Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Algoritmo Simplex Primal.

Tamanho: px
Começar a partir da página:

Download "Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Algoritmo Simplex Primal."

Transcrição

1 Ano lctivo: 8/9 Univrsidad da ira Intrior Dpartamnto d Matmática INVESTIGAÇÃO OPERACIONAL Ficha d rcícios nº: Algoritmo Simpl Primal. Cursos: Economia. Considr o sguint conjunto d soluçõs admissívis: {, ) : + + +, } S ( a) Dtrmin, indicando graficamnt, as rgiõs d S ond as variávis d folga são nulas. b) Indiqu todas as soluçõs básicas admissívis, as rspctivas matrizs básicas associadas classifiqu-as quanto à dgnrscência.. Considr o sguint conjunto d soluçõs admissívis: {, ) : +, }. S ( Rlativamnt a st conjunto, indiqu: a) Três soluçõs básicas não admissívis. b) Todas as soluçõs básicas admissívis as rspctivas matrizs básicas. c) Uma solução básica dgnrada. d) Uma solução admissívl não básica.. Sja S um conjunto d soluçõs admissívis dfinido da sguint forma: S {, ) : +, }, ( a) Dtrmin os valors d por forma qu: i) S S (,) ii) { } iii) S {, ) :, } ( b) Dtrmin, caso sja possívl, prssõs para Zf(, ), por forma qu o problma m Programação Linar Ma Z f(, ) s.a: S, com i) tnha uma única solução óptima dgnrada. Indiqu ssa solução. ii) tnha uma infinidad d soluçõs óptimas: indiqu três prssõs difrnts d Zf(, ) qu dão origm a st tipo d soluçõs. iii) não tnha solução óptima finita. c) Considr o problma m Programação Linar: Ma Z - s.a: S, com INVESTIGAÇÃO OPERACIONAL 8/9 Ficha d rcícios

2 i) Rsolva graficamnt o problma. ii) Indiqu, caso istam: duas soluçõs básicas não admissívis; todas as soluçõs básicas admissívis rspctivas matrizs básicas, classificando-as quanto à dgnrscência; uma solução não básica admissívl; uma solução básica óptima; uma solução óptima não básica.. Considr o sguint problma m Programação Linar: Maimizar Z + Sujito a: + m + 8 +, a) Para qu valors d m rais pod m constituir uma matriz associada a uma solução básica admissívl? b) Tom m. Dtrmin a solução associada a classifiqu-a.. (Eam Época Normal ) Considr o sguint problma linar, cuja rgião admissívl s ncontra sboçada no gráfico ao lado: Maimizar Z Sujito a + + +, a) Indiqu classifiqu três soluçõs básicas admissívis associadas ao vértic A. b) Indiqu uma solução admissívl não básica.. Considr os sguints problmas: a) Min Z + + Sujito a ,, -< < INVESTIGAÇÃO OPERACIONAL 8/9 Ficha d rcícios

3 b) Ma Z min(7-8, +9 + ) Sujito a ,, Escrva os problmas m Programação Linar simultanamnt na forma padrão. 7. Considr o sguint problma d PL: Maimizar Z + Sujito a + (rcurso ) + (rcurso ) 8 (rcurso ), a) Rprsnt graficamnt o spaço das soluçõs. b) Indiqu todas as soluçõs básicas admissívis (SA) do problma rspctivos valors da função objctivo (f.o.). c) Dtrmin a solução óptima o rspctivo valor da f.o. através do Algoritmo Simpl. 8. Rsolva o sguint problma utilizando o Algoritmo Simpl: Maimizar Z Sujito a i, i,..., 9. Rsolva o sguint problma utilizando o Algoritmo Simpl: Maimizar Z + Sujito a +,. Uma mprsa dsja ralizar um show na tlvisão para publicitar os sus produtos. O show durará actamnt minutos nl actuarão um actor cómico um grupo musical. A mprsa dsja qu sjam consagrados a anúncios plo mnos minutos. A stação d tlvisão ig qu o tmpo ddicado aos anúncios não cda 8 minutos, não podndo, além disso, m caso algum sr suprior ao tmpo atribuído ao actor cómico. Est, por sua vz, não stá disposto a actuar durant mais d minutos. Ao grupo musical cabrá o tmpo rstant. O custo d actuação do actor é d /min o do grupo musical é. /min. Sondagns rcnts mostram qu: por cada minuto d ibição do actor, spctadors sintonizam ssa stação; por cada minuto d ibição do grupo musical, spra-s novos spctadors; por cada minuto d anúncios. pssoas dsligam o aparlho ou sintonizam outra stação. INVESTIGAÇÃO OPERACIONAL 8/9 Ficha d rcícios

