I. A probabilidade de, sorteando-se 1 bola desta caixa, encontrarmos 1 bola par ou vermelha é
|
|
- João Pedro Pinho César
- 2 Há anos
- Visualizações:
Transcrição
1 1 a AVALIAÇÃO DE MATEMÁTICA E SUAS TECNOLOGIAS COLÉGIO ANCHIETA-BA - UNIDADE III-013 ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 01. Foram colocadas numa caia bolas brancas, numeradas de 1 a ; bolas vermelhas, numeradas de 1 a e bolas azuis, numeradas de 1 a. Considere as seguintes afirmativas: I. A probabilidade de, sorteando-se 1 bola desta caia, encontrarmos 1 bola par ou vermelha é II. A probabilidade de, sorteando-se 3 bolas desta caia, encontrarmos 1 bola de cada cor é. 35 III. A probabilidade de, sorteando-se bolas brancas desta caia, encontrarmos números cuja soma seja ímpar é 1. Podemos afirmar que: 01) Somente a afirmativa I é verdadeira 0) Somente a afirmativa II é verdadeira 03) Somente a afirmativa III é verdadeira 04) Somente a afirmativa I é falsa 05) Todas as afirmativas são falsas Quantidade de bolas vermelhas ou de numeração par contidas na caia: = 17. Total de bolas na caia: 7. I) FALSA. 17 Probabilidade de, sorteando-se 1 bola desta caia, encontrarmos 1 bola par ou vermelha:. 7 II) VERDADEIRA. A probabilidade de, sorteando-se 3 bolas desta caia, encontrarmos 1 bola de cada cor é: ! III) FALSA. Para que a soma de dois números seja um número ímpar, é necessário que um seja par e o outro ímpar. Tem-se (5 4) = 40 pares ordenados de bolas brancas na condição estabelecida. Com todas as bolas brancas podem ser formados tem-se 8 = 7 pares ordenados A probabilidade de, sorteando-se bolas brancas desta caia, encontrarmos números cuja soma seja ímpar é: 7 RESPOSTA: Alternativa 0.
2 Questão 0. (USP Escola Politécnica) Um produto é vendido a R$ 500,00. Esse valor pode ser dividido em pagamentos iguais e sem acréscimo, sendo o primeiro no ato da compra e o segundo, meses depois. À vista, é dado um desconto de % sobre o valor de R$ 500,00. Então, a taa de juros simples mensal do financiamento é de 01) 0% 0) 17,5% 03) 15% 04) 1,5% 05) % Valor à vista (valor atual) é igual a 0,0 R$500,00 = R$ 450,00 no plano de compra financiada, o cliente vai pagar R$500,00, logo um juro de R$ 50,00. No ato da compra o cliente faz o primeiro pagamento no valor de R$ 50,00, logo o valor a ser financiado é de R$ 00, j = Cit 00i = 50 i = 0,15 1,5% 400 Questão 03. Uma sala de aula contém 1 alunos sendo 5 meninos e 7 meninas. Qual a probabilidade de, sorteando-se 3 alunos desta sala, encontrarmos meninos e 1 menina? 01) Aproimadamente 16%. 0) Aproimadamente 3%. 03) Aproimadamente 40%. 04) Aproimadamente 48%. 05) Aproimadamente 64%. 111 Sorteando-se aleatoriamente 3 alunos entre os 1: C 1, Sorteando-se aleatoriamente meninos e uma menina: C 5, C7, A probabilidade de, sorteando-se 3 alunos desta sala, encontrarmos meninos e 1 menina é: 0, % 0 RESPOSTA: Alternativa 0.
