Rascunho. De N a R. Capítulo O conjunto N Operações em N

Tamanho: px
Começar a partir da página:

Download "Rascunho. De N a R. Capítulo O conjunto N Operações em N"

Transcrição

1 Capítulo 1 De N a R Para entender melhor o conjunto dos números reais, iremos passar por todos conjuntos numéricos relevantes. Nestes momentos iniciais deste curso, consideramos que todos alunos tem alguma familiaridade com o conjunto dos números naturais, inteiros, racionais, irracionais e reais, com as representações geométricas destes conjuntos na reta e com representações decimais desses números. O foco, neste momento, é no uso, nas propriedades de cada conjunto e nas inovações quando passamos de um para outro conjunto maior. 1.1 O conjunto N O conjunto dos números naturais, denotado por N é aquele composto pelos números usados para contar. Na verdade, o mais correto seria dizer que é o conjunto dos números usados para enumerar, de determinar quantidades de objetos. Geralmente, diz-se que este conjunto é dado por N = {0, 1,,...}. É natural perguntar o motivo de ter escrito "geralmente". E a resposta é bem simples: em alguns momentos, a existência do elemento zero é importante, em alguns outros momentos, não. Por exemplo, o 0 será tomado como elemento neutro da adição; em outro momento desta mesma disciplina, ao estudarmos sequências, é mais simples dizer que o primeiro elemento é o a 1, o segundo é a e assim por diante, ou seja, é mais conveniente que N comece a partir do 1. Sempre que necessário, será reforçado quando uma ou outra definição será tomada. Uma propriedade fundamental que o conjunto dos números naturais tem está relacionada ao problema de contagem: sempre haverá um conjunto composto de números naturais com um elemento a mais, ou seja, quando uma pessoa escolhe um número natural x, existe um número que é maior 1 que esse (por exemplo, x + 1). Como consequência disto, o conjunto N é infinito. Resta agora definir como que funcionam as operações entre números naturais, no sentido de como que essas operações são feitas, mas principalmente no que elas significam e alguns detalhes nas propriedades que geralmente passam despercebidos Operações em N Apesar de intuitiva, devemos formalizar um pouco o que é uma operação. Considere, para começar, um conjunto não vazio C. 1 Em breve, faremos mais comentários sobre o que significa ser "maior que". 1

2 Definição 1. Uma operação binária * em C é uma função do produto cartesiano C C em C tal que : C C C (x, y) x y Traduzindo o que isso significa: dados dois elementos x e y de C, a eles corresponderá um número x y, resultado da operação entre esses dois elementos. Do nosso cotidiano, lembramos das duas operações que são tomadas como as mais importantes. São elas a adição e a multiplicação: + : N N N (x, y) x + y : N N N (x, y) x y Uma primeira observação importante é observar que, ao descrever essas operações desse jeito, as respostas devem ser obrigatoriamente elementos do mesmo conjunto. Isto é, formalmente, uma propriedade muito importante da adição e multiplicação de números naturais: a soma e a multiplicação de números naturais é sempre um número natural. Chamamos essa propriedade de fechamento de N com relação à adição e multiplicação ou que N é fechado com relação à adição e multiplicação. Exercício 1.1. Algum dos conjuntos numéricos que iremos estudar não possui essa propriedade de fechamento (nem com respeito à adição nem à multiplicação). Qual é ele? Dê um contraexemplo para mostrar que a sua hipótese é verdadeira. Proposição 1. Para todos a, b, c naturais, tem-se b = c = a + b = a + c. Prova: A adição, como foi definida, é uma função que aplica o conjunto N N no conjunto N. Portanto, um elemento de N N não pode ter duas imagens distintas em N. Como b = c, os pares ordenados (a, b) e (a, c) são idênticos, qualquer que seja a N. Portanto, esses pares ordenados (a, b) e (a, c) tem mesma imagem, pela função adição, em N. A imagem de (a, b) é a + b e a imagem de (a, c) é a + c. Então a + b = a + c. Exercício 1.. Mostre, usando uma argumentação semelhante ao da proposição anterior, que, para todos naturais a, b, c, tem-se b = c = ac = bc. Outras propriedades da adição de números naturais são: (A1 - Associatividade) x + (y + z) = (x + y) + z x, y, z N. (A - Comutatividade) x + y = y + x x, y, z N. (A3 - Existência de elemento neutro) x + 0 = 0 + x = x x N. Também existem propriedades da multiplicação: (M1 - Associatividade) x (y z) = (x y) z x, y, z N. (M - Comutatividade) x y = y x x, y N. (M3 - Existência de elemento neutro) x 1 = 1 x = x x N. Para fins de simplificação da notação, escreveremos xy ao invés de x y. Exercício 1.3. Considere dois conjuntos A e B com m e n elementos, respectivamente. Considere também o produto cartesiano A B = {(a, b) a A, b B}. Construa uma matriz para ilustrar que A B possui m n elementos. Mais ainda: use a matriz construída para explicar a veracidade da propriedade comutativa da multiplicação.

3 Uma informação importante é que, obrigatoriamente, os elementos neutros da adição e multiplicação devem ser diferentes. Mas já sabemos disso intuitivamente. E se eles fossem iguais, o que aconteceria? Exemplo 1. O elemento neutro da adição é único. Prova: Suponha que existam dois elementos neutros 0 e 0. Como 0 é elemento neutro, então = 0. Por outro lado, como 0 também é elemento neutro, então = 0. Da comutatividade da adição, temos que 0 = = = 0, ou seja, 0 = 0. Portanto, se existe um elemento neutro da adição, ele deve ser igual ao zero. Exercício 1.4. Com argumento semelhante ao do exemplo anterior, mostre que o elemento neutro da multiplicação é único. Além dessas propriedades já citadas, existe uma outra que relaciona as duas operações: (D1 - Distributividade ) x (y + z) = x y + x z x, y, z N. Exercício 1.5. Usando as propriedades listadas acima (e, em cada passo da demonstração, apenas elas), mostre que a distributividade é válida à direita, ou seja, que (x + y) z = x z + y z, para quaisquer números naturais x, y e z Ordem em N Agora formalizaremos um pouco sobre o que significa um número ser maior que outro. Intuitivamente, basta olhar para a semirreta dos números naturais e notar que um número natural m é menor que o natural n se aquele está à esquerda deste no eixo orientado para a direita. De modo um pouco mais formal, tem-se: Definição. Dados dois números naturais m e n, tem-se que m é menor que n se existe um número natural p, p 0, tal que n = m + p. Neste caso, escreve-se m < n. Analogamente, podemos fazer: Definição 3. Dados dois números naturais m e n, tem-se que m é menor que ou igual a n se existe um número natural p tal que n = m + p. Neste caso, escreve-se m n. Por exemplo, o número é menor que o 5 pois existe um número natural (que é o 3) tal que 5 = + 3. Outro exemplo, um pouco mais curioso, é o que mostra que 4 4, já que o número natural 0 satisfaz 4 = Este último exemplo ilustra uma das propriedades da ordem: (Reflexividade) m m m N (Antissimetria) Se n m e m n, então tem-se que m = n, para todos valores de m e n naturais. Mais correto seria escrever "distributividade da multiplicação em relação à adição". 3