4 A mprsa prtnd dtrminar a constituição idal do rfrido show, d modo a: a) Maimizar o númro d spctadors; b) Minimizar o custo do show. Formul matmaticamnt ambos os problmas rsolva-os usando o Algoritmo Simpl.. Uma fábrica produz dois tipos d pnus: radiais sm câmara-d-ar radiais com câmara-d-ar. Ambos os tipos passam plas sguints fass d fabrico: Moldagm, Vulcanização Acabamnto. A matriz tcnológica, as margns brutas por cntna d pnus as disponibilidads diárias m horas das scçõs da fábrica, são as sguints: Pnus (Oprários/ pnus) Disponibilidads Scçõs sm câmara com câmara (Oprários/dia) Moldagm Vulcanização 9 Acabamnto Margm bruta () 8 8 Prtnd-s dtrminar o programa d produção diária, sabndo qu não istm dificuldads d mrcado nm compromissos assumidos. Rsolva st problma através do Algoritmo Simpl. Vrifiqu a istência d óptimos altrnativos.. Considr o sguint problma d P.L. : Maimizar Z + + Sujito a ,, Sab-s qu no quadro óptimo do Simpl para st problma as variávis, são (por sta ordm) básicas é a variávl folga associada à ª rstrição ( são as variávis d folga para a ª ª, rspctivamnt). Conhc-s ainda a invrsa da bas óptima (): a) Sm aplicar o algoritmo Simpl, construa o quadro Simpl óptimo associado à matriz básica. b) Utilizando o quadro óptimo, dtrmin as quantidads não utilizadas d cada rcurso. INVESTIGAÇÃO OPERACIONAL 8/9 Ficha d rcícios

5 . Rsolva, utilizando o Método do MGrand (Pnalidads), o sguint problma: Maimizar Z + + Sujito a ,,,. Rsolva, utilizando o Algoritmo Simpl, o sguint problma d PL : Maimizar Z + Sujito a + +,. Rsolva, utilizando o Algoritmo Simpl, o sguint problma: Minimizar Z + + Sujito a i, i,...,. Rsolva, utilizando o Algoritmo Simpl, o sguint problma: Maimizar Z Sujito a i, i,..., 7. Rsolva, utilizando o Método das DuasFass, o sguint problma: Maimizar Z + Sujito a ,,, INVESTIGAÇÃO OPERACIONAL 8/9 Ficha d rcícios

6 8. Rsolva, utilizando o Método das DuasFass ou do MGrand, o sguint problma: Maimizar Z + Sujito a i, i,..., 9. Rsolva, utilizando o Método das DuasFass ou do MGrand, o sguint problma: Maimizar Z + + Sujito a i, i,...,. Rsolva, utilizando o Algoritmo Simpl, o sguint problma: Minimizar Z + + Sujito a i, i,...,. Considr o Problma Linar: Minimizar Z + Sujito a ,, a) Calcul uma solução básica admissívl. b) Obtnha a solução óptima dst problma através do Algoritmo Simpl, indicando a bas óptima.. Considr o problma sguint: Minimizar Z + + Sujito a + + b - - b,, m qu b b são constants não ngativas. O quadro Simpl óptimo dst problma é: INVESTIGAÇÃO OPERACIONAL 8/9 Ficha d rcícios

7 b a b -8 - z j -c j c 7 d a) Calcul os valors d b b qu dão origm ao quadro Simpl aprsntado. b) Calcul os valor d a a do quadro óptimo.. Considr o sguint problma d Programação Linar: Maimizar Z + Sujito a ,, Sab-s qu no quadro óptimo do Simpl para st problma as variávis, (por sta ordm) são básicas é a variávl folga associada à ª rstrição ( são as variávis d folga para a ª ª, rspctivamnt). Sabndo qu a invrsa da bas óptima () é: Construa o quadro óptimo d Simpl associado a, sm aplicar o algoritmo d Simpl. (Frquência /). Considr a sguint formulação m Programação Linar: Maimizar Z - Sujito a: + +,. a) Encontr a solução óptima dst problma através do Algoritmo Simpl b) Classifiqu a solução ncontrada m a) quanto à dgnrscência unicidad. (E. Rcurso /). Considr o sguint quadro Simpl inicial d um problma d maimização com todas as rstriçõs d : b z j -c j - - INVESTIGAÇÃO OPERACIONAL 8/9 Ficha d rcícios 7