3 Questão 04. (Fac. Santa Marcelina SP) O jornal Folha de S.Paulo publicou, em maio de 01, o seguinte gráfico sobre o número de pessoas diabéticas no mundo em função do ano especificado. Suponha que, entre os anos de 008 e 030, o gráfico represente uma função do 1 o grau. Nessas condições, é possível estimar que o número de pessoas com diabetes no mundo em 013, em milhões, será aproimadamente de 01) 43. 0) 8. 03) ) ) 485. RESOLUÇÃO 1: Considerando o ano de 008 como o ano 0, o ano de 013 como o ano 5 e o de 030 como o ano, e supondo que, entre os anos de 008 e 030, o gráfico represente uma função do 1 o grau, a reta f()=a+b passa pelos pontos (0, 347) e (, 550) O coeficiente angular desta reta é: a. 03 Então, f() = f(5) = , RESOLUÇÃO : Considerando o ano de 008 como o ano 0, o ano de 013 como o ano 5 e o de 030 como o ano, e supondo que, entre os anos de 008 e 030, o gráfico represente uma função do 1 o grau. Na figura à direita, os triângulos ADC e AEB são semelhantes, logo: AD AE 5 15 y 15 y DC EB y y ,
4 Questão 05. Sobre Análise Combinatória, considere as seguintes afirmativas: I. C 7;0 + C 7;1 + C 7; + C 7;3 + C 7;4 + C 7;5 + C 7;6 + C 7;7 = 18 II. C 13;4 + C 13;8 + C 14;6 = C 15;6 III. Se num hospital trabalham 6 cardiologistas e 5 anestesistas, então o número de equipes médicas que podemos formar com 3 cardiologistas e anestesistas é 30. Podemos afirmar que: 01) apenas a afirmativa I é falsa. 0) apenas a afirmativa II é falsa. 03) apenas a afirmativa III é falsa. 04) apenas uma afirmativa é verdadeira. 05) todas as afirmativas são verdadeiras. I) VERDADEIRA. C n;0 + C n;1 + C n; + C n; C n;n = n. II) VERDADEIRA. C 15;6 = C 14;6 + C 14;5 = C 14;6 + C 13;5 + C 13;4 = C 13;4 + C 13;8 + C 14;6, porque C 13;5 = C 13;8 III) FALSA C 6,3 C 5, = RESPOSTA: Alternativa 03. Questão 06. (UNEB BA) Uma espécie animal, cuja família inicial era de 00 indivíduos, foi testada num laboratório sob a ação de certa droga e constatou-se que a lei de sobrevivência de tal família obedecia à relação n(t) = q + pt, na qual n(t) é igual ao número de indivíduos vivos no tempo t, dado em horas desde o início do eperimento, p e q parâmetros que dependiam da droga ministrada. Nessas condições, sabendo-se que a família foi completamente dizimada em horas, pode-se afirmar que o número de indivíduos dessa família que morreram na 6 a hora do eperimento foi igual a 01) 0) 34 03) 46 04) 50 05) 7 n(0) = q =00; n() = p = 0 0p = 00 p =. n(5) = = 150 n(6) = 00 7 = =. RESPOSTA: Alternativa 01. 4
5 Questão 07. (Bahiana) Muitos hospitais pediátricos têm tido apoio de grupos de voluntários que, reunidos em projetos similares aos Doutores da Alegria, desenvolvem ações, particularmente junto às enfermarias desses hospitais, visando amenizar o sofrimento da internação infantil através da alegria e do bom humor. Inspirados nesse modelo, um grupo de 1 estudantes se dispôs a viabilizar um projeto semelhante, sendo o grupo subdividido segundo as suas habilidades, como indicado na tabela. Habilidades A música e leitura B mágica C pintura e artes manuais Número de estudantes Supondo-se que cada equipe atue com cinco pessoas, tendo representantes de B, C e, pelo menos, dois representantes de A, ao se escolher aleatoriamente uma dessas equipes, a probabilidade de ela ter componentes de C é igual a: 01) 1 0) ) ) ) 11 A B C 43 1 C4, C3, C5, Elementos de C4, C3,1 C5, C4,3 C3,1C5, Total de equipes que podem ser formadas: 330 Total de equipes que têm componentes de C: A probabilidade de uma das equipes escolhidas ter componentes de C é igual a: Total acumulado RESPOSTA: Alternativa 05 Questão 08. (UEG GO) Em um terreno, na forma de um triângulo retângulo, será construído um jardim retangular, conforme figura abaio. Sabendo-se que os dois menores lados do terreno medem m e 4 m, as dimensões do jardim para que ele tenha a maior área possível, serão, respectivamente, 01),0 m e 4,5 m. 03) 3,5 m e 5,0 m. 0) 3,0 m e 4,0 m. 04),5 m e 7,0 m. 5