4 (Transitividade) m n, n p = m p, m, n, p N. (Tricotomia) Dados m, n N, ocorre uma e somente uma das possíbilidades: m < n, n < m ou m = n. (Compatibilidade com adição e multiplicação) mp np, m, n, p N. m n = m + p n + p e Exercício 1.6. Mostre utilizando a definição da ordem, que as quatro primeiras propriedades são, de fato, válidas. A quinta propriedade será feita como exercício ao chegarmos no conjunto dos números reais Axiomas de Peano Tudo o que fizemos até aqui teve um pouco mais de formalidade matemática do que estamos acostumados, mas ainda assim é necessário revisitar o tema mais uma vez, inspirando-se no modo que a Teoria dos Conjuntos (que pouco se parece com as nossas ideias intuitivas do que significa "Teoria dos Conjuntos") lida com o tema. O nome axioma significa "verdade evidente por si mesma", segundo o dicionário Aurélio. Na matemática, são consideradas como verdades iniciais e bases para a teoria a ser desenvolvida. Outras verdades, mas que podem ser demonstradas a partir dos axiomas, são chamadas de teoremas, proposições ou corolários, dependendo do uso. Deve-se ao matemático italiano Giuseppe Peano ( ) a elaboração dos axiomas que caracterizam completamente o conjunto N dos números naturais: Definição 4 (Axiomática de Peano). Existe um par (N, s) consistindo de um conjunto N (cujos elementos são chamados números naturais) e uma aplicação s : N N (chamada "função sucessor") nas condições abaixo: (P1) A função s : N N é injetiva, ou seja, para quaisquer valores naturais m, n, tem-se s(m) = s(n) = m = n. (P) Existe em N um elemento denotado 0 tal que, para todo elemento n N, 0 s(n), ou seja, existe um número, o zero, que não é sucessor de nenhum número e é considerado o elemento inicial da ação de s. (P3) Se M é um subconjunto de N tal que 0 M e tal que s(n) M sempre que n M, então M = N, ou seja, 0 M e s(m) (M) = M = N. Por trás desta construção, está a ideia recursiva de construir o conjunto dos naturais a partir do zero e sempre tomando o sucessor, consequentemente construindo uma ordem dentro de N. A axiomática de Peano permite que a construção das operações de adição e multiplicação possam ser formalmente definidas a partir da ideia de sucessor. Para isto, fixemos um natural m e considere outro n N: { { m + 1 = s(m) 1 m = m m + s(n) = s(m + n) m s(n) = m + m n Indutivamente, é possível chegar às propriedades da adição e da multiplicação da forma como apresentamos antes. Além disso, o axioma (P3) é fundamental para construir um método de demonstração para afirmações envolvendo os números naturais conhecido como Princípio de Indução Finita. 4

5 Teorema 1 (Princípio de Indução Finita). Suponhamos que, para cada número natural n, P(n) é uma afirmação a respeito de n. Se P(0) é verdadeira e se P(s(n)) é verdadeira quando P(n) é verdadeira, então P(n) é verdadeira para qualquer número natural n. Prova: Suponha, por contradição, que P(n) é falsa para algum número natural. Considere k 1 como sendo o menor número natural tal que P(k 1 ) é falsa. Por hipótese, k 1 0, ou seja, k 1 é o sucessor de outro número natural, que chamaremos de k 0. Da escolha do elemento k 1, segue que P(k 0 ) é verdadeira. Novamente observando a hipótese, tem-se que P(s(k 0 )) é verdadeira, ou seja, P(k 1 ) é verdadeira. Mas observe que começamos dizendo que P(k 1 ) é falsa! Como pode ser verdadeira e falsa ao mesmo tempo? Isto é uma contradição causada pela suposição de que exista tal k 1, ou seja, a afirmação P(n) deve ser verdadeira para todo n N. É importante ressaltar que não necessariamente a demonstração deve começar no número natural zero, basta existir um "marco zero"inicial e que todos sucessores a partir desse número tenham suas afirmações associadas como verdadeiras. Exemplo. Mostre que n 3 + n é divisível por 3 para todo natural n. Primeiramente, verificamos que é verdadeira para n = 0. De fato, = 0 é divisível por 3. Agora, supomos que a afirmação é verdadeira para certo valor k e devemos mostrar que é consequência disso o fato de que a afirmação também é válida para k + 1. Ou seja, usando a hipótese de que n 3 + n é múltiplo de 3 deve-se chegar à conclusão de que (n + 1) 3 + (n + 1) é múltiplo de 3 também. Note que (n + 1) 3 + (n + 1) = n 3 + 3n + 3n n + = (n 3 + n) + 3(n + n + 1). Agora usamos as hipóteses necessárias para concluir o desejado: (n 3 + n) é múltiplo de 3 por hipótese de indução, enquanto 3(n + n + 1) é claramente múltiplo de três. Como a soma de múltiplos de três é também múltiplo de três, então tem-se que (n + 1) 3 + (n + 1) é divisível por 3. Pelo Princípio de Indução Finita, segue que n 3 +n é divisível por 3 para todo natural n. ATENÇÃO! Neste exercício, decompusemos uma expressão para P(n + 1) para usar, em algum momento, a hipótese de que P(n) era verdadeira. Isto está correto. Outra possibilidade teria sido manipular a expressão de P(n), que supomos verdadeira, até chegar em P(n + 1). Cuidado para não fazer errado: não está correto supor que P(n + 1) é correta, afinal queremos mostrar que ela é verdade! Além disso, não está correto verificar que vale para os primeiros elementos e se dar por satisfeito com isso. Também não é correto verificar apenas que P(n) verdade implica P(n + 1) verdade, é necessário ver que vale para o ponto inicial! Por exemplo, há uma história clássica que deve despertar a atenção de todos: na busca por uma fórmula única que determinasse apenas números primos, cogitou-se a função f(n) = n n E tudo parece perfeito: f(0) = = 41 f(1) = = 41 f() = = 43 f(3) = = 47 f(4) = = 53. E a sequência continua apenas com números primos. Mas... isso só dá certo até n = 40. No caso seguinte, temos um número que não só é composto, mas é um quadrado perfeito! 5