8 a) Intrprt conomicamnt o custo rduzido d. b) Fazndo ntrar para a bas, justifiqu por qu razão a variávl qu s torna não básica s idntifica dtrminando o min{, }. (Mini-Tst nº, /, EC). Considr o sguint problma m Programação Linar: Min Z + s.a: b a + b i, i, m qu b b são constants não ngativas. Considr o sguint quadro Simpl rfrnt a uma SA do problma, ond as variávis são as variávis d folga das primira sgunda rstriçõs, rspctivamnt: b z j c j Quadro a) Fazndo ntrar para a bas, prncha o quadro consqunt: b z j c j Quadro b) Indiqu a matriz básica associada à SA do quadro : [ ] [ ] [ ] [ ] c) Classifiqu como vrdadira (V) ou falsa (F) cada uma das sguints afirmaçõs: [ ] O problma tm solução óptima única. [ ] No quadro, z c, significa qu é vantajoso fazr ntrar para a bas. [ ] A SA associada ao quadro é dgnrada. [ ] O vctor dos trmos indpndnts é b. INVESTIGAÇÃO OPERACIONAL 8/9 Ficha d rcícios 8

9 (Eam P, /, ME+MI+MA+EPGI+EI+EC) 7. Considr a sguint rgião d admissibilidad d um PL indiqu quais os pontos assinalados qu corrspondm a: a) Soluçõs admissívis; b) Soluçõs básicas admissívis; c) Soluçõs não admissívis; d) Soluçõs básicas não admissívis; ) SA dgnradas. (Eam P, /, ME+MI+MA+EPGI+EI+EC+E) 8. Uma mprsa prtnd maimizar o su lucro, prsso m milhars d, através da dtrminação da solução optima do sguint problma (já na forma padrão): Ma Z (milhars d ) s.a: i, i,, a) Dtrmin a solução óptima dst problma através do Algoritmo Simpl. b) Classifiqu a solução óptima obtida na alína antrior quanto à dgnrscência unicidad. c) Com bas na solução óptima dtrminada m a), complt as sguints afirmaçõs: i. Ao fazr ntrar para a bas, a variação do valor da f.o. srá d mil. A solução qu s obtém é (quanto à dgnrscência). ii. Ao fazr ntrar para a bas, sta variávl podrá tomar o valor, a variação do valor da f.o. srá d mil. (MT, /7, Economia Gstão) 9. Uma mprsa d construção civil prtnd maimizar o su lucro, prsso m milhars d, através da dtrminação da solução óptima do sguint problma: Ma Z + (milhars d ) s.a: + 8 (ára disponívl) (procura) i, i, a) Dtrmin a solução óptima dst problma através do Algoritmo Simpl. b) A solução óptima obtida na alína antrior é (quanto à dgnrscência) (quanto à unicidad). c) Com bas na solução óptima dtrminada m a), suponha qu s prtnd qu: ou a variávl d folga da rstrição rlativa à ára disponívl sja básica; ou a variávl d folga da rstrição rlativa à procura sja básica. Dsta forma, a variávl cuja ntrada forçada para a bas prjudica mnos o valor da f.o. srá, pois a variação do valor da f.o. srá d mil (quando ssa variávl ntra para a bas) ao invés d mil (quando a outra variávl ntra para a bas). A solução qu s obtém é (quanto à dgnrscência) é uma (SA, SNA, SNA ou SNNA). INVESTIGAÇÃO OPERACIONAL 8/9 Ficha d rcícios 9

10 (Frquência, /7, Gstão Economia). Considr o sguint Programa Linar as soluçõs propostas. Ma Z + + s.a: i, i,, A(,, ); (/, /, /); C(/, /, ); D(,, ), E(,, ); F(,, ); G(,, ); H(/,, /) a) Indiqu quais as soluçõs propostas qu corrspondm a: (i) Soluçõs básicas admissívis (ii) Soluçõs básicas não admissívis (iii) Soluçõs admissívis não básicas (iv) Soluçõs não admissívis não básicas b) Indiqu a bas associada às soluçõs básicas. c) Uma solução óptima é: (Sugstão: Como SA inicial utiliz a qu stá associada à solução (,, ), cuja invrsa da bas rspctiva é [ A A ] ond A é a coluna da variávl d folga da ª rstrição.) INVESTIGAÇÃO OPERACIONAL 8/9 Ficha d rcícios

