstante t t, em função e eslocamentos e eformações no fluo, o volume materal ocupa a regão emarcaa na fgura e, como resultao, há um transporte e massa e fluo através a frontera o. Parte a massa orgnal exa o (M s ) e é substtuía por novas partículas e fluo que atravessaram para entro a frontera o (M e ). nˆ nˆ M s M (t) M (t+t) (t) M e (t+t) Fgura 4.. Ilustração o volume materal e o volume e controle. O Teorema e Transporte e Reynols assoca a taxa e varação e uma propreae extensva e um sstema à sua varação no através a segunte relação (Crowe et al., 1998; Br et al., 00): x,t x,t x,t t v nˆa (4..1) 4 Copyrght 010. Jaer R. Barbosa Jr.

5 O prmero termo o lao reto a equação acma, conheca como a 1ª Forma o Teorema e Transporte e Reynols, é o resultao global (ntegral) as contrbuções e varação local a propreae extensva x,t no volume e controle. O seguno termo é o resultao global (ntegral) os fluxos e x,t através a frontera o. v é a velocae local com que a propreae ntensva transportaa atravessa a frontera o com relação a um referencal nercal. A equação (4..1) poe ser combnaa com a Regra e Lebnz (estena ao ) para prouzr a ª forma o Teorema e Transporte e Reynols. Para uma função f qualquer o tempo e e uma mensão no espaço, a Regra e Lebnz é aa por (Crowe et al., 1998): x x x1 x fx,tx fx,tx fx 1,t fx,t t x (4..) 1 x1 t Para uma função e três mensões one a ntegração é realzaa em um volume nterno a uma superfíce, a Regra e Lebnz se transforma em: t f x,t fx,t fx,t t v nˆa I (4..3) one v I é a velocae local a frontera o com relação a um referencal nercal. Combnano as equações (4..1) e (4..3), é possível esenvolver a ª forma o Teorema e Transporte e Reynols, aa por: one I t x,t x,t x,t wnˆa (4..4) w v v é a velocae local com que a propreae transportaa atravessa a frontera com relação a um referencal na frontera Prncípos e Conservação Aplcaos a um olume e Controle Substtuno a ª forma o Teorema e Transporte e Reynols nas equações e conservação, tem-se: t X X w nˆa R (4..5) e ewnˆa Q W t (4..6) As equações acma representam as relações funamentas a formulação ntegral os prncípos e conservação a massa o componente e a energa para um volume e controle. É mportante observar que, na equação (4..5), a velocae que aparece no termo e fluxo pela frontera é a velocae a propreae transportaa, ou seja, a velocae o componente, e não a velocae méa mássca a mstura (ve Seção 3.). A equação e conservação a massa total, 5 Copyrght 010. Jaer R. Barbosa Jr.

6 obta a partr a equação (4.1.18) ou a soma as equações e conservação a massa os componentes é aa por: t wnˆa 0 (4..7) Termos e Transferênca e Geração Os termos o lao reto as equações (4..5) e (4..6) contemplam fenômenos que poem ocorrer na frontera o ou no própro nteror o. o prmero caso, os termos são escrtos a partr e fluxos por unae e área a frontera. o seguno, os termos são escrtos sob a forma e taxa por unae e volume. Para a conservação a massa o componente, a taxa e proução ou e consumo e massa o componente é aa por: R R (4..8) one R é a taxa e proução ou consumo local o componente por unae e volume (kg /m 3.s) ecorrente e uma reação químca homogênea no. Para a conservação a energa, a taxa e transferênca e calor é escrta na forma: one Q q nˆ A q (4..9) f q f é o vetor fluxo e calor (W/m ) resultante a fusão através a frontera. q é a taxa e geração e calor por unae e volume (W/m 3 ) ecorrente fenômenos como o efeto Joule, o efeto Pelter, reações nucleares, etc. a equação (4..9), o snal negatvo no prmero termo o lao reto é evo ao vetor untáro normal apontar para fora o volume e controle e à convenção e snas stngur que calor e massa transferos ao volume e controle são granezas postvas. O termo e trabalho é escrto na forma: T~ vnˆ A W w (4..10) one T~ v nˆ é a taxa com a qual trabalho é realzao pelo na frontera evo a forças e superfíce (normas e tangencas), em W/m. T ~ é o tensor e tensões, que para um fluo newtonano é ao por (Br et al., 00): T~ p ~ I ~ p ~ I v v T vi ~ 3 (4..11) one p é a pressão termonâmca, I ~ é a matrz entae, é a vscosae nâmca e é a vscosae e latação. Fnalmente, o seguno termo o lao reto a equação (4..10) 6 Copyrght 010. Jaer R. Barbosa Jr.

