Eletricidade e Magnetismo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Eletricidade e Magnetismo"

Transcrição

1 Eleticidade e Magnetismo José Schneide FSCUSP Escola de Física Contempoânea 01 Eleticidade e Magnetismo Caga, campo e potencial elético Coente elética Cicuitos de coente contínua Resistência e potência elética Campo magnético Leis de Ampee e Faaday ndutoes Coente altenada: cicuitos RLC Ressonância 1

2 Caga elética Pocessos de eletização: Atito Contacto com copos caegados ndução: poximidade com copos caegados Tipos de caga: Polaidade: atação e epulsão Tipos de mateiais: Condutoes e isolantes Caga elética A caga de uma polaidade pode se sepaada de copos inicialmente neutos tea indução emoção da caga () isolamento da caga () A caga é consevada: Não se cia ou destói A matéia é eleticamente neuta

3 Geado an de Gaff Acumulação Sepaação de caga po atito Tanspote (mecânico) O que é a caga elética? Fluido contínuo ou patículas? J.J.Thomson (1897) A caga elética está quantizada: múltiplos de uma caga elementa. Patículas caegadas (), os elétons, são emitidas po metais aquecidos (efeito temoiônico). Atualmente sabemos que o eléton tem: caga: e e 1, Coulomb (Robet Millikan, 1914) massa: m e 9, Kg 3

4 Foça elética: Lei de Coulomb Chales Coulomb (1780): Balança de toção F q1. q F k F F cagas pontuais F Unidade de caga elética: Coulomb Sistema ntenacional (MKS): k 8, N. m C Campo elético q1 E 1 k q 1 1 E q 1 >0 A caga q 1 poduz um campo elético E 1 no espaço vizinho, exista ou não uma outa caga nesse ponto! Uma caga q ( caga de pova ) colocada em expeimenta uma foça popocional ao campo elético: E F 1 F q E q 1 1 q q 1 >0, q >0 F q q k Lei de Coulomb 1 F E q 1 1 q q 1 >0, q <0 4

5 Foça e Campo Eléticos F q E Foça sobe a caga de pova Caga de pova Campo elético (poduzido po outas cagas) Campo elético: linhas de campo ndicam a dieção da foça sobe uma caga de pova positiva. Densidade de linhas: popocional à intensidade F q E Caga pontual Q Dipolo F F (Q e Q) E Placas planas e paalelas: Campo elético unifome Q Q 5

6 Tabalho e Potencial elético Qual é o tabalho que devemos faze paa desloca uma caga de pova q numa egião de campo elético unifome? Tabalho feito pela foça F T paa desloca a caga ente os pontos A e B: W A B F T d W A B q E d B F T F d A Difeença de Potencial elético : tabalho po unidade de caga tanspotada ente A e B WA q B AB E d Potencial elético E d (paa campo unifome) Este tabalho po caga é independente do caminho escolhido paa faze o tanspote paa pontos sepaados numa distância d. Unidades do potencial elético: [] [Tabalho] /[Caga] Joule / Coulomb olt Unidades do campo elético: [E] [Foça] /[Caga] Newton / Coulomb olt/m 6

7 Cicuitos eléticos Conjunto de condutoes que tanspotam cagas eléticas atavés de um tajeto fechado. : Difeença de potencial ente os extemos da bateia: Tabalho po eléton paa deslocalo ao longo do cicuito. Bateia B A : difeença de potencial ente os extemos W AB q AB A B Faz tabalho sobe as cagas paa elas se deslocaem pelo cicuito. 7

8 Bateia de potencial Faz tabalho W e paa tanspota um eléton ente o teminal () e o teminal () Exemplo: tabalho po eléton feito pela bateia de 1,5 olt: W 1,5olt x 1, C, Joule Compae: Tabalho paa levanta uma massa de 1Kg até 1m de altua W m g h 1Kg x 9,8m/s x 1m 9,8 Joule Cicuitos eléticos: coente e esistência convencional R eal (eletons) Coente (): deslocamento das cagas atavés dos fios Resistência (R): oposição do mateial à passagem de coente. Tansfeência de enegia cinética das cagas paa vibações do sólido, atavés de colisões. 8