6 Os triângulos ADE e ABC são semelhantes, então 4 y y y S jardim S jardim (4,5) 18 A área será máima para 4, 5 e y. 8 RESPOSTA: Alternativa 01. Questão 0. (Bahiana) Em determinada cidade, era frequente as crianças com idade entre 3 e 4 anos apresentarem peso abaio da média. Para tentar resolver esse problema, foi implantado um projeto ensinando os adultos a elaborarem uma refeição saudável utilizando hortaliças produzidas na região. Após algum tempo, foi feito um levantamento e verificou-se que, de cada cem crianças, apenas uma ainda apresentava peso inferior ao esperado para a idade. Nessas condições, a probabilidade de escolher ao acaso cinco crianças dessa cidade e, apenas três, apresentarem peso abaio da média é igual a: 01) 6 0) 7 03) 8 04) 04 ) C 5, Questão. (ESPM SP) ( 1).( 3) Ao resolver a inequação 1 um aluno efetuou as seguintes passagens: ( 1).( 3) 1 (1) ( 1).( 3) () (3) (5) (4) (6) Podemos afirmar que esse aluno 01) Cometeu um erro apenas, na passagem de 4 para 5. 0) Cometeu erros nas passagens de 3 para 4 e de 4 para 5. 03) Cometeu erros nas passagens de 1 para e de 4 para 5. 04) Cometeu um erro apenas, na passagem de 1 para. 05) Não cometeu erro algum. 6
7 ( 1).( 3) 1 (1) ( 1).( 3) () O aluno cometeu o erro da passagem 1 para a quando eliminou os denominadores. Questão 11. (Enem 0) A figura I abaio mostra um esquema das principais vias que interligam a cidade A com cidade B. Cada número indicado na figura II representa a probabilidade de pegar um engarrafamento quando se passa na via indicada. Assim, há uma probabilidade de 30% de se pegar engarrafamento no deslocamento do ponto C ao ponto B, passando pela estrada E4, e de 50%, quando se passa por E3. Essas probabilidades são independentes umas das outras. Paula deseja se deslocar da cidade A para a cidade B usando eatamente duas das vias indicadas, percorrendo um trajeto com a menor probabilidade de pegar algum engarrafamento possível. O melhor trajeto para Paula é: 01) E1E3 0) E1E4 03) EE4 04) EE5 05) EE6 Probabilidade de não pegar engarrafamento no 1 o nem no o trecho Probabilidade de pegar engarrafamento em pelo menos um dos trechos 01) E1E3 (1 0,8)(1 0,5) = 0, 0,0 0) E1E4 (1 0,8)(1 0,3) = 0,14 0,86 04) EE5 (1 0,7)(1 0,4) = 0,18 0,8 05) EE6 (1 0,7)(1 0,6) = 0,1 0,88 7
8 Questão 1. Sabendo que ABCD é um quadrado, ABP e um triângulo equilátero e P é um ponto interno ao quadrado, calcule a medida do angulo C Pˆ D. 01) 150º 0) 135º 03) º 04) 0 05) 75º De acordo com os dados da questão tem-se a figura ao lado. Logo o ângulo C Pˆ D mede (360 - ) = 150. RESPOSTA: Alternativa 01, Questão 13. (Enem 0) Uma escola recebeu do governo uma verba de R$ 00,00 para enviar dois tipos de folhetos pelo correio. O diretor da escola pesquisou que tipos de selos deveriam ser utilizados. Concluiu que, para o primeiro tipo bastava um selo de R$ 0,65 enquanto que para folhetos do segundo seriam necessários três selos, um de R$ 0,65, um de R$ 0,60 e um de R$ 0,0. O diretor solicitou que se comprassem selos de modo que fossem postados eatamente 500 folhetos do segundo tipo e uma quantidade restante de selos que permitisse o envio máimo possível de folhetos do primeiro tipo. Quantos selos de R$ 0,65 foram comprados? 