7 representa a taxa com que forças e campo realzam trabalho sobre o, seno W/m 3 a unae e w no SI. Para resolver as equações e conservação a massa e a energa, é necessáro apresentar relações consttutvas para os fluxos e calor e e massa e as respectvas taxas e geração por unae e volume. Tas relações são escrtas em função e graentes e propreaes ntensvas, como a temperatura e a concentração o componente. Desta forma, o contexto mas aequao para apresentação estas relações e o fechamento o problema é o a formulação as equações e conservação na forma ferencal, tópco a seção a segur Equações e Conservação na Forma Dferencal A obtenção as equações na forma ferencal é efetuaa substtuno os termos e transferênca e geração nas equações (4..5) e (4..6). Assm: t X X w nˆa R (4.3.1) t e ewnˆa q f nˆ A q T~ vnˆ A w (4.3.) Alternatvamente, as equações acma poem ser re-escrtas após a aplcação a 1ª forma o Teorema e Transporte e Reynols na forma: X t X v nˆa R (4.3.3) e t ev nˆa q f nˆ A q T~ vnˆ A w (4.3.4) O Teorema a Dvergênca e Gauss-Ostrogrask transforma ntegras e área a frontera o em ntegras e volume por meo o operaor vergente: nˆa (4.3.5) A one é um vetor ou um tensor, e: A nˆ A (4.3.6) one é um escalar. Meante a aplcação o Teorema a Dvergênca às equações e conservação, obtém-se: X t X v R (4.3.7) e t ev q f q T~ v w (4.3.8) 7 Copyrght 010. Jaer R. Barbosa Jr.

8 t v 0 (4.3.9) Como o é um volume arbtráro, ele poe ser elmnao as equações acma para ar forma às equações e conservação na forma ferencal. Convêm observar que as equações resultantes terão mensões e massa o componente, e energa e e massa total a mstura, toas por unae e volume. X t e t t X v R ev q q T~ v w v 0 f (4.3.10) (4.3.11) (4.3.1) ote que, nas equações acma, o vergente representa um balanço local a respectva propreae (por exemplo, o fluxo e calor) no elemento e volume nfntesmal, através e sua frontera. Para um sstema multcomponente (ou seja, com espéces químcas), há -1 equações e transporte nepenentes para as frações másscas (equação ), vsto que X 1. É mportante observar que, em alguns casos, as equações (4.3.10) e (4.3.1) também poem ser mas convenentemente escrtas nas formas: X m R t (4.3.13) m 0 t one m é o fluxo total o componente ao pela equação (3.3.6): m v J e m é o fluxo a total a mstura: m. m 1 (4.3.14) (3.3.6) os capítulos a segur, trataremos e escrever as equações e conservação a massa e a energa na forma ferencal em função e propreaes ntensvas como a temperatura a pressão e concentração. Serão estas formas as mas utlzaas nas aplcações e fusão e calor em massa aboraas neste texto. Juntamente com as equações e conservação apresentaremos também as conções e contorno, obtas a partr e balanços e massa e energa aplcaos em volumes e controle envolveno a nterface entre os meos ajacentes. 8 Copyrght 010. Jaer R. Barbosa Jr.

9 Referêncas Br, R.B., Stewart, W.E., Lghtfoot, E.., 00, Transport Phenomena, n E., Wley, Y. Crowe, C.T., Sommerfel, M., Tsuj, Y., 1998, Multphase Flow wth Droplets an Partcles, CRC Press, FL. Çengel, Y.A., Boles, M.A., 006, Termonâmca, 5 a E., McGraw-Hll, São Paulo. Fox, R.W., McDonal, A.T., 1998, Introução à Mecânca os Fluos, 5ª E., LTC, Ro e Janero, Copyrght 010. Jaer R. Barbosa Jr.