9 Condução em metais Metal: Íons positivos fixos e elétons lives. (não ligados a nenhum átomo em paticula) Cada átomo contibui com um ceto númeo de elétons lives. Exemplo: No cobe, 1 eléton po átomo No zinco, elétons po átomo Cicuitos eléticos: coente de cagas convencional v d E eal (eletons) convencional eal (eletons) F e E A difeença de potencial aplicada sobe o conduto cia um campo elético no inteio. Coente: movimento coletivo das cagas lives causado pelo campo aplicado. 9

10 Coente elética Q t Caga elética Q que atavessa uma seção A do conduto duante um tempo t. L v d t v d eal Q? n : Densidade de potadoes: númeo de elétons po unidade de volume e n ( A v t d t) e n v d A aloes típicos de densidade de potadoes Metal n (10 8 elétons/m 3 ) Pata 5,86 Cobe 8,47 Alumínio 18,1 Zinco 13, Unidades de coente: [] [Caga]/[tempo] Coulomb /segundo Ampee 10

11 aloes típicos de velocidade de aasto e n v d A v d e n A Paa uma coente de 1 Ampee ciculando po um fio de cobe de 0,5mm de aio: v d 1, A C 8, π 0,0005 m 5 v d 9,410 m / s 0,1 mm / s Lei de Ohm R Geoge Simon Ohm (1850) : Difeença de potencial nos extemos do esisto R : Coente atavés do esisto R: esistência Bons condutoes: baixa esistência solantes: alta esistência R l ρ A ρ: Resistividade do mateial l : Compimento do conduto A: Áea pependicula à coente ρ ρ 1 α ( ( T )) To T o Em metais: ρ aumenta lineamente com a tempeatua. 11

12 Unidades de esistência: Ohm Ω olt /Ampee aloes típicos de esistividade ρ (0 o C) Pata Cobe Alumínio Tungstênio Gafite ido Boacha 1, Ω.m 1, Ω.m, Ω.m 5, Ω.m Ω.m Ω.m Ω.m Resistência elética: visão em escala micoscópica Colisões : Os elétons tansfeem enegia cinética paa os movimentos oscilatóios dos íons no mateial. E 0 E v d 0 v d Deslocamento médio nulo. Há deslocamento médio dos elétons devido à foça elética. 1

13 Condução elética: modelo micoscópico Os elétons sofem colisões, em média a cada intevalo de tempo τ. (bons condutoes: τ longo) Ente colisões somente atua a foça elética: e E F m a a m v e E m ( t) v t o elocidade após uma colisão em t 0: dieção ao acaso, difeente paa cada eléton F e E Movimento unifomemente aceleado na dieção do campo: v o e E m v ( t ) t E Componente da velocidade na dieção do campo: mesma paa todos os elétons Cálculo da velocidade de aasto e E v( t) v vo t o m v ( t ) Num dado instante, as velocidades v 0 estão oientadas ao acaso: E Potanto as velocidades v 0 não contibuem, em média, à coente total. elocidade de aasto v d : alo médio do temo apontando na dieção do campo elético e E v d τ m τ: tempo médio ente colisões 13

14 Condução elética: modelo micoscópico e E v d τ m e n v Podemos substitui esta velocidade na expessão da coente: e Resultando a Lei de Ohm! elocidade de aasto: n τ A m R E e n τ A m sendo a esistência: Definição de coente: l R d A campo E unifome dento do conduto de compimento l e m n τ l A Podemos identifica a esistividade do mateial: (não depende da geometia do conduto). ρ e m n τ elocidades: odens de gandeza v o v ( t) v d elocidade de aasto, paa o exemplo do fio de cobe (1A e 1mm de diâmeto): elocidade total instantânea típica: v d 10 4 m / s 6 v ( t) 1,6 10 m / s 8 Caminho live médio ente colisões: d 3,9 10 m 390 Å 14