11 INVESTIGAÇÃO OPERACIONAL 8/9 Ficha d rcícios Soluçõs d alguns rcícios da Ficha :.b) Eistm 7 SA s: ) (,,,,, ; ; não dgnrada. ) (,,,,, ; ; dgnrada. ) (,,,,, ; ; dgnrada. ) (,,,,, ; ; dgnrada. ) 8,,,,, 7 ( ; ; não dg. ) (,,,,, ; ; não dg. 7) (,,,,, ; ; não dg. Nota: Rpar qu as SA s, corrspondm ao msmo ponto ) (,,,,,. D facto, sabmos qu a cada ponto trmo (istm ) da rgião admissívl stá associada plo mnos uma SA.

12 INVESTIGAÇÃO OPERACIONAL 8/9 Ficha d rcícios.a) Eistm SNA s: ),,,, (. ),,,, (. ),,,, (..b) Eistm SA s: ) (,,,, ; ; SA não dgnrada. ) (,,,, ; ; SA dgnrada. ) (,,,, ; ; SA dgnrada. ) (,,,, ; ; SA dgnrada. ) (,,,, ; ; SA não dgnrada. Nota: Rpar qu as SA s, corrspondm ao msmo ponto ) (,,,,. D facto, sabmos qu a cada ponto trmo (istm ) da rgião admissívl stá associada plo mnos uma SA..c) Qualqur uma das soluçõs, ou da alína antrior..d) Qualqur ponto d S, à cpção dos pontos trmos..a)i) >.a)ii).a)iii) /.b)i) f(, ) - + ou f(, ) - +, por mplo..b)ii) f(, ) -, ou f(, ) ou f(, ) - -.

13 INVESTIGAÇÃO OPERACIONAL 8/9 Ficha d rcícios.b)iii) Não é possívl, pois a rgião admissívl é limitada, por isso, a solução óptima srá smpr finita..c)i) Soluçõs óptimas altrnativas: todos os pontos do sgmnto d rcta (sobr a rcta associada à rstrição + ) qu un os pontos (/,8/) a (,) são soluçõs óptimas, com Z*-..c)ii) Duas SNA s são, por mplo: ),,,, ( ; ),,,, ( ; Eistm SA s: ) (,,,, ; ; SA dgnrada. ) (,,,, ; ; SA dgnrada. ) (,,,, ; ; SA dgnrada. ) (,,,, ; ; SA não dgnrada. ),,,, 8, ( ; ; SA não dgnrada. Nota: Rpar qu as SA s, corrspondm ao msmo ponto ) (,,,,. D facto, sabmos qu a cada ponto trmo (istm ) da rgião admissívl stá associada plo mnos uma SA. Uma solução não básica admissívl: qualqur ponto d S à cpção dos pontos trmos. Uma solução básica óptima: ) (,,,, Uma solução óptima não básica: qualqur ponto da forma (, )a(,)+(-a)(/,8/), com a],[..a) m.b) ),,,, ( solução básica não admissívl. 7.b) Eistm SA s:

14 INVESTIGAÇÃO OPERACIONAL 8/9 Ficha d rcícios ) (,,,,8 ; ; Z. ) (,,,,8 ; ; Z. ) (,,,, ; ; Z. ) (8,,,, ; ; Z8. ) (8,,,, ; ; Z. 7.c) *(8,,,,) Z*8. 8. *(,,,,,,) Z*8. 9. A solução óptima é ilimitada, i.., não ist solução óptima; não ist um valor máimo finito para a função objctivo..a) *(,7,8,,,,,7,), m minutos, Z* spctadors..b) *(8,,8,,,,,,7), m minutos, Z*78.. *(,,,,) ou *(,,,,), m pacots d cntnas d pnus, pois istm soluçõs óptimas altrnativas (vrifiqu graficamnt qu stas SA s são duas das soluçõs óptimas altrnativas), Z*8..a) b z j-c j