6 f(41) = = 41. Se tivéssemos tentado usar indução para mostrar que f(n) daria apenas números primos como resposta, teríamos falhado (já que não é uma verdade). Por outro lado, sem investigar utilizando indução, ficaríamos achando que seria correto algo completamente errado! Então tome cuidado e, na dúvida, siga o passo a passo das demonstrações utilizando o princípio de indução finita. Exercício 1.7. Mostre que n 5 + 4n é divisível por 5. Exercício 1.8. Mostre que n 7 + 6n é divisível por 7. Exercício 1.9. Mostre que n p + (p 1)n é divisível por p, se p é um número primo. Exercício Verifique que nem sempre n 4 + 3n é divisível por 4. Exercício Mostre que a é par se e somente se a é par. Exercício 1.1. Mostre que a é múltiplo de 3 se e somente se a é múltiplo de 3. Exercício Analogamente ao exercício anterior, mostre que a 3 é par (respectivamente, múltiplo de 3) se a é par (respectivamente, múltiplo de 3). Exercício Prove por indução 3 que, para quaisquer x R, n N tem-se 1 x n+1 = (1 x)(1 + x + x n n ). Exercício Dados m, n N, com m > n, prove que ou m é múltiplo de n ou existem q, r N tais que n = mq + r. Além disso, mostre que q e r são os únicos com essa propriedade 4. 1 Exercício Prove, por indução, que n(n + 1) = n n Exercício Prove, por indução, que (n 1)(n + 1) = n n + 1. Exercício Prove, por indução, que n n(n + 1)(n + 1) =. 6 Exercício Prove, por indução, que ( ) n(n + 1) n 3 = ( n) =. Existe um modo bastante semelhante ao Princípio de Indução tradicional que pode ser usado em demonstrações. A grande diferença entre os dois métodos é quanto à ligação entre o n envolvido na demonstração e os termos anteriores: na Indução tradicional, deve-se mostrar que P(n + 1) é verdadeira a partir de P(n); no "novo método", deve-se demonstrar que P(n + 1) é verdadeira a partir de todos os números anteriores. Teorema (Princípio de Indução Finita - o tipo). Suponhamos que, para cada número natural n, P(n) é uma afirmação a respeito de n. Se P(0) é verdadeira e se P(n+1) é verdadeira quando P(0), P(1),..., P(n) é verdadeira, então P(n) é verdadeira para qualquer número natural n. 3 Não esqueça que o princípio de indução é válido apenas sobre números naturais. 4 Este é o algoritmo de divisão em N. Como dica, suponha que existam outros números com essa propriedade e conclua, posteriormente, que são iguais ao q e r iniciais. 6

7 Exercício 1.0. A demonstração é muito parecida com a versão anterior. Reveja a demonstração anterior e busque pelas diferenças na argumentação. Em seguida, apresente um argumento que valha para a conclusão da demonstração do Princípio de Indução Finita de o tipo. Apesar de semelhante, o uso destá forma da Indução ocorre com maior frequência nas demonstrações em que não sabemos a qual dos passos anteriores precisaremos recorrer. Expliquemos melhor através de um exemplo: Exemplo 3. Mostre que todo número natural n pode ser escrito como produto de números primos. Prova: Primeiramente mostramos o caso inicial: é um número primo; assim, exibimos uma fatoração cujos termos são números primos. Suponhamos que seja válido para todo número até n, ou seja, que, 3,..., n 1, n, admitem decomposição como produto de números primos. Devemos mostrar que n + 1 também admite tal decomposição. E agora? Nos lembramos que um número (exceto 0 e 1, que são casos excepcionais que podemos comentar em outros momentos) ou é primo ou é composto, ou seja, admite decomposição a b, sendo a, b 1. Para n + 1 há apenas duas possibilidades: n + 1 é primo. Então, assim como o caso inicial, temos uma decomposição em primos que só tem o elemento n + 1. n + 1 é composto. Então n + 1 = a b, sendo a, b < n + 1. Pela hipótese do Princípio de Indução, a e b admitem fatoração como produtos de números primos. Aglutinando esses fatores para recompor o valor de n + 1, temos que n + 1 admite também uma fatoração em primos. Não importa o caso, n + 1 admite fatoração em termos primos. Pelo Princípio de Indução Finita de o tipo, conclui-se que todo número natural maior que ou igual a pode ser decomposto como produto de fatores primos. Mais exemplos e exercícios deste tema devem ser feitos na disciplina de Elementos de Lógica Matemática. O que vimos até aqui é suficiente para continuarmos nossos estudos. 1. O conjunto Z Intuitivamente, o conjunto Z dos números inteiros é composto pelos números naturais e pelos "negativos". Como justificamos de uma forma simples qual a origem dos números inteiros a partir dos naturais? A resposta é simples e o rigor excessivo para a demonstração é visto em Elementos de Lógica Matemática ao se estudar o tema relações de equivalência. Imagine o seguinte: Construa todos os pares ordenados compostos por números naturais. Em seguida, separe todos os pares ordenados em vários conjuntos de modo que (a, b) e (c, d) pertencem ao mesmo conjunto caso valha a + d = b + c". A figura a seguir representa esta ideia. Note que os pares ordenados cuja reta formada por eles corta o eixo X no ponto 1, por exemplo, são (1, 0), (, 1), (3, ), (4, 3),..., enquanto os cuja reta corta X no ponto 4 são (4, 0), (5, 1), (6, ),... Formalmente falando, cada número inteiro será uma classe de equivalência segundo a relação de equivalência dada. Intuitivamente, cada número inteiro é um conjunto de pares ordenados de números naturais como a figura representa. 7

8 De um modo muito mais simples, escrevemos Z = {..., 3,, 1, 0, 1,, 3,...} e usamos suas propriedades normalmente (mais intuitivo que isso, impossível). Em especial, devemos notar que N Z e existe uma correspondência biunívoca entre os conhecidos como inteiros não-negativos e os números naturais Operações em Z e suas propriedades Já que a ideia da operação continua a mesma, comecemos invertendo a ordem, ou seja, vamos descrever as operações de adição e multiplicação a partir das novidades dentro do conjunto dos inteiros. Neste novo conjunto, a adição, além das propriedades listadas anteriormente, ela ganha uma nova propriedade da adição: (A4 - Existência de simétrico) Existe y Z tal que x + y = 0 x Z. Em geral, o simétrico de x é denotado por x. Em especial, a soma de x com o simétrico de y é x + ( y) e é geralmente escrita como x y. Comumente falando, é assim que nasce a operação de subtração. Considere m e n inteiros não negativos (ou seja, números naturais), sendo m n. Lembrese que, quando m n, existe p N tal que m + p = n. Ora, p é um complemento a m para alcançar n. Assim, quando for necessário somar um inteiro positivo a um negativo, será necessário recorrer a este número. Como consequência disso, temos: ( m) + ( n) = (m + n) e m + ( n) = p e ( m) + n = p Proposição (Lei do corte para a adição). a + b = a + c = b = c, a, b, c Z. Prova: Suponha a + b = a + c. Da nova propriedade dos inteiros, existe o simétrico de a. Podemos somar ( a) aos dois lados da igualdade sem alterar o resultado, como vimos na Proposição 1. Logo, temos ( a) + (a + b) = ( a) + (a + c). 8