01) 476 0) ) 3 04) 65 05) 1538 Para o envio dos 500 folhetos do segundo tipo, foram necessários 500 selos de R$0,65, 500 selos de R$ 0,60 e 500 de R$ 0,0, o que determinou uma despesa de (500(R$0,65 + R$0,60 + R$0,0) = R$ 75,00). Restando então para o envio dos folhetos do primeiro tipo R$ 75, 00. Como R$ 75, 00 : R$0,65 = 43,076..., a quantidade máima de folhetos do tipo 1 que poderão ser enviados é 43. Logo serão comprados ( ) = 3 selos de R$ 0,65. RESPOSTA: Alternativa 03. Questão 14. (Enem 0) Para construir uma manilha de esgoto, um cilindro com m de diâmetro e 4m de altura (de espessura desprezível), foi envolvido homogeneamente por uma camada de concreto contendo 0cm de espessura. Supondo que cada metro cúbico de concreto custe R$,00 e tomando 3,1 como valor aproimado de π, então o preço dessa manilha é igual a 01) R$ 30,40. 03) R$ 4,16. 05) R$ 4,60 0) R$ 14,00. 04) R$ 54,56. 8
9 O volume do concreto é ( 1,) 4 (1,0) 4 17,856 1,4 5,456m Então o preço dessa manilha é igual a R$,00 5,456= R$ 54,56. Questão 15. (Enem 0) 3 No manejo sustentável de florestas, é preciso muitas vezes obter o volume da tora que pode ser obtida a partir de uma árvore. Para isso, eiste um método prático, em que se mede a circunferência da árvore à altura de um homem (1,30m), conforme indicado na figura. A essa medida denomina-se rodo da árvore. O quadro a seguir indica a fórmula para se cubar, ou seja, obter o volume da tora em m 3 a partir da medida do rodo e da altura da árvore. O volume da tora em m 3 é dado por V = rodo altura 0,06 O rodo e a altura da árvore devem ser medidos em metros. O coeficiente 0,06 foi obtido eperimentalmente. Um técnico em manejo florestal recebeu a missão de cubar, abater e transportar cinco toras de madeira, de duas espécies diferentes, sendo 3 toras da espécie I, com 3m de rodo, 1m de comprimento e densidade 0,77 toneladas /m 3 ; toras da espécie II, com 4m de rodo, m de comprimento e densidade 0,78 toneladas /m 3. Após realizar seus cálculos, o técnico solicitou que enviassem caminhões para transportar a carga de aproimadamente, 01), toneladas. 03) 3,4 toneladas. 05) 41,8 toneladas. 0) 31,1 toneladas. 04) 35,3 toneladas. Volume das 3 toras da espécie I: V = 3 (3m) 1m 0.06 = 1,44 m 3. Volume das toras da espécie I: V = (4m) m 0.06 = 1, m 3. Como a densidade das 3 toras da espécie I é 0,77 toneladas /m 3, a densidade das três toras é de 1,44 0,77t = 14,688t. Como a densidade das toras espécie II é 0,78 toneladas /m 3, a densidade das duas toras é de 1, 0,78t = 14,76 t. Os caminhões vão transportar uma carga de (14,688t +14,76 t) =,448 t, aproimadamente,,t. RESPOSTA: Alternativa 01.
Um carro do modelo B foi comprado nessa concessionária. Dado que esse carro é de cor prata, qual a probabilidade que seu motor seja 1.0?
PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0) - (UEMS) Uma
PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia
PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.
PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as
Simulado OBM Nível 2
Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é
O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA),
0 - (UERN) A AVALIAÇÃO UNIDADE I -05 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Em uma sorveteria, há x sabores de sorvete e y sabores de cobertura.