15 .b) Sobram, unidads dos rcursos,, rspctivamnt (sndo a i-ésima rstrição rspitant ao rcurso i, com i,, ).. Problma impossívl (rgião admissívl vazia).. Solução óptima ilimitada.. Problma impossívl (rgião admissívl vazia).. Problma impossívl (rgião admissívl vazia). 7. *(,,,7,,) Z*9. 8. Problma impossívl (rgião admissívl vazia). 9. Solução óptima ilimitada.. Solução óptima ilimitada..a) (,,/,/,,).b) *(,/,/,,) Z* - /..a) b b..b) a, b-, c, d,. b - - / / / / -/ -/ / / z j-c j / / / /.a).b).a).b).c) *(,,8,); Z* Não dgnrada (justificar!...); única (justificar!...) F; F; F; V b / / / -/ / / z j c j a),C,D,G,H b) C,D,G c) A,E,F d) F ) Não istm 8.a) *(,,,) é uma solução óptima (porquê?...), com Z* mil 8.b) Dgnrada (justificar!...); não única (justificar!...) 8.c)i) Zro; dgnrada 8.c)ii) +; Zro INVESTIGAÇÃO OPERACIONAL 8/9 Ficha d rcícios

Investigação Operacional

Investigação Operacional Ano lectivo: 0/06 Universidade da Beira Interior - Departamento de Matemática Investigação Operacional Ficha de exercícios n o Algoritmo Simplex Cursos: Gestão e Economia. Considere o seguinte conjunto

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

ANÁLISE MATEMÁTICA IV A =

ANÁLISE MATEMÁTICA IV A = Instituto uprior Técnico Dpartamnto d Matmática cção d Álgbra Anális ANÁLIE MATEMÁTICA IV FICHA 5 ITEMA DE EQUAÇÕE LINEARE E EQUAÇÕE DE ORDEM UPERIOR À PRIMEIRA () Considr a matriz A 3 3 (a) Quais são

Leia mais

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES 33 MATRIZES 1. Dê o tipo d cada uma das sguints prtncm às diagonais principais matrizs: scundárias d A. 1 3 a) A 7 2 7. Qual é o lmnto a 46 da matriz i j 2 j

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

Derivadas parciais de ordem superior à primeira. Teorema de Schwarz.

Derivadas parciais de ordem superior à primeira. Teorema de Schwarz. Drivadas parciais d ordm suprior à primira. Torma d Scwarz. As drivadas das primiras drivadas são as sgundas drivadas assim sucssivamnt. Então, para uma unção d duas variávis podmos considrar, s istirm,

Leia mais

UCP Gestão/Economia Matemática II 9 de Abril de 2010

UCP Gestão/Economia Matemática II 9 de Abril de 2010 UCP Gstão/Economia Matmática II 9 d Abril d 00 ª frquência h30m GRUPO (.5). Sja f ( x, ) x com x u uv, u sn t, v log( t ). Calcul df dt. z4 x (.0). Dtrmin a drivada da função f x no ponto P (,,) na dircção

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Idntifiqu todas as folhas Folhas não idntificadas NÃO SERÃO COTADAS Faculdad d Economia Univrsidad Nova d Lisboa EXAME DE CÁLCULO I Ano Lctivo 8-9 - º Smstr Eam Final d ª Época m d Janiro 9 Duração: horas

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Ficha d rvisão nº 5 ª Part. Para um crto valor d a para um crto valor d b a prssão ( ) gráfico stá parcialmnt rprsntado na

Leia mais

Sala: Rúbrica do Docente: Registo:

Sala: Rúbrica do Docente: Registo: Instituto Suprior Técnico Dpartamnto d Matmática Scção d Àlgbra Anális o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I (MEFT, LMAC, MEBiom) o Sm. 0/ 4/Jan/0 Duração: h30mn Instruçõs Prncha os sus dados na

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta?

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta? Abuso Sual nas Escolas Não dá para acitar Por uma scola livr do SID A Rpública d Moçambiqu Matmática Ministério da Educação ª Época ª Class/0 Conslho Nacional d Eams, Crtificação Equivalências 0 Minutos

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC00 MICROECONOMIA II PRIMEIRA PROVA (0) () Para cada uma das funçõs d produção

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

estados. Os estados são influenciados por seus próprios valores passados x

estados. Os estados são influenciados por seus próprios valores passados x 3 Filtro d Kalman Criado por Rudolph E. Kalman [BROWN97] m 1960, o filtro d Kalman (FK) foi dsnvolvido inicialmnt como uma solução rcursiva para filtragm linar d dados discrtos. Para isto, utiliza quaçõs