15 Difeenças de potencial sobe um cicuito Tabalho feito sobe um eléton em cada techo: d a c b d a : a b : b c : c d : da ab 0 bc cd 0 Tabalho da bateia A esistência do fio é despezível Consevação da enegia: o tabalho líquido sobe o tajeto fechado deve se nulo 0 da ab bc cd Lei de Kichoff 0 bc bc cb Lei de Kichoff em cicuitos Dois esitoes em séie Análogo mecânico: potencial gavitatóio a a a b c R R 1 R R1 F T m g h c h h 1 b m b b a b : b c : c a : W b a q ab q W a c q ca q R1 W c b q bc q R b a : W b a E pb E pa m g h a c : W a c E pc E pa m g h 1 c b : W c b E pb E pc m g h Consevação da enegia no pecuso fechado: 0 W b a W a c W c b 0 q q R1 q R R1 R ôhmicos R 1 R 15

16 Lei de Kichoff paa coentes Consevação da caga elética no nó: R 3 R 3 Potência elética Tabalho feito no deslocamento de caga po unidade de tempo: Tabalho paa desloca uma quantidade de caga q ente dois pontos de um mateial esistivo: W q Consideando que este pocesso demoa um tempo t: AB W P t B q W t q t potência P P coente ou, usando a Lei de Ohm: P R 16

17 Unidades de Potência Watt Joule/segundo Ampee x olt Resistividade: Efeito Joule A potência elética entegada pela bateia é tansfomada em calo, aumentando a tempeatua do mateial: tansfeência da enegia cinética dos elétons às vibações dos íons no mateial. Capacitância Quanta caga pode amazena um conduto, dado um potencial fixo? C Q Unidades de Capacitância Faaday Coulomb/olt 17

18 Capacitância Q C Exemplo: duas placas condutoas planas e paalelas C 1 4π k A d E Q Q Paa A 1cm e d1mm C 0,9 pf Q C Paa 1 olt 5, elétons adicionais na placa caegada negativamente Dieléticos A capacidade pode se aumentada peenchendo o espaço ente as placas com mateiais isolantes dieléticos. Mateial dielético solante: as cagas não podem se desloca. Polaizável: existe alinhamento de dipolos eléticos, atômicos ou moleculaes, com os campos eléticos extenos. Exemplos: plásticos, vido, água, óleo E 18

19 Capacito de placas planas paalelas: efeito do dielético C o Q Q o Q E sem dielético Q Q d com dielético O campo elético no capacito agoa é meno, potanto a difeença de potencial é meno: d < o. C Como a caga Q sobe a placa é a mesma, então C aumentou: C o < C d E ' Q d Tipos de capacitoes Folha de metal placas capa dielético teminais papel folha metalica com camada de óxido Dielético C d /C Máximo E (olt/m) ácuo 1,00000 A 1, Quatzo 3, Poliestieno, Nylon 3, Papel 3, Oleo,

20 Descaga de um capacito: cicuito RC Capacito inicialmente caegado Chave abeta nício da descaga Chave fechada, instante inicial (t0) o Q o /C o Q o /C Q o Q o C Q o Q o C 0 o o /R Passagem de caga desde uma placa até a outa atavés do cicuito Descaga de um capacito: cicuito RC Pocesso de descaga: Q(t) < Q o Fim da descaga: Q 0 (t) Q(t)/C F 0 Q(t) Q(t) C C (t)(t)/r F 0 As placas são pogessivamente neutalizadas, diminuindo e. 0

21 Descaga de um capacito: Constante de tempo (t) o A coente no cicuito decesce exponencialmente. t t RC ( t) 0 e RC ( t) 0 e Constante de tempo de descaga: R C Tempo caacteístico de decaimento. ( tc ) ,36 o Medindo t c e sabendo o valo de R é possível calcula C t C RC t Aplicações: Tempoizadoes eletônicos Convesoes de coente altenada paa contínua (etificadoes) 1

22 Campo magnético Foça ente baas magnéticas. Bussolas. (600AC) N Pete de Maicout (169): dipolos magnéticos. S S N William Gilbet (1600): linhas de campo magnético S N Linhas de campo: mapeamento a pati da oientação de agulhas (toque) Oested e Ampee (180): ação de coentes eléticas sobe bussolas. Lei de Ampee Campo magnético poduzido po uma coente elética (fio etilíneo): 7 µ 4π 10 T m / A 0 B B Cálculo do campo paa geometias mais complexas: Lei de BiotSavat u ds db db B µ 0 4π fio db ds µ 0 π [Tesla] u