Fenômenos de Transporte I

Fenômenos de Transporte I Prof. Carlos Ruberto Fragoso Jr. Fenômenos e Transporte I 1. Funamentos e Cnemátca os Fluos 1.1 Defnções Escoamento é a eformação contínua e um fluo que sofre a ação e uma força tangencal, por menor que

Leia mais

Capítulo. Capacitores Resoluções dos exercícios propostos. P.283 a) Dados: ε 0 8,8 10 12 F/m; A (0,30 0,50) m 2 ; d 2 10 3 m 0,30 0,50 2 10 3

Capítulo. Capacitores Resoluções dos exercícios propostos. P.283 a) Dados: ε 0 8,8 10 12 F/m; A (0,30 0,50) m 2 ; d 2 10 3 m 0,30 0,50 2 10 3 apítulo a físca xercícos propostos nae apítulo apactores apactores Resoluções os exercícos propostos P.8 a) aos: ε 0 8,8 0 F/m; (0,0 0,50) m ; 0 m ε 0 8,8 0 0,0 0,50 0 6,6 0 0 F b) ao:.000 V 6,6 00.000,

Leia mais

.FL COMPLEMENTOS DE MECÂNICA. Mecânica. Recuperação de doentes com dificuldades motoras. Desempenho de atletas

.FL COMPLEMENTOS DE MECÂNICA. Mecânica. Recuperação de doentes com dificuldades motoras. Desempenho de atletas COMPLEMENTOS DE MECÂNICA Recuperação e oentes com fculaes motoras Mecânca Desempenho e atletas Construção e prótese e outros spostvos CORPOS EM EQUILÍBRIO A prmera conção e equlíbro e um corpo correspone

Leia mais

Revista Brasileira de Ensino de Fsica, vol. 21, no. 1, Marco, 1999 33. Simetrias e Leis de Conservac~ao na. Mec^anica Classica

Revista Brasileira de Ensino de Fsica, vol. 21, no. 1, Marco, 1999 33. Simetrias e Leis de Conservac~ao na. Mec^anica Classica Revsta Braslera e Ensno e Fsca, vol. 21, no. 1, Marco, 1999 33 Smetras e Les e Conservac~ao na Mec^anca Classca Arano e Souza Martns Dep. e Fsca o Estao Solo - UFRJ Cx. Postal 68528, CEP 21945-970, (Ro

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos.

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos. 1 Unversdade Salvador UNIFACS Crsos de Engenhara Cálclo IV Profa: Ila Reboças Frere Cálclo Vetoral Teto 03: Campos Escalares e Vetoras. Gradente. Rotaconal. Dvergênca. Campos Conservatvos. Campos Escalares

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Fnancera 007. Prof.: Luz Gonzaga Damasceno E-mals: amasceno04@yahoo.com.br amasceno@nterjato.com.br amasceno@hotmal.com 5. Taxa Over mensal equvalente. Para etermnar a rentablae por a útl one

Leia mais

Leis de Newton. 1.1 Sistemas de inércia

Leis de Newton. 1.1 Sistemas de inércia Capítulo Leis e Newton. Sistemas e inércia Supomos a existência e sistemas e referência, os sistemas e inércia, nos quais as leis e Newton são válias. Um sistema e inércia é um sistema em relação ao qual

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014 Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca

Leia mais

Questões de Vestibulares

Questões de Vestibulares Cnemátca: movmento retlíneo, movmento curvlíneo Questões e Vestbulares. (UFRJ) Heloísa, sentaa na poltrona e um ônbus, afrma que o passagero sentao à sua frente não se move, ou seja, está em repouso. o

Leia mais

ANÁLISE E CARACTERIZAÇÃO DE MODELOS DE CUSTOS QUE UTILIZAM O VALOR DE SHAPLEY PARA ALOCAÇÃO DE CUSTOS ENTRE DEPARTAMENTOS

ANÁLISE E CARACTERIZAÇÃO DE MODELOS DE CUSTOS QUE UTILIZAM O VALOR DE SHAPLEY PARA ALOCAÇÃO DE CUSTOS ENTRE DEPARTAMENTOS ANÁLISE E CARACTERIZAÇÃO DE MODELOS DE CUSTOS QUE UTILIZAM O VALOR DE SHAPLEY PARA ALOCAÇÃO DE CUSTOS ENTRE DEPARTAMENTOS Autores: FRANCISCO ANTONIO BEZERRA (FUNDAÇÃO UNIVERSIDADE REGIONAL DE BLUMENAU)

Leia mais

Capítulo 3. Espécie 1 (Massa molar M 1 ) Espécie 2 (Massa molar M 2 ) Espécie 3 (Massa molar M 3 ) Espécie N (Massa molar M N )