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

indicando (nesse gráfico) os vectores E

indicando (nesse gráfico) os vectores E Propagação Antnas Eam 5 d Janiro d 6 Docnt Rsponsávl: Prof Carlos R Paiva Duração: 3 horas 5 d Janiro d 6 Ano Lctivo: 5 / 6 SEGUNDO EXAME Uma onda lctromagnética plana monocromática é caractrizada plo

Leia mais

III Integrais Múltiplos

III Integrais Múltiplos INTITUTO POLITÉCNICO DE TOMA Escola uprior d Tcnologia d Tomar Ára Intrdpartamntal d Matmática Anális Matmática II III Intgrais Múltiplos. Calcul o valor dos sguints intgrais: a) d d ; (ol. /) b) d d ;

Leia mais

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO 0 Nos rcícios a) ), ncontr a drivada da função dada, usando a dfinição a) f ( ) + b) f ( ) c) f ( ) 5 d) f ( )

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Univrsidad Fdral do Rio d Janiro Instituto d Matmática Dpartamnto d Matmática Gabarito da Prova Final d Cálculo Difrncial Intgral II - 07-I (MAC 8 - IQN+IFN+Mto, 6/06/07 Qustão : (.5 pontos Rsolva { xy.

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

CIRCUITOS EM REGIME SINUSOIDAL

CIRCUITOS EM REGIME SINUSOIDAL Tmática Circuitos léctricos Capítulo gim Sinusoidal CCUTOS G SNUSODAL NTODUÇÃO Nst capítulo, analisa-s o rgim prmannt m circuitos alimntados m corrnt altrnada. Dduzm-s as quaçõs caractrísticas dos lmntos

Leia mais

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA À ADM 5. Lista 9: Intgrais:

Leia mais

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Tarefa Intermédia 8. Grupo I

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Tarefa Intermédia 8. Grupo I Escola Scundária com 3º ciclo D. Dinis 10º Ano d Matmática A Gomtria no Plano no Espaço I Tarfa Intrmédia 8 Grupo I As três qustõs do Grupo I são d scolha múltipla. Slccion, para cada uma dlas, a ltra

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

Matemática A. Previsão 2 2.ª fase. 12.º Ano de Escolaridade. Na sua folha de respostas, indique de forma legível a versão do teste.

Matemática A. Previsão 2 2.ª fase. 12.º Ano de Escolaridade. Na sua folha de respostas, indique de forma legível a versão do teste. Prvisão Eam Nacional d Matmática A 0 Prvisão ª fas Matmática A Prvisão.ª fas Duração do tst: 50 minutos.º Ano d Escolaridad Na sua folha d rspostas, indiqu d forma lgívl a vrsão do tst. Prvisão d Eam página/0

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa qu f é dfinida no conjunto A (domínio - domain) assum valors m B (contradomínio rang). R é o conjunto dos rais; R n é o conjunto dos vtors n-dimnsionais rais; Os vtors m R n são colunas

Leia mais

Considere o problema da determinação da deformada de uma viga, encastrada nas duas extremidades, e sujeita ao carregamento esquematizado na figura:

Considere o problema da determinação da deformada de uma viga, encastrada nas duas extremidades, e sujeita ao carregamento esquematizado na figura: roblma I (6 val.) ágina I. Considr o problma da dtrminação da dformada d uma viga, ncastrada nas duas xtrmidads, sujita ao carrgamnto squmatizado na figura: q L/ L/ L/ As quaçõs difrnciais qu govrnam a

Leia mais

A função de distribuição neste caso é dada por: em que

A função de distribuição neste caso é dada por: em que 1 2 A função d distribuição nst caso é dada por: m qu 3 A função d distribuição d probabilidad nss caso é dada por X 0 1 2 3 P(X) 0,343 0,441 0,189 1,027 4 Ercícios: 2. Considr ninhada d 4 filhots d colhos.