9 Usando a associatividade da adição, temos ( a + a) + b = ( a + a) + c. Usando a definição de simétrico de um inteiro, temos que 0 + b = 0 + c. Por fim, usando que 0 é o elemento neutro da adição, temos b = c, concluindo a demonstração. Exercício 1.1. Quais são as condições dentro do conjunto dos números naturais para que a subtração exista lá? Proposição 3. O simétrico de um número inteiro é único. Prova: Considere a Z. Suponha que a e a são dois simétricos a a. Então, consequentemente, a+a = 0 e a+a = 0, ou seja, a+a = a+a. Da lei do corte da adição, estabelecida no Exemplo, tem-se que a = a. Logo, só há um simétrico a a. Exercício 1.. Mostre, usando a definição de simétrico, que 0 = 0. Proposição 4. Tem-se que 0 a = 0 para todo a Z. Prova: Como 0 é elemento neutro da adição, fazemos = 0. Utilizando o Exercício 1., multiplicamos ambos lados por a. Assim, temos que (0 + 0) a = 0 a. Utilizando a distributividade, segue que 0a + 0a = 0a. Adicionando o simétrico de 0a, tem-se 0a + 0a 0a = 0a 0a = 0a = 0. Devido à existência do simétrico, é necessário aprendermos a operar com esses novos números. Para isso, tomemos os mesmos m e n como antes, temos que mn é o produto desses dois números. Exercício 1.3. Usando as propriedades da adição e da multiplicação de inteiros (A1-A4, M1- M3), mostre que são válidas para todos inteiros m, n as propriedades: a) ( m) n = m ( n) = (mn) b) ( m) ( n) = mn c) ( m) = m Proposição 5. É verdade que (a b) = b a para todos a, b inteiros. Prova: É suficiente mostrar que a b é simétrico aos dois elementos dados. Por um lado, temos que (a b) (a b) = 0 pela definição de simétrico de um número; por outro lado, usando a associatividade da adição e a existência de elemento neutro dessa operação, (a b)+(b a) = (a + ( b + b)) a = (a + 0) a = a a = 0. Como o elemento neutro da adição é único, então segue que (a b) = b a. Há também uma nova propriedade com respeito à multiplicação bastante importante para a resolução de equações polinomiais: (DZ - Não possui divisores de zero) ab = 0 = a = 0 ou b = 0. Com isso, o conjunto Z satisfaz nove propriedades: associatividade, comutatividade, existência de elemento neutro da adição e da multiplicação, existência de simétrico, distributividade da multiplicação em relação à adição e, agora, não possui divisores de zero. Quando um conjunto satisfaz estas nove propriedades, dizemos que este conjunto é um domínio de integridade ou, simplesmente, é um domínio. Exercício 1.4. Mostre que x = y implica que x = y ou x = y dentro do conjunto dos inteiros. [Sugestão: decomponha a diferença x y no produto de dois fatores.] Exercício 1.5. Determine as soluções inteiras da equação polinomial (x 1)(x + 3)(3x ) = 0. Justifique sua resposta, indicando em cada etapa da resolução quais os axiomas e resultados já provados que foram utilizados. 9

10 1.. Ordem em Z e suas propriedades Em relação ao conjunto dos naturais, pouca coisa muda. Dados inteiros m e n, é dito que m n se existe um natural p tal que m + p = n. Note que, nesta definição, p deve ser um número natural e não um inteiro! Para esta relação de ordem ainda valem a reflexividade, a antissimetria, a transitividade e a tricotomia. A compatibilidade com a adição também funciona, mas a compatibilidade com a multiplicação ganha uma nova versão. Proposição 6 (Compatibilidade com a multiplicação em Z). Considere m e n inteiros, com m n. Então tem-se mt nt, se t 0 e mt nt, se t 0. Prova: Primeiramente, lembre-se que o produto de um número positivo por um negativo é um número positivo (observe o Exercício 1.3a), enquanto o produto de dois positivos é ainda positivo. Como existe p natural tal que m+p = n, então podemos multiplicar por t e obter mt+pt = nt. Agora analisamos os dois casos necessários. Caso t 0, então pt é positivo. Assim, mt precisa de um número natural (que é pt) para alcançar nt, ou seja, mt nt. Caso t 0, então pt é negativo. Para consertar isso, adicionamos o seu simétrico ( pt), que é um número positivo, dos dois lados e, ao simplificar, obtemos mt = nt + ( pt). Portanto, o complemento ( pt) é que faz nt alcançar mt, ou seja, nt mt. Um exemplo simples e prático: Sabemos que 1 <. Ao multiplicar por 1 os dois lados da desigualdade e a invertendo, temos que 1 >, o que pode ser verificado na figura com a reta dos inteiros na página O conjunto Q Com todas as ferramentas bem fixadas sobre os números inteiros, podemos prosseguir aos números racionais. O conjunto Q é composto pelas frações criadas a partir de números inteiros, desde que o denominador não seja zero. Assim como fizemos com os inteiros, formalizaremos este novo conjunto a partir dos inteiros. E a justificativa é a mesma, utilizando relações de equivalência. Para isto, construímos todos os pares ordenados compostos por números inteiros (mas cuja segunda entrada não seja zero). Após isto, separamos os pares ordenados em conjuntos de modo que dois pares (a, b) e (c, d) pertencem a um mesmo conjunto caso ad = bc. A figura a seguir dá uma ideia de como se apresentam esses conjuntos. Assim como no caso dos números inteiros, existe um padrão que ocorre nos pares que estão num mesmo conjunto. Por exemplo, estão num mesmo conjunto os pares ( 3, 3), (, ), ( 1, 1), (1, 1), (, ),..., enquanto estão num mesmo conjunto os pares ( 4, ), (, 1), (, 1), (4, ),... Assim como fizemos antes, consideramos da forma mais prática possível. O conjunto dos números racionais é da forma { a } Q = a Z, b Z \ {0}. b 10

11 1.3.1 Operações e ordem em Q e suas propriedades Pela primeira vez, é importante ressaltar como que funciona a igualdade dentro de um conjunto numérico. Para isto, basta lembrar como que foi definido aquele par de números inteiros que dá origem aos racionais, restando apenas escrever este par na forma de fração: a b = c d ad = bc. Dizemos que um número racional está escrito num formato irredutível se não existe nenhum natural primo que divida o numerador e o denominador simultaneamente, ou seja, se o MDC entre o numerador e o denominador for 1 (ou ainda, se o numerador e o denominador forem coprimos). Como as frações a b e a b são iguais, podemos sempre escrever uma fração com denominador positivo. Além disso, note que a 1 equivale a escrever o número inteiro a, ou seja, todo elemento inteiro pode ser escrito como um racional. Daí, segue que Z Q. A adição de números racionais ocorre de uma forma um pouco estranha, já que para somálos precisamos que os denominadores sejam iguais; para somar estas frações, resta somar os numeradores e manter o denominador igual. a b + c d = ad bd + bc ad + bc = bd bd Já a multiplicação é mais simples, basta multiplicar os numeradores e multiplicar os denominadores. a b c d = ac bd O conjunto dos racionais herda a estrutura de domínio dos inteiros. Portanto, todas aquelas propriedades já citadas ainda são válidas. Existe uma nova, importantíssima, que caracteriza Q: (M4 - Existência de inverso) Para todo x racional, existe x 1 tal que x x 1 = 1. 11