Capítulo 3. Espécie 1 (Massa molar M 1 ) Espécie 2 (Massa molar M 2 ) Espécie 3 (Massa molar M 3 ) Espécie N (Massa molar M N ) Capítulo 3 COCETRAÇÕES, VELOCDADES E FLUXOS Antes de apresentarmos as equações fundamentas da dfusão de calor e massa, objetvo central dos Capítulos 4 e 5, é convenente ntroduzrmos concetos assocados ao

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

APLICAÇÃO DA TÉCNICA DA TRANSFORMADA INTEGRAL GENERALIZADA NA ANÁLISE DO COMPORTAMENTO DE CÉLULAS DE COMBUSTÍVEL NUCLEAR EM GEOMETRIAS RETANGULARES

APLICAÇÃO DA TÉCNICA DA TRANSFORMADA INTEGRAL GENERALIZADA NA ANÁLISE DO COMPORTAMENTO DE CÉLULAS DE COMBUSTÍVEL NUCLEAR EM GEOMETRIAS RETANGULARES APLICAÇÃO DA TÉCNICA DA TRANSFORMADA INTEGRAL GENERALIZADA NA ANÁLISE DO COMPORTAMENTO DE CÉLULAS DE COMBUSTÍVEL NUCLEAR EM GEOMETRIAS RETANGULARES Mateus Calegar Paulque Thago Antonn Alves Casso Roberto

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Plano de Aula Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Plano de Aula Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goás Curso: Engenhara Cvl Dscplna: Mecânca Vetoral Corpo Docente: Gesa res lano e Aula Letura obrgatóra Mecânca Vetoral para Engenheros, 5ª eção revsaa, ernan. Beer, E. ussell Johnston, Jr. Etora

Leia mais

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados Eercícos e Cálculo Numérco Iterpolação Polomal e Métoo os Mímos Quaraos Para a ução aa, seja,, 6 e, 9 Costrua polômos e grau, para apromar, 5, e ecotre o valor o erro veraero a cos b c l Use o Teorema

Leia mais

INTRODUÇÃO SISTEMAS. O que é sistema? O que é um sistema de controle? O aspecto importante de um sistema é a relação entre as entradas e a saída

INTRODUÇÃO SISTEMAS. O que é sistema? O que é um sistema de controle? O aspecto importante de um sistema é a relação entre as entradas e a saída INTRODUÇÃO O que é sstema? O que é um sstema de controle? SISTEMAS O aspecto mportante de um sstema é a relação entre as entradas e a saída Entrada Usna (a) Saída combustível eletrcdade Sstemas: a) uma

Leia mais

107484 Controle de Processos Aula: Balanço de massa

107484 Controle de Processos Aula: Balanço de massa 107484 Controle de Processos Aula: Balanço de massa Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2015 E. S. Tognetti (UnB) Controle de processos

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísca INTRODUÇÃO À ASTROFÍSICA LIÇÃO 7: A MECÂNICA CELESTE Lção 6 A Mecânca Celeste O que vmos até agora fo um panorama da hstóra da astronoma. Porém, esse curso não pretende ser de dvulgação

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS L. G. Olvera, J. K. S. Negreros, S. P. Nascmento, J. A. Cavalcante, N. A. Costa Unversdade Federal da Paraíba,

Leia mais

V.1. Introdução. Reações Químicas.

V.1. Introdução. Reações Químicas. V.1. Introdução. Reações Químcas. V. Balanços Materas a Processos com Reação Químca Uma equação químca acertada ornece muta normação. Por exemplo, a reação de síntese do metanol: CO (g) + 3H (g) CH 3 OH

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

(note que não precisa de resolver a equação do movimento para responder a esta questão).

(note que não precisa de resolver a equação do movimento para responder a esta questão). Mestrado Integrado em Engenhara Aeroespacal Mecânca e Ondas 1º Ano -º Semestre 1º Teste 31/03/014 18:00h Duração do teste: 1:30h Lea o enuncado com atenção. Justfque todas as respostas. Identfque e numere

Leia mais

ESPELHOS E LENTES ESPELHOS PLANOS

ESPELHOS E LENTES ESPELHOS PLANOS ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág. Físca Setor Prof.: Índce-controle de studo ula 25 (pág. 86) D TM TC ula 26 (pág. 86) D TM TC ula 27 (pág. 87) D TM TC ula 28 (pág. 87) D TM TC ula 29 (pág. 90) D TM TC ula 30 (pág. 90) D TM TC ula 31 (pág.