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MATRIZES Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MATRIZES NOÇÃO DE MATRIZ REPRESENTAÇÃO DE UMA MATRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDAMENTAL MATRIZES ESPECIAIS IGUALDADE

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Not bm: a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira TÓPICOS Subspaço. ALA Chama-s a atnção para a importância do trabalho pssoal a ralizar plo

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

Solução da equação de Poisson 1D com coordenada generalizada

Solução da equação de Poisson 1D com coordenada generalizada Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno

Leia mais

Microeconomia II. Prof. Elaine Toldo Pazello. Capítulo 24

Microeconomia II. Prof. Elaine Toldo Pazello. Capítulo 24 Microconomia II Rsolução 4 a Lista d Exrcícios Prof. Elain Toldo Pazllo Capítulo 24 1. Exrcícios 2, 3, 4, 7, 8, 9, 11 12 do Capítulo 24 do Varian. s no final do livro. 2. Uma mprsa monopolista opra com

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia REC2010 MICROECONOMIA II SEGUNDA PROVA (2011) ROBERTO GUENA (1) Considr uma indústria m concorrência prfita formada por mprsas idênticas. Para produzir, cada mprsa dv arcar com um custo quas fixo F = 1.

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO º ANO COMPILAÇÃO TEMA NÚMEROS COMPLEXOS Sit: http://wwwmathsuccsspt Facbook: https://wwwfacbookcom/mathsuccss TEMA NÚMEROS COMPLEXOS Matmática A º Ano Fichas d Trabalho Compilação Tma

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,

Leia mais

Externalidades 1 Introdução

Externalidades 1 Introdução Extrnalidads 1 Introdução Há várias maniras altrnativas d s d nir xtrnalidads. Considrmos algumas dlas. D nição 1: Dizmos qu xist xtrnalidad ou fito xtrno quando as açõs d um agnt aftam dirtamnt as possibilidads

Leia mais

Aula Expressão do produto misto em coordenadas

Aula Expressão do produto misto em coordenadas Aula 15 Nsta aula vamos xprssar o produto misto m trmos d coordnadas, analisar as propridads dcorrnts dssa xprssão fazr algumas aplicaçõs intrssants dos produtos vtorial misto. 1. Exprssão do produto misto

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

Matemática C Extensivo V. 7

Matemática C Extensivo V. 7 Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 195 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada em A LISTA DE EXERCÍCIOS

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 195 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada em A LISTA DE EXERCÍCIOS INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 9 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada m 00. A LISTA DE EXERCÍCIOS Drivadas d Funçõs Compostas 0. Para cada uma das funçõs sguints,

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo Introdução S CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS é uma unção d duas variávis ntão dizmos qu 1 a b é no máimo igual a a Gomtricamnt o gráico d tm um máimo quando:

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4 FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsnt o s raciocínio d orma clara, indicando todos os cálclos q tivr d tar todas as jstiicaçõs ncssárias. Qando, para m rsltado, não é pdida

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM º CICLO D DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tma II Introdução ao Cálculo Difrncial II Aula nº 4 do plano d trabalho nº 9 Rsolvr os rcícios 87, 88, 89, 90 9 os rcícios 9

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº Estatística I - Licnciatura m MAEG º Ano PADEF Junho 5 Part tórica Prova 753519 Nom: Nº 1. Prguntas d rsposta fchada ( valors) Para cada afirmação, assinal s sta é Vrdadira (V) ou Falsa (F). Uma rsposta

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo

Leia mais

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO www.-l.nt Tmática Circuitos Eléctricos Capítulo Sistmas Trifásicos GAÇÃO DE CARGAS NTRODÇÃO Nsta scção, studam-s dois tipos d ligação d cargas trifásicas (ligação m strla ligação m triângulo ou dlta) dduzindo

Leia mais

Análise de Fourier tempo contínuo

Análise de Fourier tempo contínuo nális d Fourir tmpo contínuo 4.5.5.5.5.5.5 -.5 - -.5 - -.5.5.5 -.5 - -.5 - -.5.5.5 SS MIEIC 8/9 nális d Fourir m tmpo contínuo aula d hoj Rsposta d SLITs contínuo a xponnciais Séri d Fourir d sinais priódicos

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

CONCURSO PÚBLICO CONCURSO PÚBLICO GRUPO MAGISTÉRIO GRUPO MAGISTÉRIO MATEMÁTICA 14/MAIO/2006 MATEMÁTICA. Nome CPF. Assinatura _. _.