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor
MATEMÁTICA-2013 UNEB - 2013 31 QUESTÕES 1 E 2
QUESTÕES 1 E 2-2013 UNEB - 2013 31 Em junho, primeiro mês sob a influência da redução no IPI, as concessionárias baianas venderam 14,8 mil carros, contra 11,9 mil unidades comercializadas em maio. Com
Questão 1. Questão 3. Questão 2. alternativa D. alternativa C. alternativa A
Questão 1 Paulo comprou um automóvel fle ue pode ser abastecido com álcool ou com gasolina. O manual da montadora informa ue o consumo médio do veículo é de km por litro de álcool ou 1 km por litro de
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 03 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA 7. Uma padaria faz uma torta salgada de formato retangular de 63cm de largura
Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana
Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade
FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA
FUVEST VESTIBULAR 006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA 1. A partir de 64 cubos brancos, todos iguais, forma-se um novo cubo. A seguir, este novo
PROBLEMAS DE OTIMIZAÇÃO
(Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é
AVALIAÇÃO MULTIDISCIPLINAR MATEMÁTICA E SUAS TECNOLOGIAS COLÉGIO ANCHIETA-BA - UNIDADE III-2013 ELABORAÇÃO: PROF. ADRIANO CARIBÉ
AVALIAÇÃO MULTIDISCIPLINAR MATEMÁTICA E SUAS TECNOLOGIAS COLÉGIO ANCHIETA-BA - UNIDADE III-0 ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA 0- Unicamp 0 Na figura abaixo,
RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria
1ª Avaliação. a) 1,2 hectares aproximadamente b) 120 hectares aproximadamente. c) 5 alqueires paulista aproximadamente d) 29.04 alqueires paulista
ª Avaliação ) (,) As estatísticas do Metrô do Rio de Janeiro informam que, em média, 5 mil passageiros passam diariamente pelas estações. Qual a ordem de grandeza do número de passageiros que passam mensalmente
01) 48 02) 96 03) 144 04) 240 05) 336. Os três anéis de cores diferentes poderão ser colocados em 3 de 8 dedos das mãos da senhora, logo
PROVA FINAL DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 0 - (FGV-Adaptada)
Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ
Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Questão 6 Vestibular 011 Observe a representação do trecho de um circuito elétrico entre
01) 551 02) 552 03) 553 04) 554 05) 555
Questão 01 PROVA DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA (FUVEST010)
PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A
PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A
Considere um triângulo eqüilátero T 1
Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.
EXAME DISCURSIVO 2ª fase
EXAME DISCURSIVO 2ª fase 30/11/2014 MATEMÁTICA Caderno de prova Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização.
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM
CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.
Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.
MATEMÁTICA FURG COPERVE PROCESSO SELETIVO 2010
FURG COPERVE PROCESSO SELETIVO 00 MATEMÁTICA ) Em uma Instituição de Ensino Superior, um aluno do curso de Engenharia Metalúrgica anotou suas médias bimestrais nas disciplinas: Cálculo I (CI), Álgebra
Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:
ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero
Quarta lista de exercícios.
MA092 Geometria plana e analítica Segundo semestre de 2015 Quarta lista de exercícios. Circunferência e círculo. Teorema de Tales. Semelhança de triângulos. 1. (Dolce/Pompeo) Um ponto P dista 7 cm do centro
Exercícios de Matemática para Concurso Público. Razão e proporção Porcentagem
Exercícios de Matemática para Concurso Público Razão e proporção Porcentagem 1. (Unicamp 014) A figura abaixo exibe, em porcentagem, a previsão da oferta de energia no Brasil em 030, segundo o Plano Nacional
ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.
2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades
Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 201 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 Em um paralelogramo, as medidas de dois ângulos
UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA
UFR_VESTIBULAR _004 COMENTÁRIO E RESOLUÇÃO OR ROFA. MARIA ANTONIA GOUVEIA QUESTÃO Um grupo de estudantes decidiu viajar de ônibus para participar de um encontro nacional. Ao fazerem uma pesquisa de preços,
Interbits SuperPro Web
1. (Enem 2013) Na aferição de um novo semáforo, os tempos são ajustados de modo que, em cada ciclo completo (verde-amarelo-vermelho), a luz amarela permaneça acesa por 5 segundos, e o tempo em que a luz
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO D PROV DE MTEMÁTIC DO VESTIBULR 0 D UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. Em de outubro de 0, Feli Baumgartner uebrou o recorde de velocidade em ueda livre. O salto foi monitorado oficialmente
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: N O : 1 FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0.
PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO
36.(ESCREV.TÉC.JUD-CAMPINAS E GUARULHOS- 006-VUNESP) Certo plano de saúde emite boletos para pagamento bancário com as seguintes condições: Pagamento até o vencimento: Pagamento após a data de vencimento:
PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da
37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO
GABARITO NÍVEL 1 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO 1) C 6) A 11) D 16) C 2) D 7) C 12) C 17) D 3) E 8) B 13) E 18) A 4) E 9) B 14)
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.
Prova Final 2012 1.ª chamada
Prova Final 01 1.ª chamada 1. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla nacionalidade. Metade dos jovens do acampamento
1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra
GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos
XXXI Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas
Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 0 pontos Na Tabela 1 temos a progressão mensal para o Imposto de Renda Pessoa Física 014 01. Tabela 1: Imposto de Renda Pessoa Física 014 01. Base
CÍRCULO, CIRCUNFERÊNCIA E OUTROS BICHOS. Reconhecer a figura de uma circunferência e seus elementos em diversos objetos de formato circular.
CÍRCULO, CIRCUNFERÊNCIA E OUTROS BICHOS "Um homem pode imaginar coisas que são falsas, mas ele pode somente compreender coisas que são verdadeiras, pois se as coisas forem falsas, a noção delas não é compreensível."
CAPÍTULO 2 FUNÇÕES 1. INTRODUÇÃO. y = 0,80.x. 2. DEFINIÇÃO DE FUNÇÃO DE A EM B ( f: A B) 4. GRÁFICO DE UMA FUNÇÃO
CAPÍTULO 2 FUNÇÕES 1. INTRODUÇÃO Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como conseqüência a variação da outra. Exemplo 1: Tio
QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.
Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados
MATEMÁTICA. 10 10 t = = t = anos
MATEMÁTICA 9 d Seja n um número qualquer, inteiro e positivo. Se n é par, divida-o por ; se n é ímpar, multiplique-o por e adicione ao resultado. Esse procedimento deve ser repetido até que se obtenha
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 0 DA UNICAMP-FASE. POR PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO Em uma determinada região do planeta, a temperatura média anual subiu de 3,35 ºC em 995 para
FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.
FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia..0. Sabendo que os anos bissextos são os múltiplos de 4 e que o primeiro dia de 007 foi segunda-feira, o próximo ano a começar também em uma
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C
Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento
Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.
PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.
ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO 2º BIMESTRE
Disciplina: Matemática Curso: Ensino Médio Professor: Aguinaldo Série: 1ªSérie Aluno (a): ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO 2º BIMESTRE Número: 1 - Conteúdo: Notação científica Área de polígonos
COLÉGIO SHALOM 1 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.
COLÉGIO SHALOM 1 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. TRABALHO DE RECUPERAÇÃO E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade
EXERCÍCIOS DE REVISÃO PFV - GABARITO
COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO 1 wwwprofessorwaltertadeumatbr 1) Seja f uma função de N em N definida por f(n) 10 n Escreva
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 5/05/ PROFESSOR: MALTEZ QUESTÃO 0 O piso de uma cozinha retangular de m de largura e m de comprimento deverá ser revestido por cerâmicas
QUESTÕES ÁREAS DE POLÍGONOS
QUESTÕES ÁREAS DE POLÍGONOS 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a),0 m. b),0
3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1.
REDE ISAAC NEWTON ENSINO MÉDIO 3º ANO PROFESSOR(A):LUCIANO IEIRA DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul EXERCÍCIOS DE REISÃO - AALIAÇÃO ESPECÍFICA 3º TRIMESTRE 01 MATEMÁTICA
Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.
Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção
Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países.
Questão A figura eibe um mapa representando países. alternativa E Inicialmente, no recipiente encontram-se 40% ( 000) = 400 m de diesel e 60% ( 000) = = 600 m de álcool. Sendo, em mililitros, a quantidade
1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio.