23 Exemplos Campo magnético de uma espia (campo de dipolo magnético): B cento µ 0 R Campo magnético de um solenóide (bobina): Campo magnético unifome no inteio Foça magnética Dependente da caga elética e da velocidade de patícula. q positiva B q F M F M v q v B B q q negativa F M v Foça eletomagnética (Foça de Loentz): F q v ( E B) 3

24 Lei de Faaday Foça eletomotiz induzida (fem) ε dφ dt B aiação de fluxo de campo magnético (áea A) aiação de fluxo : campos magnéticos dependentes do tempo vaiação de oientação ou geometia da supefície. B Φ B A (t) B aumentando: B B (t) A B induzido (t) induzida Φ B B A Φ B B Acosθ B diminuindo: B (t) Φ B B induzido (t) 0 ε ε > 0 ε < 0 induzida Lei de Lenz: O campo induzido sempe se opõe à vaiação do campo induto. B Uma espia : Φ B B A nduto (solenóide) a d Φ N d ε B µ A 0 L dt d dt B L : indutância nduto: N espias Φ B B A N N B µ 0 d d dt Unidades de ndutância: Heny olt seg./ampee d b ε : difeença de potencial ente b e a ε ba ab 4

25 d L L dt Coente cescendo d > 0 dt Coente diminuindo d < 0 dt L t L t > 0 < 0 nduto (t) (t) L L a b L L a b a b Coente induzida oposta a. Coente induzida a favo de. O induto se opõe às vaiações de coente Cicuito LC: Oscilado elético live (1) L 0 C () (3) q MAX q max q0 q MAX q (4) (5) L 0 C (6) q q MAX q q q MAX q 5

26 Cicuito LC: Oscilado elético live (6) (7) (8) q max q0 q q q (9) L 0 C q MAX q MAX Ressonância: Oscilação da coente e dos campos E e B com feqüência caacteística: 1 ω 0 L C Osciladoes eléticos Oscilado elético live: Resistência elética despezível. Não há dissipação de enegia elética. Oscilações com amplitude constante. Oscilado elético amotecido: Existe esistência elética e dissipação (P R). Decéscimo exponencial amplitudes das oscilações. Oscilado elético foçado: Existe esistência elética e dissipação. Uma fonte de voltagem compensa a dissipação. 6

27 Oscilações mecânicas e eléticas Mecânica (massamola) Enegia cinética: mv / Enegia elástica: k (xx o ) / Posição: x elocidade: v x/ t Massa: m Constante de foça da mola: k Coeficiente de atito: γ Elética (cicuito RLC) Enegia magnética: Li / Enegia elética: (1/C) q / Caga elética: q Coente: i q/ t ndutância: L Capacitância (invesa): 1/C Resistência elética: R ω 0 Feqüência de essonância: k m ω 0 1 L C 0 L sen ( ω t) Cicuito RLC séie L d L dt L ω 0 cos 0 L ( ω t) L adianta 90 o C L C atasa 90 o t π T ω C C q C 0 C ω cos ( ω t) R R R R 0 sen ( ω t) ( t) ( t ) ( t ) ( t ) L C A coente e o potencial estão defasados ( ω ϕ ) 0 sen t t ϕ D ω R R L e m fase 7

28 0 0 sen sen t ( ω t) ( ω ϕ) Cicuito RLC séie Repesentação vetoial: amplitudes máximas e defasagens ω 0 L L 0 0 (t) L C L C 0 L 0 L 0 C C 0 R ϕ 0 L R C C ω R R Dividindo pela coente 0 : L ω R 0 Reatâncias capacitivas e indutivas 1 C ω 0 0 Reatâncias e mpedância (t) L C X L L ω X L X C 1 X C C ω R Z ϕ mpedância equivalente do cicuito: Z R ( X ) L X C Coente total: 0 0 Z Ressonância em RLC séie: Z( ω) R Mínima impedância Máxima coente Máxima dissipação de enegia Compotamento esistivo: Z R 0 (ω) ω 0 ω 0 1 L C ω 8