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

TERMODINÂMICA QUÍMICA

TERMODINÂMICA QUÍMICA TERMODIÂMICA QUÍMICA Fabano A.. Fernandes Sandro M. zzo Deovaldo Moraes Jr. a Edção 006 SUMÁRIO. ITRODUÇÃO À TERMODIÂMICA.. Introdução.. Defnção e Importânca.3. aráves Termodnâmcas.3.. Temperatura.3..

Leia mais

Aula 6: Corrente e resistência

Aula 6: Corrente e resistência Aula 6: Corrente e resstênca Físca Geral III F-328 1º Semestre 2014 F328 1S2014 1 Corrente elétrca Uma corrente elétrca é um movmento ordenado de cargas elétrcas. Um crcuto condutor solado, como na Fg.

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

Capítulo 19. A teoria cinética dos gases

Capítulo 19. A teoria cinética dos gases Capítulo 19 A teora cnétca dos gases Neste capítulo, a ntroduzr a teora cnétca dos gases que relacona o momento dos átomos e moléculas com olume, pressão e temperatura do gás. Os seguntes tópcos serão

Leia mais

Equilíbrio Químico. Prof. Alex Fabiano C. Campos

Equilíbrio Químico. Prof. Alex Fabiano C. Campos 6/09/010 Equilíbrio Químico rof. Alex Fabiano C. Campos rocessos Reversíveis e Irreversíveis Algumas reações são irreversíveis, ou seja, uma vez obtios os proutos não há previsão espontânea e regeneração

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

Por efeito da interação gravitacional, a partícula 2 exerce uma força F sobre a partícula 1 e a partícula 1 exerce uma força F sobre a partícula 2.

Por efeito da interação gravitacional, a partícula 2 exerce uma força F sobre a partícula 1 e a partícula 1 exerce uma força F sobre a partícula 2. Interação Gravitacional Vimos que a mola é esticaa quano um corpo é suspenso na sua extremiae livre. A força que estica a mola é e origem eletromagnética e tem móulo igual ao móulo o peso o corpo. O peso

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

Equilíbrio Químico. Processos Reversíveis e Irreversíveis

Equilíbrio Químico. Processos Reversíveis e Irreversíveis Equilíbrio Químico rocessos Reversíveis e Irreversíveis rocessos Reversíveis e I Algumas reações são irreversíveis, ou seja, uma vez obtios os proutos não há previsão espontânea e regeneração os reagentes.

Leia mais

3 Métodos de Alocação de Perdas e Demandas de Potência Baseados em Leis de Circuitos

3 Métodos de Alocação de Perdas e Demandas de Potência Baseados em Leis de Circuitos 3 Métoos e Alocação e Peras e Demanas e Potênca Baseaos em Les e Crcutos 3. Introução Na lteratura são propostos versos métoos e partção e responsablaes os geraores sobre o atenmento as emanas e potênca,

Leia mais

10 DIMENSIONAMENTO DE SECÇÕES RETANGULARES COM ARMADURA DUPLA

10 DIMENSIONAMENTO DE SECÇÕES RETANGULARES COM ARMADURA DUPLA 10 DIMENSIONAMENTO DE SECÇÕES RETANGULARES COM ARMADURA DUPLA 10.1 INTRODUÇÃO A armaura posicionaa na região comprimia e uma viga poe ser imensionaa a fim e se reuzir a altura e uma viga, caso seja necessário.

Leia mais

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Internet: http://rolvera.pt.to ou http://sm.page.vu Escola Secundára Dr. Ângelo Augusto da Slva Matemátca.º ano Números Complexos - Exercícos saídos em (Exames Naconas 000). Seja C o conjunto dos números

Leia mais

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS. Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só

Leia mais

Lei dos transformadores e seu princípio de funcionamento

Lei dos transformadores e seu princípio de funcionamento Le dos transformadores e seu prncípo de funconamento Os transformadores operam segundo a le de Faraday ou prmera le do eletromagnetsmo. Prmera le do eletromagnetsmo Uma corrente elétrca é nduzda em um

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

Custo de Capital. O enfoque principal refere-se ao capital de longo prazo, pois este dá suporte aos investimentos nos ativos permanentes da empresa.