1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 2. (Fgv) Um vendedor recebe mensalmente um salário fixo de R$ 800,00
Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema
Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a
MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO
MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO Como pode cair no enem (ENEM) Em um jogo disputado em uma mesa de sinuca, há 16 bolas: 1 branca e 15 coloridas, as quais, de acordo com
Equipe de Matemática MATEMÁTICA
Aluno (a): Série: 3ª Turma: TUTORIAL 10B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Função Afim Um vendedor recebe, mensalmente, um salário que é composto por uma parte fixa de R$ 3.000,00 e uma
Módulo de Juros e Porcentagem. Juros Simples e Compostos. Sétimo Ano
Módulo de Juros e Porcentagem Juros Simples e Compostos Sétimo Ano Juros Simples e Compostos 1 Eercícios Introdutórios Eercício 1. Um investidor quer aplicar a quantia de R$ 800, 00 por 3 meses, a uma
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que
Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Funções º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Na função f : R R, com f()
PROVA DO BANCO DO BRASIL - 2010 - MATEMÁTICA E RACIOCÍNIO LÓGICO RESOLVIDA E COMENTADA Professor Joselias joselias@uol.com.
Professor Joselias Abril de2010 MATEMÁTICA 11- Um investidor aplicou certa quantia em um fundo de ações. Nesse fundo, das ações eram da empresa A, eram da empresa B e as restantes, da empresa C. Em um
QUESTÕES PARA O 9º ANO ENSINO FUNDAMENTAL MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES
QUESTÕES PARA O 9º ANO ENSINO FUNDAMENTAL MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÃO 01 1 Identificar a localização/movimentação de objeto, em mapas, croquis e outras representações gráficas.
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.
UFMG 2007 RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0 Francisco resolveu comprar um pacote de viagem que custava R$ 4 200,00, já incluídos R$ 20,00
A 'BC' e, com uma régua, obteve estas medidas:
1 Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A 'C' paralelo a AC, a altura C' H do triângulo A 'BC' e, com uma régua,
Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera
Aula n ọ 04 Esfera e Sólidos Redondos Área da Esfera A área de uma esfera é a medida de sua superfície. Podemos dizer que sua área é igual a quatro vezes a área de um círculo máximo, ou seja: eixo R O
Relações Métricas nos. Dimas Crescencio. Triângulos
Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem
Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.
Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique
PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVAS DE MATEMÁTICA DA UFMG VESTIBULAR 01 a ETAPA Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA A - a Etapa o DIA QUESTÃO 01 Janaína comprou um eletrodoméstico financiado, com taxa de 10% ao mês,
SIMULADO TERCEIRÃO e PRÉ-ENEM OUTUBRO - MATEMÁTICA PROFJUNIOR BARRETO
SIMULADO TERCEIRÃO e PRÉ-ENEM OUTUBRO - MATEMÁTICA PROFJUNIOR BARRETO 01) (Enem 2014 Adaptada) Um cliente de uma videolocadora tem o hábito de alugar dois filmes por vez. Quando os devolve, sempre pega
REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas:
ÁLGEBRA Nivelamento CAPÍTULO VI REGRA DE TRÊS REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: 1) Num acampamento, há 48 pessoas e alimento suficiente para um mês.
CPV 82% de aprovação dos nossos alunos na ESPM
CPV 8% de aprovação dos nossos alunos na ESPM ESPM Resolvida Prova E 11/novembro/01 MATEMÁTICA 1. A distribuição dos n moradores de um pequeno prédio de 4 5 apartamentos é dada pela matriz 1 y, 6 y + 1
Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna
Apostila de Matemática Aplicada Volume Edição 00 Prof. Dr. Celso Eduardo Tuna Capítulo - Revisão Neste capítulo será feita uma revisão através da resolução de alguns eercícios, dos principais tópicos já
Máximos e mínimos. Problemas de máximos e mínimos estão presentes. Nossa aula
A UA UL LA Máimos e mínimos Introdução Problemas de máimos e mínimos estão presentes em quase todas as atividades do mundo moderno. Por eemplo, você pode imaginar como um carteiro distribui a correspondência?