12 Proposição 7. Se a, b 0, o inverso de a b é b a. Prova: a b b a = ab ab. Como ab 1 = 1 ab, então ab ab = 1 1 = 1. Quando um domínio de integridade possui a propriedade M4 dizemos que este conjunto é um corpo. Assim, Q é um corpo. Proposição 8. Se um conjunto K satisfaz as propriedades A1-A4, M1-M4 e D1, então ele é um corpo. Prova: Note que só falta mostrar que este conjunto não possui divisores de zero. Para isto, suponha que existam a, b K tais que ab = 0. Caso a seja zero, o nosso objetivo está concluído. Então podemos supor que a 0. Como K satisfaz M4, existe a 1 K tal que a a 1 = 1. Assim, ao multiplicar pelo inverso de a dos dois lados e usando a associatividade da multiplicação, temos: a 1 a b = a 1 0. Do lado esquerdo usamos a definição do inverso e do lado direito, a conclusão do Exemplo 4 e obtemos que b = 0. Portanto, concluímos que quando a não é zero, b deve obrigatoriamente ser zero para que se tenha que ab = 0. Proposição 9. O inverso de um número a, a 0, é único. Prova: Suponha que existam dois inversos, a 1 e a. Usando as propriedades da multiplicação, obtemos que a 1 = a 1 1 = a 1 (a a ) = (a 1 a) a = 1 a = a. Portanto, a 1 = a e o inverso de a é único. Exercício 1.6. Mostre que para todo x 0 tem-se x 1 = 1 x e (x 1 ) 1 = x. Exercício 1.7. Prove que 1 1 = 1 e ( 1) 1 = 1. Exercício 1.8. Considere no corpo dos racionais a equação (x 1)(x + ) = (x 4). Encontre todas as soluções reais. Explique porque, de fato, pode afirmar que encontrou todas as soluções. Exercício 1.9. Suponha que a, b, c, d Q \ {0}. Mostre que: a) a b = c d d b = c a a c = b d b) a b = c = a + c d b + d = a b c) Se existe c 0 tal que a b = a + c, então x = y. b + c Proposição 10. O elemento neutro da adição, o zero, não tem inverso multiplicativo. Prova: Suponha que 0 admita inverso 0 1. Por outro lado, como ele é elemento neutro da adição, tem-se a + 0 = a para todo a. Multiplicamos os dois lados da igualdade por 0 1 e obtemos a = a 0 1. Somando o inverso aditivo de a 0 1, concluímos que 1 = 0, o que é um absurdo! Logo, 0 não admite inverso multiplicativo. Proposição 11 (Lei do corte da multiplicação). ab = ac e a 0 = b = c. Prova: Como a 0, então ele tem inverso multiplicativo a 1. Multiplicando ambos lados da igualdade por este número, temos a 1 (ab) = a 1 (ac) = (a 1 a)b = (a 1 a)c. Consequentemente, b = c. 1

13 A ordem dentro do conjunto dos racionais não ganha propriedades novas, seguindo o padrão do conjunto dos inteiros. Lembre-se que a compatibilidade com a multiplicação ocorre caso multipliquemos ambas frações por um número positivo; caso seja um número negativo, a desigualdade muda de orientação, deixa se ser e passa a ser e vice-versa. Exercício Para que racionais x temos 1 x + 1 x? x Exercício Para que racionais x temos 0? (x + 1) 3 Exercício 1.3. Para que x Q temos x9 1 x 6 0? 1 a b c d 1.3. Espaçamento entre os racionais ad bc 0 bd Até agora, sempre existia um espaçamento constante entre os números, sejam eles naturais ou inteiros, já que a distância de um número a outro é sempre um número natural. Já no conjunto dos racionais, não existe uma distância fixa entre um número e outro. Na verdade, entre quaisquer racionais existe sempre uma infinidade de racionais! Proposição 1. Dado um racional, existe sempre um natural maior que ele. Prova: Se a b < 0, o zero já é um número maior que ele. Caso a b > 0, divida a por b. Do Algoritmo da divisão, existem q e r, com 0 r < b tais que a = bq + r. Com isso, a fração fica a b = bq+r b = q + r b < q + 1. Assim, q + 1 é um natural maior que a b. Proposição 13. Entre dois números racionais quaisquer existem infinitos racionais. Prova: Considere a e b racionais, sendo a < b. É suficiente mostrar que entre esses dois números há um terceiro racional. Mais especificamente, mostrar que a+b é um racional entre esses dois números. a < b = a + a < a + b = a < a + b = a < a + b Por outro lado, a < b = a + b < b + b = a + b < b = a + b < b. Logo, concluimos que a < a+b < b. Exercício Complete os exemplo anterior, mostrando que: a) a+b é um número racional. b) é suficiente a construção deste número para mostrar que existe uma infinidade de racionais entre a e b. Exercício Mostre que a distância entre a e a+b é a mesma entre a+b e s. Exercício Se m e n são positivos e a e b são racionais tais que r < s, então mostre que r < ar+bs a+b < s. 13

14 1.3.3 Expansão decimal dos racionais Ao escrevermos os números racionais na forma decimal 5, é possível notar uma propriedade bastante interessante, que logo será demonstrada. 1 = 0, = 0, = 0, = 0, 1 6 = 0, 16 1 = 0, = 0, = 0, = 0, = 0, = 0, = 0, = 0, = 0, = 0, = 0, = 0, = 0, = 0, 05 0 Teorema 3. A expansão decimal de um racional é finita ou periódica. A expansão decimal de a b, com a, b N \ {0} e a e b coprimos6 é finita se e somente se os fatores primos de b são e/ou 5. Caso ocorram outros fatores primos, então o período 7 possui no máximo b 1 termos. Prova: Primeiramente vamos mostrar que se os fatores primos são e/ou 5, então a expansão decimal é finita. Para isso, suponha que b = x 5 y, sendo x e y números naturais. Considere t = max{x, y} e multiplique o numerador e o denominador de a b por t x 5 t y. Com isso, obtemos: a b = a x 5 y = a t x 5 t y x t x 5 y 5 t y = a t x 5 t y t 5 t = a t x 5 t y 10 t Note que, como t = max{x, y}, ou o expoente de ou o do 5 (apenas um desses expoentes) será nulo. Devido a isso, não é possível simplificar a fração e a expansão decimal possui t casas decimais. Por outro lado, se uma fração possui outro termo no denominador além de ou 5, então não será possível transformar em uma fração irredutível com denominador que seja uma potência de 10. Assim, não ocorrerá expansão decimal finita. Resta ainda justificar que a expansão decimal é periódica. Para concluir isso, lembre-se que para determinar a expansão decimal, precisamos fazer uma divisão. Ora, como a divisão não termina (já que a expansão decimal não é finita), então os restos da divisão não podem ser todos diferentes, já que o resto é tal que 0 < r < b (não pode ser zero pois a expansão não é finita, lembre-se disso!). Eles podem, no máximo, ser diferentes até gastarmos o último, o (b 1)-ésimo. A partir do próximo começam a repetir os restos e, consequentemente, os resultados anotados no quociente. Para esta última parte do exemplo anterior, observe o que acontece com a expansão decimal de 5 3 e 1 7 : O símbolo α representa a repetição sucessiva de um ciclo α. 6 Isto quer dizer que MDC(a, b) = 1. 7 A parte que se repete na expansão decimal. 14

15 Na primeira divisão, o resto é sempre, o que sempre dá origem a 6 no quociente. Já na segunda fração, note que os restos são, na ordem, 1, 3,, 6, 4, e 5 (todas os números possíveis). Depois disso, o próximo resto obrigatoriamente é algum que já apareceu, ou seja, a parte periódica aparece. Neste caso, os restos continuam nessa sequência, dando origem ao período Agora veremos como determinar a fração a partir da expansão decimal periódica. Esta fração é conhecida geralmente como fração geratriz. O princípio é sempre o mesmo: deixar, logo depois da vírgula, a parte periódica e, em seguida, multiplicar por outra potência de 10 para obter novamente isto. Exemplo 4. Detemine uma fração irredutível que represente 0, x = 0, x = 13, Subtraindo a primeira da segunda equação, temos 99x = 13, ou seja, que x = 13 Exemplo 5. Determine uma fração irredutível que represente, x =, x = 5, x = 513, Subraindo a segunda da terceira equação, obtemos 990x = 488, ou seja, x = = ATENÇÃO! No conjunto dos racionais já não existe uma correspondência biunívoca entre eles e as expansões decimais, como acontecia nos inteiros e nos naturais. Naqueles conjuntos, 1 é a única forma de escrever o número um. Em Q pode existir mais de uma forma de representar um número. Por exemplo, 0, = 1: x = 0, x = 9, Então 9x = 9 e, consequentemente, x =