CONCURSO PÚBLICO CONCURSO PÚBLICO GRUPO MAGISTÉRIO GRUPO MAGISTÉRIO MATEMÁTICA 14/MAIO/2006 MATEMÁTICA. Nome CPF. Assinatura _. _. CONCURSO PÚBLICO MATEMÁTICA GRUPO MAGISTÉRIO Rsrvado ao CEFET-RN 4/MAIO/6 Us apnas canta sfrográfica azul ou prta. Escrva o su nom o númro do su CPF no spaço indicado nsta folha. Confira, com máima atnção,

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B - 008. Prof a Graça Luzia A LISTA DE EXERCÍCIOS ) Usando a dfinição, vrifiqu s as funçõs a sguir são drivávis m 0 m

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I. Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

Análise Matemática IV Problemas para as Aulas Práticas

Análise Matemática IV Problemas para as Aulas Práticas Anális Matmática IV Problmas para as Aulas Práticas 7 d Abril d 003 Smana 1. Us as quaçõs d cauchy-rimann para dtrminar o conjunto dos pontos do plano complo ond as sguints funçõs admitm drivada calcul

Leia mais

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara nstituto d Física USP Física V - Aula 3 Profssora: Mazé Bchara Aula 3 - Estados ligados m movimntos unidimnsionais 1. O poço d potncial finito: colocando as condiçõs d continuidad nas funçõs d onda suas

Leia mais

PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: 13 / 06 / matricial AX M em que: ) Sejam A =

PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: 13 / 06 / matricial AX M em que: ) Sejam A = ALUNO (A) : PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: / 06 / 06 ÁLGEBRA LINEAR: MATRIZES, DETERMINANTES E SISTEMAS. MATRIZES 0-0) Dada a matriz, B, calcul a + -7 0 a a + a. 0) Escrva a matriz

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL. 11º Ano. MATEMÁTICA Exercícios de Exames e Testes Intermédios. Ano Letivo de 2012/2013

ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL. 11º Ano. MATEMÁTICA Exercícios de Exames e Testes Intermédios. Ano Letivo de 2012/2013 ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL MATEMÁTICA Exrcícios d Exams Tsts Intrmédios 11º Ano Ano Ltivo d 2012/2013 Trigonomtria 1 Na figura stá rprsntado o quadrado é a amplitud m radianos do ângulo Mostr

Leia mais

Questões para o concurso de professores Colégio Pedro II

Questões para o concurso de professores Colégio Pedro II Qustõs para o concurso d profssors Colégio Pdro II Profs Marilis, Andrzinho Fábio Prova Discursiva 1ª QUESTÃO Jhosy viaja com sua sposa, Paty, sua filha filho para a Rgião dos Lagos para curtir um friadão

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Dualidade. Interpretação Económica.

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Dualidade. Interpretação Económica. Ano lectivo: 2008/2009; Universidade da Beira Interior Departamento de Matemática INVESTIGAÇÃO OPERACIONAL Ficha de exercícios nº3: Dualidade. Interpretação Económica. Cursos: Economia 1. Formule o problema

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas Cálculo Numérico Intgração Numérica Pro: Rinaldo Haas Intgração Numérica Em dtrminadas situaçõs, intgrais são diícis, ou msmo impossívis d s rsolvr analiticamnt. Emplo: o valor d é conhcido apnas m alguns

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Gomtria Analítica - Aula 0 60 K. Frnsl - J. Dlgado Aula 1 1. Rotação dos ixos coordnados Sja OXY um sistma d ixos ortogonais no plano sja O X Y o sistma d ixos obtido girando os ixos OX OY d um ângulo

Leia mais

Capítulo V. Derivação. 5.1 Noção de derivada. Seja f uma função real de variável real. Definição: Seja. e f definida numa vizinhança do ponto x = a.

Capítulo V. Derivação. 5.1 Noção de derivada. Seja f uma função real de variável real. Definição: Seja. e f definida numa vizinhança do ponto x = a. Capítulo V Drivação 5. Noção d drivada Sja uma unção ral d variávl ral. Dinição: Sja a D dinida numa vizinhança do ponto a. Diz-s qu é drivávl ou dirnciávl m ( ) ( a) a a a s ist é inito o it Est it (quando

Leia mais

Exercícios de equilíbrio geral

Exercícios de equilíbrio geral Exrcícios d quilíbrio gral Robrto Guna d Olivira 7 d abril d 05 Qustõs Qustão Dtrmin a curva d contrato d uma conomia d troca com dois bns, bm bm, dois indivíduos, A B, sabndo qu a dotação inicial total

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais UFRGS Instituto d Matmática DMPA - Dpto. d Matmática Pura Aplicada MAT 0 353 Cálculo Gomtria Analítica I A Gabarito da a PROVA fila A 5 d novmbro d 005 Qustão (,5 pontos Vrifiqu s a função f dada abaixo

Leia mais