O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe
GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:
LISTA DE MATEMÁTICA II
Ensino Médio Unidade São Judas Tadeu Professora: Oscar Aluno (a): Série: 3ª Data: / / 2015. LISTA DE MATEMÁTICA II 1) (Fuvest-SP) Um lateral L faz um lançamento para um atacante A, situado 32 m à sua frente
Questão 23. Questão 21. Questão 22. Questão 24. alternativa D. alternativa A. alternativa C
Questão 1 Um reservatório, com 40 litros de capacidade, já contém 0 litros de uma mistura gasolina/álcool com 18% de álcool. Deseja-se completar o tanque com uma nova mistura gasolina/álcool de modo que
( y + 4) = 16 16 = 0 y + 4 = 0 y = 4
UFJF MÓDULO III DO PISM TRIÊNIO 00-0 GABARITO DA PROVA DE MATEMÁTICA Questão Uma circunferência de equação x + y 8x + 8y + 6 = 0 é tangente ao eixo das abscissas no ponto M e tangente ao eixo das ordenadas
PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTIA DA UNIAMP VESTIULAR 011 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 1 Recentemente, um órgão governamental de pesquisa divulgou que, entre 006 e 009, cerca de 5, milhões de brasileiros
Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA
Caderno de Provas MATEMÁTICA Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Use apenas caneta esferográfica azul ou preta. Escreva o seu nome completo e o número do seu
MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.
MATEMÁTICA - ª ETAPA/015 Ensino Fundamental Ano: 8º Professora: Thaís Sadala Turma: Atividade: Estude Mais 10 Data: Aluno: Nº 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.,4
ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003
ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003 PROVA DE MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO POR: PROFA. MARIA ANTÔNIA GOUVEIA QUESTÃO 21 ; O valor da expressão ( )( ; ; ) ; para x 101 é: a) 100; b) 10; c) 10,1;
PROVA DO BANCO DO BRASIL CESGRANRIO - 2010
PROVA DO BANCO DO BRASIL CESGRANRIO - 2010 Prof. Pacher Ordem da prova amarela 11. Um investidor aplicou certa quantia em um fundo de ações. Nesse fundo, 1/ das ações eram da empresa A, ½ eram da empresa
1 A AVALIAÇÃO ESPECIAL UNIDADE I -2014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C.
1 A AVALIAÇÃO ESPECIAL UNIDADE I -014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Questão 01. (UESC-Adaptada) (x + )!(x + )! O valor de x N, que
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES MG PA RS RN SC Terça-feira,
ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática
ENEM 014 - Caderno Cinza Resolução da Prova de Matemática 136. Alternativa (C) Basta contar os nós que ocupam em cada casa. 3 nós na casa dos milhares. 0 nós na casa das centenas. 6 nós na casa das dezenas
1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir.
1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir. Nessa trajetória, a altura máxima, em metros, atingida pelo corpo foi de a) 0,52m. b) 0,64m.
MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II
Centro Educacional MENINO JESUS Aluno (a): Data: / / Professor (a): Disciplina: Matemática 8ª série / 9º ano: P R O B L E M Á T I C A 2 1. Calcule as potências e marque a alternativa que contém as respostas
A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y
5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas
a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36
MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade
Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se
"Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor
FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.
FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se
Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC.
Olá pessoal! Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. 01. (SEFAZ-SP 2009/FCC) Considere o diagrama a seguir, em que U é o conjunto de todos
Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab.
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA13-2015.2 - Gabarito Questão 01 [ 2,00 pts ] Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso
Questão 1 Uma circunferência de equação. ponto M e tangente ao eixo das ordenadas no ponto N. Sabendo que T é o centro da circunferência, determine:
Questão 1 Uma circunferência de equação 2 2 x + y 8x + 8y + 16 = 0 é tangente ao eixo das abscissas no ponto M e tangente ao eixo das ordenadas no ponto N. Sabendo que T é o centro da circunferência, determine:
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível
Princípio da Casa dos Pombos II
Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 8 Princípio da Casa dos Pombos II Nesta aula vamos continuar praticando as ideias da aula anterior, aplicando o
Nome: Turma: Unidade: 1º SIMULADO - 9º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 07 de Maio - quinta-feira EDUCANDO PARA SEMPRE
Nome: 015 Turma: Unidade: 1º SIMULADO - 9º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 07 de Maio - quinta-feira EDUCANDO PARA SEMPRE Nome: Turma: Unidade: 3 5 1. A expressão 10 a) 5. 11 b) 5. c) 5 d) 30 5