16 Exercício Analogamente, determine uma outra expansão decimal para 0, 5 e mostre que, de fato, esta expansão decimal corresponde a 1/. Exercício Determine uma outra expansão decimal para 0, 5 e mostre que, de fato, esta expansão decimal corresponde a 1/ O conjunto I A definição mais simples para os números irracionais é a que os considera como as expansões decimais que não são finitas nem periódicas. Cabe, sempre que necessário, mostrar que não é possível escrever cada um desses números como um racional. Por exemplo, o número, que é a medida do comprimento da diagonal de um quadrado cujo lado mede 1, não é racional. Exemplo 6. não é um número racional. Prova: Suponha, por contradição, que é um número racional, ou seja, que pode ser escrito como a/b, sendo a e b coprimos 8 para que a fração seja irredutível. Em particular, a e b não podem ser simultaneamente pares. a = b = = a b = a = b Assim, obtemos que a é par. Do exercício 1.11, temos que a é par. Assim, podemos escrever a = a 1 e substituir na linha acima. (a 1 ) = b = 4a 1 = b = b = a 1 Observe que, com a mesma justificativa, b é par. Mas supomos inicialmente que a e b não eram simultaneamente pares, o que é uma contradição. Tal contradição nasceu porque supomos que era possível escrever uma fração irredutível correspondente a. Assim, este número não é racional. Como admite uma expansão decimal (1, ), é um número irracional. Exemplo 7. 3 não é um número racional. Prova: O raciocínio é análogo ao anterior: suponha, por contradição, que 3 é um número racional da forma a/b, com sendo a e b coprimos para que a fração seja irredutível. Em particular, a e b não podem ser simultaneamente pares. 8 Ou primos entre si. 3 = a b = = a3 b 3 = a 3 = b 3 16

17 Assim, a 3 é par e, pelo exercício 1.1, a é par. Escrevemos a = a 1 e substituímos na linha acima. (a 1 ) 3 = b 3 = 8a 3 1 = b3 = b 3 = 4a 3 1 Com a mesma justificativa, b é par. Já que supomos que a e b não eram simultaneamente pares, não há como escrever 3 como fração irredutível e, com isso, este número não é racional. 17

Os números naturais. Capítulo Operações em N

Os números naturais. Capítulo Operações em N Capítulo 1 Os números naturais O conjunto dos números naturais, denotado por N, é aquele composto pelos números usados para contar. Na verdade, o mais correto seria dizer que é o conjunto dos números usados

Leia mais

Os números inteiros. Capítulo 2

Os números inteiros. Capítulo 2 6 Capítulo 2 Os números inteiros Intuitivamente, o conjunto Z dos números inteiros é composto pelos números naturais e pelos "negativos". Como justificamos de uma forma simples qual a origem dos números

Leia mais

Os números reais. Capítulo O conjunto I

Os números reais. Capítulo O conjunto I Capítulo 4 Os números reais De todos os conjuntos numéricos que estudamos agora, a transição de um para outro sempre era construída de forma elementar A passagem do conjunto dos números racionais aos reais

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago Capítulo 1 Os Números Última atualização em setembro de 2017 por Sadao Massago 1.1 Notação Números naturais: Neste texto, N = {0, 1, 2, 3,...} e N + = {1, 2, 3, }. Mas existem vários autores considerando

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS.

A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS. A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS. SANDRO MARCOS GUZZO RESUMO. A construção dos conjuntos numéricos é um assunto clássico na matemática, bem como o estudo das propriedades das operações

Leia mais

Números Inteiros Axiomas e Resultados Simples

Números Inteiros Axiomas e Resultados Simples Números Inteiros Axiomas e Resultados Simples Apresentamos aqui diversas propriedades gerais dos números inteiros que não precisarão ser provadas quando você, aluno, for demonstrar teoremas nesta disciplina.

Leia mais

Enumerabilidade. Capítulo 6

Enumerabilidade. Capítulo 6 Capítulo 6 Enumerabilidade No capítulo anterior, vimos uma propriedade que distingue o corpo ordenado dos números racionais do corpo ordenado dos números reais: R é completo, enquanto Q não é. Neste novo

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais (inteiros positivos)

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais (inteiros positivos) Capítulo 1 Os Números 1.1 Notação Números naturais: N = {1, 2, 3,...}, mas existem vários autores considerando N = {0, 1, 2, 3,...}. Por isso, é recomendado dizer números positivos, números não negativos,

Leia mais

MATEMÁTICA I. Ana Paula Figueiredo

MATEMÁTICA I. Ana Paula Figueiredo I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Os números irracionais Ao longo

Leia mais

Axiomas de corpo ordenado

Axiomas de corpo ordenado Axiomas de corpo ordenado 2 a lista de exercícios Análise real A abordagem axiomática dos números reais previne erros que a intuição pode ocasionar e torna mais rigoroso o processo de demonstração matemática,

Leia mais

Representação decimal dos números racionais

Representação decimal dos números racionais Representação decimal dos números racionais Alexandre Kirilov Elen Messias Linck 4 de abril de 2017 1 Introdução Um número é racional se puder ser escrito na forma a/b, com a e b inteiros e b 0; esta é

Leia mais

1. CONJUNTOS NUMÉRICOS

1. CONJUNTOS NUMÉRICOS . CONJUNTOS NUMÉRICOS.. INTRODUÇÃO Uma exposição sistemática dos conjuntos numéricos, utilizados na Matemática, pode ser feita a partir dos números usados para contar, chamados de números naturais. Estes

Leia mais

Números naturais e cardinalidade

Números naturais e cardinalidade Números naturais e cardinalidade Roberto Imbuzeiro M. F. de Oliveira 5 de Janeiro de 2008 Resumo 1 Axiomas de Peano e o princípio da indução Intuitivamente, o conjunto N dos números naturais corresponde

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais

Matemática Básica. Capítulo Conjuntos

Matemática Básica. Capítulo Conjuntos Capítulo 1 Matemática Básica Neste capítulo, faremos uma breve revisão de alguns tópicos de Matemática Básica necessários nas disciplinas de cálculo diferencial e integral. Os tópicos revisados neste capítulo

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MÓDULO 3 Números Racionais e Operações com Frações 1.INTRODUÇÃO Quando dividimos um objeto em partes iguais, uma dessas partes ou a reunião de várias delas

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Capítulo 2. Conjuntos Infinitos

Capítulo 2. Conjuntos Infinitos Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,

Leia mais

ENFOQUE USANDO CORTES DE DEDEKIND

ENFOQUE USANDO CORTES DE DEDEKIND Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit CONSTRUÇÃO DOS REAIS: UM ENFOQUE

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Operações Envolvendo Vetores. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Operações Envolvendo Vetores. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Operações Envolvendo Vetores Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Adição de vetores Na aula anterior