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

4200V Fig. 1 C 1. 10V C 2 Fig. 2

4200V Fig. 1 C 1. 10V C 2 Fig. 2 a lista de execícios de Física 3 - Pof alos Felipe Pinheio apacitoes 1) eja E o o campo elético no inteio (vácuo) de um capacito de placas planas e paalelas Ao intoduzimos um dielético ente as placas desse

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

II Transmissão de Energia Elétrica (Teoria de Linhas)

II Transmissão de Energia Elétrica (Teoria de Linhas) II Tansmissão de Enegia Elética (Teoia de Linhas) Linhas de tansmissão : (Pela física) todos os elementos de cicuitos destinados ao tanspote de enegia elética ente dois pontos, independentemente da quantidade

Leia mais

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma: UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Lei da indução, de Faraday. Com a Lei de Faraday, completamos a introdução às leis fundamentais do electromagnetismo.

Lei da indução, de Faraday. Com a Lei de Faraday, completamos a introdução às leis fundamentais do electromagnetismo. 10. Lei de Faaday 10.1. A Lei de Faaday da Indução 10.2. A fem de indução num conduto em movimento 10.3. A Lei de Lenz 10.4. Fems Induzidas e Campos Elécticos Induzidos 10.5. Geadoes e Motoes 10.6. As

Leia mais

Medidas elétricas em altas frequências

Medidas elétricas em altas frequências Medidas eléticas em altas fequências A gande maioia das medidas eléticas envolve o uso de cabos de ligação ente o ponto de medição e o instumento de medida. Quando o compimento de onda do sinal medido

Leia mais

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica Aula 2 de Fenômemo de tanspote II Cálculo de condução Paede Plana Paede Cilíndica Paede esféica Cálculo de condução Vamos estuda e desenvolve as equações da condução em nível básico paa egime pemanente,

Leia mais

LISTA COMPLETA PROVA 02. Fig Exercício 6.

LISTA COMPLETA PROVA 02. Fig Exercício 6. LISTA COMPLETA PROVA CAPÍTULO 6 5E. Quando um eléton se move de A até B ao longo da linha de campo elético, mostada na Fig. 6-4, o campo elético ealiza um tabalho de 3,94 1 19 J sobe ele. Quais são as

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

Condução Unidimensional em Regime Permanente

Condução Unidimensional em Regime Permanente Condução Unidimensional em Regime Pemanente Num sistema unidimensional os gadientes de tempeatua existem somente ao longo de uma única coodenada, e a tansfeência de calo ocoe exclusivamente nesta dieção.

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

Experiência 2 - Filtro de Wien - 7 aulas

Experiência 2 - Filtro de Wien - 7 aulas Instituto de Física - USP FGE0213 - Laboatóio de Física III - LabFlex Estudo de uma patícula em um campo eletomagnético Aula 5 - (Exp 2.1) Filto de Wien Mapeamento de Campo Elético Manfedo H. Tabacniks

Leia mais

2- FONTES DE CAMPO MAGNÉTICO

2- FONTES DE CAMPO MAGNÉTICO - FONTES DE CAMPO MAGNÉTCO.1-A LE DE BOT-SAVART Chistian Oestd (18): Agulha de uma bússola é desviada po uma coente elética. Biot-Savat: Mediam expeimentalmente as foças sobe um pólo magnético devido a

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

Prof.Silveira Jr CAMPO ELÉTRICO

Prof.Silveira Jr CAMPO ELÉTRICO Pof.Silveia J CAMPO ELÉTRICO 1. (Fuvest 017) A deteminação da massa da molécula de insulina é pate do estudo de sua estutua. Paa medi essa massa, as moléculas de insulina são peviamente ionizadas, adquiindo,

Leia mais

CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS

CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS Um númeo compleo Z é um númeo da foma j, onde e são eais e j. (A ai quadada de um númeo eal negativo é chamada um númeo imagináio puo). No númeo

Leia mais

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos. DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se

Leia mais

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6.

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6. 9 &55(1((/e5,&$ Nos capítulos anteioes estudamos os campos eletostáticos, geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo iniciaemos o estudo da coente elética, que nada mais

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos.