Custo de Capital. O enfoque principal refere-se ao capital de longo prazo, pois este dá suporte aos investimentos nos ativos permanentes da empresa. Custo e Captal 1 Custo e Captal Seguno Gtman (2010, p. 432) o custo e Captal é a taxa e retorno que uma empresa precsa obter sobre seus nvestmentos para manter o valor a ação nalterao. Ele também poe ser

Leia mais

Parte V ANÁLISE DIMENSIONAL

Parte V ANÁLISE DIMENSIONAL 78 PARTE V ANÁISE DIMENSIONA Parte V ANÁISE DIMENSIONA [R] [p] [V] [n] [τ] l 3 θ [R] θ Resposta: [R] θ Uma as principais equações a Mecânica quântica permite calcular a energia E associaa a um fóton e

Leia mais

DETERMINAÇÃO DOS PARÂMETROS DE MÁQUINAS SÍNCRONAS PELA SIMULAÇÃO POR ELEMENTOS FINITOS DO ENSAIO DE RESPOSTA EM FREQÜÊNCIA

DETERMINAÇÃO DOS PARÂMETROS DE MÁQUINAS SÍNCRONAS PELA SIMULAÇÃO POR ELEMENTOS FINITOS DO ENSAIO DE RESPOSTA EM FREQÜÊNCIA DEERMINAÇÃO DOS PARÂMEROS DE MÁQUINAS SÍNCRONAS PEA SIMUAÇÃO POR EEMENOS FINIOS DO ENSAIO DE RESPOSA EM FREQÜÊNCIA Slvo Ikuyo Nabeta, José Roberto Caroso MAG aboratóro e Eletromagnetsmo Aplcao PEA Departamento

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

Estimativa dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro.

Estimativa dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro. Estmatva dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro. O. L. L. Moraes 1, H. R. da Rocha 2, M. A. Faus da Slva Das 2, O Cabral 3 1 Departamento

Leia mais

Mecânica. Sistemas de Partículas

Mecânica. Sistemas de Partículas Mecânca Sstemas de Partículas Mecânca» Sstemas de Partículas Introdução A dnâmca newtonana estudada até aqu fo utlzada no entendmento e nas prevsões do movmento de objetos puntformes. Objetos dealzados,

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL UNIVERIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIA INTEGRADA DO PONTAL Físca Expermental IV Lentes Cmpstas Objetv Determnar as stâncas cas e lentes e um sstema e lentes cmpstas. Intruçã utas vezes

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

Fone:

Fone: Prof. Valdr Gumarães Físca para Engenhara FEP111 (4300111) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: valdrg@f.usp.br

Leia mais

PROGRAMA FRANCISCO EDUARDO MOURÃO SABOYA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA ESCOLA DE ENGENHARIA UNIVERSIDADE FEDERAL FLUMINENSE

PROGRAMA FRANCISCO EDUARDO MOURÃO SABOYA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA ESCOLA DE ENGENHARIA UNIVERSIDADE FEDERAL FLUMINENSE PGMC PROGRAMA FRANCISCO UARO MOURÃO SABOYA PÓS-GRAUAÇÃO M NGNHARIA MCÂNICA SCOLA NGNHARIA UNIVRSIA FRAL FLUMINNS Tese de outorado UM NOVO APROXIMANT RIMANN PARA SIMULAÇÃO SCOAMNTOS COM ONAS CHOQU LIAN

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

2 Máquinas de Vetor Suporte 2.1. Introdução

2 Máquinas de Vetor Suporte 2.1. Introdução Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de

Leia mais

DESENVOLVIMENTO DE UMA POLÍTICA DE DECISÕES DE RESSUPRIMENTO PARA MATERIAIS DE DEMANDA DEPENDENTE. Tiago Ribeiro de Almeida

DESENVOLVIMENTO DE UMA POLÍTICA DE DECISÕES DE RESSUPRIMENTO PARA MATERIAIS DE DEMANDA DEPENDENTE. Tiago Ribeiro de Almeida DESENVOLVIMENTO DE UMA POLÍTICA DE DECISÕES DE RESSUPRIMENTO PARA MATERIAIS DE DEMANDA DEPENDENTE Tago Rbero e Almea MONOGRAFIA SUBMETIDA À COORDENAÇÃO DE CURSO DE ENGENHARIA DE PRODUÇÃO DA UNIVERSIDADE

Leia mais

Estabilidade de Lyapunov e Propriedades Globais para Modelo de Dinâmica Viral

Estabilidade de Lyapunov e Propriedades Globais para Modelo de Dinâmica Viral Establdade de Lyapunov e Propredades Globas para Modelo de Dnâmca Vral Nara Bobko Insttuto de Matemátca Pura e Aplcada 22460-320, Estrada Dona Castorna, Ro de Janero - RJ E-mal: narabobko@gmal.com. Resumo:

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBUAR a Fase RESOUÇÃO: Proa Mara Antôna Gouvea Questão Um quadrado mágco é uma matr quadrada de ordem maor ou gual a cujas somas dos termos de cada lnha de cada coluna da

Leia mais

ANÁLISE DA INTERAÇÃO SOLO-ESTRUTURA ATRAVÉS DO EMPREGO CONJUNTO DOS MÉTODOS DOS ELEMENTOS DE CONTORNO E ELEMENTOS FINITOS

ANÁLISE DA INTERAÇÃO SOLO-ESTRUTURA ATRAVÉS DO EMPREGO CONJUNTO DOS MÉTODOS DOS ELEMENTOS DE CONTORNO E ELEMENTOS FINITOS DANIEL JATOBÁ DE HOLANDA CAVALCANTI ANÁLISE DA INTERAÇÃO SOLO-ESTRUTURA ATRAVÉS DO EMPREGO CONJUNTO DOS MÉTODOS DOS ELEMENTOS DE CONTORNO E ELEMENTOS FINITOS ORIENTADOR: Prof. Dr. João Carlos Cordero Barbrato

Leia mais

RESOLUÇÃO ATIVIDADE ESPECIAL

RESOLUÇÃO ATIVIDADE ESPECIAL RESOLUÇÃO ATIVIDADE ESPECIAL Física Prof. Rawlinson SOLUÇÃO AE. 1 Através a figura, observa-se que a relação entre os períoos as coras A, B e C: TC TB T A = = E a relação entre as frequências: f =. f =

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

SOLENÓIDE E INDUTÂNCIA

SOLENÓIDE E INDUTÂNCIA EETROMAGNETSMO 105 1 SOENÓDE E NDUTÂNCA 1.1 - O SOENÓDE Campos magnéticos prouzios por simples conutores ou por uma única espira são bastante fracos para efeitos práticos. Assim, uma forma e se conseguir

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração. CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por

Leia mais

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20 1 4º Undade Capítulo XIII Eletrcdade 3 Questões do ENEM. 8 Capítulo XIV Campo Elétrco 11 Questões do ENEM 13 Capítulo XV Energa Potencal Elétrca 15 Questões do ENEM 20 Capítulo XVI Elementos de Um Crcuto

Leia mais

RESOLUÇÃO DE ESTRUTURAS SUBSAL ATRAVÉS DE MIGRAÇÃO RTM

RESOLUÇÃO DE ESTRUTURAS SUBSAL ATRAVÉS DE MIGRAÇÃO RTM Copyrght 004, Insttuto Braslero de Petróleo e Gás - IBP Este Trabalho Técnco Centífco fo preparado para apresentação no 3 Congresso Braslero de P&D em Petróleo e Gás, a ser realzado no período de a 5 de

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal

Leia mais

Física I p/ IO FEP111 ( )

Física I p/ IO FEP111 ( ) ísca I p/ IO EP (4300) º Semestre de 00 Insttuto de ísca Unversdade de São Paulo Proessor: Antono Domngues dos Santos E-mal: adsantos@.usp.br one: 309.6886 4 e 6 de setembro Trabalho e Energa Cnétca º

Leia mais

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações Universiae e São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento e Engenharia e Estruturas e Funações - Conceitos Funamentais e Dimensionamento e Estruturas e Concreto: Vigas, Lajes e Pilares

Leia mais

FUNDAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE CURSO DE PÓS-GRADUAÇÃO EM ENGENHARIA OCEÂNICA

FUNDAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE CURSO DE PÓS-GRADUAÇÃO EM ENGENHARIA OCEÂNICA FUNDAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE CURSO DE PÓS-GRADUAÇÃO EM ENGENHARIA OCEÂNICA UM MODELO DE ELEMENTOS FINITOS PARA A ANÁLISE ACOPLADA DE PROBLEMAS DE ADENSAMENTO COM SIMETRIA AXIAL MAICON SOARES

Leia mais

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Defnções RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Problemas de Valor Incal PVI) Métodos de passo smples Método de Euler Métodos de sére de Talor Métodos de Runge-Kutta Equações de ordem superor Métodos

Leia mais

c = c = c =4,20 kj kg 1 o C 1

c = c = c =4,20 kj kg 1 o C 1 PROPOSTA DE RESOLUÇÃO DO TESTE INTERMÉDIO - 2014 (VERSÃO 1) GRUPO I 1. H vap (H 2O) = 420 4 H vap (H 2O) = 1,69 10 3 H vap (H 2O) = 1,7 10 3 kj kg 1 Tendo em consideração a informação dada no texto o calor