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

Operações Fundamentais com Números

Operações Fundamentais com Números Capítulo 1 Operações Fundamentais com Números 1.1 QUATRO OPERAÇÕES Assim como na aritmética, quatro operações são fundamentais em álgebra: adição, subtração, multiplicação e divisão. Quando dois números

Leia mais

MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I Profa. Dra. Amanda L. P. M. Perticarrari amanda@fcav.unesp.br www.fcav.unesp.br/amanda HORÁRIO DA DISCIPLINA Quinta-Feira: 9h (Turma 1) sala 38 Quinta-Feira: 14h (Turma 2) sala 38 DISPENSA

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria

Leia mais

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados A lista abaixo é formada por um subconjunto dos exercícios dos seguintes livros: Djairo G. de Figueiredo, Análise na reta Júlio

Leia mais

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais : Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence

Leia mais

MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro

MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro MAT 1511 - Laboratório de Matemática I - Diurno - 2005 Profa. Martha Salerno Monteiro Representações decimais de números reais Um número real pode ser representado de várias maneiras, sendo a representação

Leia mais

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez). SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/26 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

ALGORITMO DE EUCLIDES

ALGORITMO DE EUCLIDES Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Texto de apoio às aulas. Amélia Bastos, António Bravo Dezembro 2010 Capítulo 1 Números reais As propriedades do conjunto dos números reais têm por base um conjunto restrito

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 Para efetuar cálculos, a forma mais eciente de representar os números reais é por meio de expressões decimais. Vamos falar um pouco

Leia mais

19 AULA. Princípio da Boa Ordem LIVRO. META Introduzir o princípio da boa ordem nos números naturais e algumas de suas conseqüências.

19 AULA. Princípio da Boa Ordem LIVRO. META Introduzir o princípio da boa ordem nos números naturais e algumas de suas conseqüências. LIVRO Princípio da Boa Ordem META Introduzir o princípio da boa ordem nos números naturais e algumas de suas conseqüências. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: Aplicar o princípio

Leia mais

Identidades algébricas

Identidades algébricas LIÇÃO 5 Identidades algébricas Dos três tipos básicos de transformações algébricas: decomposições, reduções e fatorações, os dois primeiros já foram estudados na lição anterior. Antes de passarmos ao terceiro

Leia mais

Prof. a : Patrícia Caldana

Prof. a : Patrícia Caldana CONJUNTOS NUMÉRICOS Podemos caracterizar um conjunto como sendo uma reunião de elementos que possuem características semelhantes. Caso esses elementos sejam números, temos então a representação dos conjuntos

Leia mais

A origem de i ao quadrado igual a -1

A origem de i ao quadrado igual a -1 A origem de i ao quadrado igual a -1 No estudo dos números complexos deparamo-nos com a seguinte igualdade: i 2 = 1. A justificativa para essa igualdade está geralmente associada à resolução de equações

Leia mais

Números Inteiros Algoritmo da Divisão e suas Aplicações

Números Inteiros Algoritmo da Divisão e suas Aplicações Números Inteiros Algoritmo da Divisão e suas Aplicações Diferentemente dos números reais (R), o conjunto dos inteiros (Z) não é fechado para a divisão. Esse não-fechamento faz com que a divisão entre inteiros

Leia mais

Números Racionais. Matemática - UEL Compilada em 25 de Março de 2010.

Números Racionais. Matemática - UEL Compilada em 25 de Março de 2010. Matemática Essencial Números Racionais Conteúdo Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Relacionando

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS NUMÉRICOS

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS... 2 RETA NUMERADA... 2 CONJUNTO DOS NÚMEROS INTEIROS... 4 SUBCONJUNTOS DE Z... 5 NÚMEROS OPOSTOS... 5 VALOR ABSOLUTO DE UM NÚMERO INTEIRO... 6 CONJUNTO DOS NÚMEROS RACIONAIS...

Leia mais

Construção da Matemática e formalização do número natural

Construção da Matemática e formalização do número natural Construção da Matemática e formalização do número natural 1. O número Os números são um dos dois objetos principais de que se ocupa a Matemática. O outro é o espaço, junto com as figuras geométricas nele

Leia mais

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas.

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Teoria dos Conjuntos Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Porém, não é nosso objetivo ver uma teoria axiomática dos conjuntos.

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Aula 4 Aula 5 Aula 6. Ana Carolina Boero. Página:

Aula 4 Aula 5 Aula 6. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Números naturais Como somos apresentados aos números? Num primeiro momento, aprendemos

Leia mais

Parte 1. Conjuntos finitos, enumeráveis e

Parte 1. Conjuntos finitos, enumeráveis e Parte 1 Conjuntos finitos, enumeráveis e não-enumeráveis Georg Ferdinand Ludwig Philipp Cantor (1845-1818) Rússia. A descoberta de que há diversos tipos de infinito deve-se a Georg Cantor. Mas, para os

Leia mais

Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas.

Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas. 1 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2012-9-21 1/15 Como o Conhecimento Matemático é Construído 2 Definições Axiomas Demonstrações Teoremas Demonstração: prova de que um

Leia mais

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE ANA PAULA CHAVES AND THIAGO PORTO 1. Introdução Os temas centrais deste texto - bases numéricas e critérios de divisibilidade

Leia mais

Matemática Discreta - 07

Matemática Discreta - 07 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Lista 2 - Bases Matemáticas

Lista 2 - Bases Matemáticas Lista 2 - Bases Matemáticas (Última versão: 14/6/2017-21:00) Elementos de Lógica e Linguagem Matemática Parte I 1 Atribua valores verdades as seguintes proposições: a) 5 é primo e 4 é ímpar. b) 5 é primo

Leia mais

IGUALDADES EM IR IDENTIDADES NOTÁVEIS

IGUALDADES EM IR IDENTIDADES NOTÁVEIS IGUALDADES EM IR Uma relação muito importante definida em IR (conjunto dos números reais) é a relação de igualdade. Na igualdade A = B, A é o primeiro membro e B é o segundo membro. As igualdades entre

Leia mais

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017 Análise I Notas de Aula 1 Alex Farah Pereira 2 3 23 de Agosto de 2017 1 Turma de Matemática. 2 Departamento de Análise-IME-UFF 3 http://alexfarah.weebly.com ii Conteúdo 1 Conjuntos 1 1.1 Números Naturais........................

Leia mais

REVISÃO DE ÁLGEBRA. Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais.

REVISÃO DE ÁLGEBRA. Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais. REVISÃO DE ÁLGEBRA 1ª. AULA CONJUNTOS BÁSICOS: Conjuntos dos números naturais: * + Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais.