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos. CAPÍTULO 4 - DINÂMICA A dinâmica estuda as elações ente as foças que actuam na patícula e os movimentos po ela adquiidos. A estática estuda as condições de equilíbio de uma patícula. LEIS DE NEWTON 1.ª

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO

IMPULSO E QUANTIDADE DE MOVIMENTO AULA 10 IMPULSO E QUANTIDADE DE MOVIMENTO 1- INTRODUÇÃO Nesta aula estudaemos Impulso de uma foça e a Quantidade de Movimento de uma patícula. Veemos que estas gandezas são vetoiais e que possuem a mesma

Leia mais

CARGA ELÉTRICA ELETRIZAÇÃO POR FRICÇÃO

CARGA ELÉTRICA ELETRIZAÇÃO POR FRICÇÃO CRG LÉTRIC caga elética é uma popiedade, dos mateiais, esponsável pelas inteações eletostáticas. xistem dois tipos de caga elética a que se convencionou chama caga positiva e caga negativa. LTRIZÇÃO POR

Leia mais

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força.

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força. AULA 08 TRABALHO E POTÊNCIA 1- INTRODUÇÃO Uma foça ealiza tabalho quando ela tansfee enegia de um copo paa outo e quando tansfoma uma modalidade de enegia em outa. 2- TRABALHO DE UMA FORÇA CONSTANTE. Um

Leia mais

ENERGIA E SUAS TRANSFORMAÇÕES 813EE

ENERGIA E SUAS TRANSFORMAÇÕES 813EE 1 TEOIA Neste tópico apesentamos os pincípios básicos de tansfomação de enegia mecânica em enegia elética, os quais são fundamentados na Lei de indução de Faaday. Que a enegia elética venha do vento ou

Leia mais

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas Electostática OpE - MIB 7/8 ogama de Óptica e Electomagnetismo Análise Vectoial (evisão) aulas Electostática e Magnetostática 8 aulas Campos e Ondas Electomagnéticas 6 aulas Óptica Geomética 3 aulas Fibas

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência 3. Elementos de Sistemas Eléticos de Potência Pofesso: D. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b disponível em: http://paginapessoal.utfp.edu.b/aphaelbenedito

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos ... Do que tata a? Até aqui: Lei de Coulomb noteou! : outa foma de calcula campos eléticos fi mais simples quando se tem alta simetia (na vedade, só tem utilidade pática nesses casos!!) fi válida quando

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

Ligações iônicas. Molécula estável E(KCl) < E(K) + E(Cl) Física Moderna 2 Aula 15

Ligações iônicas. Molécula estável E(KCl) < E(K) + E(Cl) Física Moderna 2 Aula 15 Ligações iônicas? Molécula estável E(KCl) < E(K) + E(Cl) 43376 - Física Modena Aula 5 ,7 nm ke U ( ) + EExcl + E Ion E Ion enegia necessáia paa foma o cátion e o ânion sepaados. E Ion,7 ev paa o KCl. E

Leia mais

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva?

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva? Lei de Gauss Ignez Caacelli ignez@ufsca.b Pofa. Ignez Caacelli Física 3 Deteminação do Fluxo lético se não-unifome? se A é pate de uma supefície cuva? A da da = n da da nˆ da = da definição geal do elético

Leia mais

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material.

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material. Campo magnético Um ímã, com seus pólos note e sul, também pode poduzi movimentos em patículas, devido ao seu magnetismo. Contudo, essas patículas, paa sofeem esses deslocamentos, têm que te popiedades

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

Campo Magnético produzido por Bobinas Helmholtz

Campo Magnético produzido por Bobinas Helmholtz defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de

Leia mais

Física GABRIEL DIAS DE CARVALHO JÚNIOR. ELETRICIDADE Carga Elétrica e Lei de Coulomb

Física GABRIEL DIAS DE CARVALHO JÚNIOR. ELETRICIDADE Carga Elétrica e Lei de Coulomb Física ELETRICIDADE Caga Elética e Lei de Coulomb 1 Intodução... 3 2 Condutoes e Isolantes... 3 3 Caga Elética... 3 4 Pocessos de Eletização... 4 5 Eletoscópios... 5 6 Lei de Coulomb... 6 Campo Elético