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação:

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação: Capítulo 9 Colsões Recursos com copyrght ncluídos nesta apresentação: http://phet.colorado.edu Denremos colsão como uma nteração com duração lmtada entre dos corpos. Em uma colsão, a orça externa resultante

Leia mais

COMBUSTÍVEIS E COMBUSTÃO

COMBUSTÍVEIS E COMBUSTÃO COMBUSTÍVEIS E COMBUSTÃO PROF. RAMÓN SILVA Engenhara de Energa Dourados MS - 2013 CHAMAS DIFUSIVAS 2 INTRODUÇÃO Chamas de dfusão turbulentas tpo jato de gás são bastante comuns em aplcações ndustras. Há

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida.

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida. . EQUAÇÕES DIFERENCIAIS.. Coceito e Classificação Equação iferecial é uma equação que apreseta erivaas ou ifereciais e uma fução escohecia. Seja uma fução e e um iteiro positivo, etão uma relação e igualae

Leia mais

3.1. Conceitos de força e massa

3.1. Conceitos de força e massa CAPÍTULO 3 Les de Newton 3.1. Concetos de força e massa Uma força representa a acção de um corpo sobre outro,.e. a nteracção físca entre dos corpos. Como grandeza vectoral que é, só fca caracterzada pelo

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Insttuto de Físca de São Carlos Laboratóro de Eletrcdade e Magnetsmo: Transferênca de Potênca em Crcutos de Transferênca de Potênca em Crcutos de Nesse prátca, estudaremos a potênca dsspada numa resstênca

Leia mais

Energia de deformação na flexão

Energia de deformação na flexão - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Energa de deformação na

Leia mais

DIFERENÇA DE POTENCIAL. d figura 1

DIFERENÇA DE POTENCIAL. d figura 1 DIFERENÇ DE POTENCIL 1. Trabalho realizao por uma força. Consieremos uma força ue atua sobre um objeto em repouso sobre uma superfície horizontal como mostrao na figura 1. kx Esta força esloca o objeto

Leia mais

Hoje não tem vitamina, o liquidificador quebrou!

Hoje não tem vitamina, o liquidificador quebrou! A U A UL LA Hoje não tem vtamna, o lqudfcador quebrou! Essa fo a notíca dramátca dada por Crstana no café da manhã, lgeramente amenzada pela promessa de uma breve solução. - Seu pa dsse que arruma à note!

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Aula 1- Distâncias Astronômicas

Aula 1- Distâncias Astronômicas Aula - Distâncias Astronômicas Área 2, Aula Alexei Machao Müller, Maria e Fátima Oliveira Saraiva & Kepler e Souza Oliveira Filho Ilustração e uma meição e istância a Terra (à ireita) à Lua (à esquera),

Leia mais

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado 64 Capítulo 7: Introdução ao Estudo de Mercados de Energa Elétrca 7.4 Precfcação dos Servços de Transmssão em Ambente Desregulamentado A re-estruturação da ndústra de energa elétrca que ocorreu nos últmos

Leia mais

Módulo VII Mistura de Gases Ideais. Relações p-v-t. Entalpia, Energia Interna, Entropia e Calores Específicos. Sistemas com Misturas.

Módulo VII Mistura de Gases Ideais. Relações p-v-t. Entalpia, Energia Interna, Entropia e Calores Específicos. Sistemas com Misturas. Módulo VII Mistura de Gases Ideais. Relações p-v-t. Entalpia, Energia Interna, Entropia e Calores Específicos. Sistemas com Misturas. Composição de uma Mistura de Gases A especificação do estado de uma

Leia mais

4.2 Modelação da estrutura interna

4.2 Modelação da estrutura interna 4.2 Modelação da estrutura interna AST434: C4-25/83 Para calcular a estrutura interna de uma estrela como o Sol é necessário descrever como o gás que o compõe se comporta. Assim, determinar a estrutura

Leia mais

Trocas radiativas entre superfícies: recintos fechados com meio não participativo

Trocas radiativas entre superfícies: recintos fechados com meio não participativo Trocas radatvas entre superfíces: recntos fechados com meo não partcpatvo Concetos báscos Recnto fechado consste de ou mas superfíces que englobam uma regão do espaço (tpcamente preenchda com gás) e que

Leia mais