Leia mais

LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER. Rio de Janeiro

LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER. Rio de Janeiro LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER Rio de Janeiro 2011 ÍNDICE Capítulo 1: HORA DE ESTUDAR Para que serve este livro...1 Porque Colégio Militar e Colégio Naval?...2 Matérias e alunos...2 Os exercícios

Leia mais

Construção dos Números Reais

Construção dos Números Reais 1 Universidade de Brasília Departamento de Matemática Construção dos Números Reais Célio W. Manzi Alvarenga Sumário 1 Seqüências de números racionais 1 2 Pares de Cauchy 2 3 Um problema 4 4 Comparação

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,

Leia mais

Notas de aulas. álgebra abstrata

Notas de aulas. álgebra abstrata 1 Notas de aulas de álgebra abstrata UEMA LICENCIATURA EM MATEMATICA Elaborada por : Raimundo Merval Morais Gonçalves Licenciado em Matemática/UFMA Professor Assistente/UEMA Especialista em Ensino de Ciências/UEMA

Leia mais

1 0 para todo x, multiplicando-se os dois membros por. 2x 1 0 x 1 2. b a x. ba 2. e b 2 c

1 0 para todo x, multiplicando-se os dois membros por. 2x 1 0 x 1 2. b a x. ba 2. e b 2 c CAPÍTULO 1 Exercícios 1..n) Como x 0 para todo x, o sinal de x(x ) é o mesmo que o de x; logo, x(x ) 0 para x 0; x(x ) 0 para x 0; x(x ) 0 para x 0.. n) Como x 1 1 0 para todo x, multiplicando-se os dois

Leia mais

Definimos a soma de seqüências fazendo as operações coordenada-a-coordenada:

Definimos a soma de seqüências fazendo as operações coordenada-a-coordenada: Aula 8 polinômios (Anterior: chinês. ) 8.1 séries formais Fixemos um anel A. Denotaremos por A N o conjunto de todas as funções de N = {, 1, 2,... } a valores em A. Em termos mais concretos, cada elemento

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012 NÚMEROS INTEIROS PROF. FRANCISCO MEDEIROS Álgebra Abstrata - Verão 2012 Faremos, nessas notas, uma breve discussão sobre o conjunto dos números inteiros. O texto é basicamente a seção 3 do capítulo 1 de

Leia mais

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica:

2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica: . Números Inteiros Sempre que estamos no inverno as temperaturas caem. Algumas cidades do Sul do Brasil chegam até mesmo a nevar. Quando isso acontece, a temperatura está menor do que zero. Em Urupema,

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem Relações de Equivalência e de Ordem complemento para a disciplina de Matemática Discreta versão 1 Jerônimo C. Pellegrini 5 de agosto de 2013 ii Sumário Sumário Nomenclatura 1 Conjuntos e Relações 1 1.1

Leia mais

a = bq + r e 0 r < b.

a = bq + r e 0 r < b. 1 Aritmética dos Inteiros 1.1 Lema da Divisão e o Algoritmo de Euclides Recorde-se que a, o módulo ou valor absoluto de a, designa a se a N a = a se a / N Dados a, b, c Z denotamos por a b : a divide b

Leia mais

Números Irracionais e Reais. Oitavo Ano

Números Irracionais e Reais. Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Números Irracionais e Reais 1 Exercícios Introdutórios Exercício 1. No quadro abaixo, determine quais números são irracionais.

Leia mais

Teoria dos anéis 1 a parte 3

Teoria dos anéis 1 a parte 3 A U L A Teoria dos anéis 1 a parte 3 Meta da aula Descrever a estrutura algébrica de anel como uma generalização de determinadas propriedades dos números inteiros. objetivos Ao final desta aula, você deverá

Leia mais

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

1).- Significado de congruência e de congruência numérica

1).- Significado de congruência e de congruência numérica 5. CONGRUÊNCIAS NUMÉRICAS 1). Significado de congruência e de congruência numérica 2). Exemplos exploratórios e a notação mod q 3). Definição geral de congruência numérica 4). Regras: somando e multiplicando

Leia mais

O limite de uma função

O limite de uma função Universidade de Brasília Departamento de Matemática Cálculo 1 O ite de uma função Se s(t) denota a posição de um carro no instante t > 0, então a velocidade instantânea v(t) pode ser obtida calculando-se

Leia mais

UNIVERSIDADE SEVERINO SOMBRA NIVELAMENTO EM MATEMÁTICA 1 PROF. ILYDIO SÁ UNIDADE 1: OS NÚMEROS REAIS

UNIVERSIDADE SEVERINO SOMBRA NIVELAMENTO EM MATEMÁTICA 1 PROF. ILYDIO SÁ UNIDADE 1: OS NÚMEROS REAIS 1 UNIVERSIDADE SEVERINO SOMBRA NIVELAMENTO EM MATEMÁTICA 1 PROF. ILYDIO SÁ UNIDADE 1: OS NÚMEROS REAIS Para esta primeira unidade de nosso curso, que adaptamos a partir de material utilizado em curso de

Leia mais

Planificação anual- 8.º ano 2014/2015

Planificação anual- 8.º ano 2014/2015 Agrupamento de Escolas de Moura Escola Básica nº 1 de Moura (EB23) Planificação anual- 8.º ano 2014/2015 12 blocos Tópico: Números Números e operações/ Álgebra Dízimas finitas e infinitas periódicas Caracterização

Leia mais

Álgebra Linear Semana 04

Álgebra Linear Semana 04 Álgebra Linear Semana 04 Diego Marcon 17 de Abril de 2017 Conteúdo 1 Produto de matrizes 1 11 Exemplos 2 12 Uma interpretação para resolução de sistemas lineares 3 2 Matriz transposta 4 3 Matriz inversa

Leia mais

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17)

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática 1

Leia mais

Curso de Matemática Aplicada.

Curso de Matemática Aplicada. Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Capítulo 0: Conjuntos, funções, relações

Capítulo 0: Conjuntos, funções, relações Capítulo 0: Conjuntos, funções, relações Notação. Usaremos Nat para representar o conjunto dos números naturais; Int para representar o conjunto dos números inteiros. Para cada n Nat, [n] representa o

Leia mais

MA14 - Aritmética Unidade 1 Resumo. Divisibilidade

MA14 - Aritmética Unidade 1 Resumo. Divisibilidade MA14 - Aritmética Unidade 1 Resumo Divisibilidade Abramo Hefez PROFMAT - SBM Julho 2013 Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do

Leia mais

Polos Olímpicos de Treinamento. Aula 7. Curso de Teoria dos Números - Nível 2. Aula de Revisão e Aprofundamento. Prof.

Polos Olímpicos de Treinamento. Aula 7. Curso de Teoria dos Números - Nível 2. Aula de Revisão e Aprofundamento. Prof. Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 7 Aula de Revisão e Aprofundamento Observação 1. É recomendável que o professor instigue seus alunos a pensarem

Leia mais

Apresentar o conceito de anel, suas primeiras definições, diversos exemplos e resultados. Aplicar as propriedades dos anéis na relação de problemas.

Apresentar o conceito de anel, suas primeiras definições, diversos exemplos e resultados. Aplicar as propriedades dos anéis na relação de problemas. Aula 10 O CONCEITO DE ANEL META Apresentar o conceito de anel, suas primeiras definições, diversos exemplos e resultados. OBJETIVOS Definir, exemplificar e classificar anéis. Aplicar as propriedades dos

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 8.º Ano Ana Soares (ana.soares@mogofores.salesianos.pt ) Catarina Coimbra (catarina.coimbra@mogofores.salesianos.pt ) Rota de aprendizage m por Projetos

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Samuel Barbosa Feitosa Aula 1 Divisibilidade I Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos a e b, existe um

Leia mais

1 Conjunto dos números naturais N

1 Conjunto dos números naturais N Conjuntos numéricos Os primeiros números concebidos pela humanidade surgiram da necessidade de contar objetos. Porém, outras necessidades, práticas ou teóricas, provocaram a criação de outros tipos de

Leia mais