Leia mais

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11 Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)

Leia mais

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL INSTITUTO DE FISICA- UFBa Maço, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) Roteio elaboado po Newton Oliveia EFEITO ALL OBJETIO DO EXPERIMENTO: A finalidade do expeimento

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

ESCOLA SECUNDÁRIA JOSÉ SARAMAGO

ESCOLA SECUNDÁRIA JOSÉ SARAMAGO ESCOLA SECUNDÁRIA JOSÉ SARAMAGO FÍSICA e QUÍMICA A 11º ano /1.º Ano 3º este de Avaliação Sumativa Feveeio 007 vesão Nome nº uma Data / / Duação: 90 minutos Pof. I Paa que se possa entende a lei descobeta

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS A figua acima ilusta um sistema constuído de dois blocos de massas M e m, com M > m, ligados po um fio que passa po uma polia de aio R de massa não despezível. Os blocos, ao se

Leia mais

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático 2. Lei de Gauss 1 2.1. Fluxo Eléctico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Caegados 2.4. Condutoes em Equilíbio Electostático Lei de Gauss: - É uma consequência da lei de Coulomb.

Leia mais

Aula 3_2. Potencial Elétrico II. Física Geral e Experimental III. Capítulo 3. Prof. Cláudio Graça

Aula 3_2. Potencial Elétrico II. Física Geral e Experimental III. Capítulo 3. Prof. Cláudio Graça Aula 3_ Potencial lético II Física Geal e xpeimental III Pof. Cláudio Gaça Capítulo 3 Resumo da Aula () a pati de V() xemplo: dipolo quipotenciais e Condutoes Foma difeencial da Lei de Gauss Distibuição

Leia mais

10/Out/2012 Aula 6. 3/Out/2012 Aula5

10/Out/2012 Aula 6. 3/Out/2012 Aula5 3/Out/212 Aula5 5. Potencial eléctico 5.1 Potencial eléctico - cagas pontuais 5.2 Supefícies equipotenciais 5.3 Potencial ciado po um dipolo eléctico 5.4 elação ente campo e potencial eléctico 1/Out/212

Leia mais

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia Física Aistotélica of. Roseli Constantino Schwez constantino@utfp.edu.b Aistóteles: Um copo só enta em movimento ou pemanece em movimento se houve alguma foça atuando sobe ele. Aistóteles (384 a.c. - 3

Leia mais

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro;

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro; O Campo Magnético 1.Intodução: Gegos(+2000 anos): Obsevaam que pedas da egião Magnézia (magnetita) ataiam pedaços de feo; Piee Maicout(1269): Obsevou a agulha sobe imã e macou dieções de sua posição de

Leia mais

ELETROMAGNETISMO I 44

ELETROMAGNETISMO I 44 ELETROMAGNETIMO I 44 6 CORRENTE ELÉTRICA Nos capítulos anteioes estudamos os campos eléticos quando geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo faemos o estudo da coente elética,

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenhaia de Loena EEL LOB1053 - FÍSICA III Pof. D. Duval Rodigues Junio Depatamento de Engenhaia de Mateiais (DEMAR) Escola de Engenhaia de Loena (EEL) Univesidade

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado Eletomagnetismo plicado Unidade 1 Pof. Macos V. T. Heckle 1 Conteúdo Intodução Revisão sobe álgeba vetoial Sistemas de coodenadas clássicos Cálculo Vetoial Intodução Todos os fenômenos eletomagnéticos

Leia mais

Componente de Física

Componente de Física Disciplina de Física e Química A 11º ano de escolaidade Componente de Física Componente de Física 2.1.3 Micofone e altifalante O micofone é um dispositivo que, quando inseido num cicuito eléctico fechado,

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

= constante 2. r r. F at. ρ = W > 0 quando o sistema realiza trabalho. = ; velocidade de propagação: v = λf. f = ; freqüência angular: w = 2 πf

= constante 2. r r. F at. ρ = W > 0 quando o sistema realiza trabalho. = ; velocidade de propagação: v = λf. f = ; freqüência angular: w = 2 πf FORMULÁRIO DE FÍSICA Movimento linea: s = s + v t + at ; v = v + at ; v = v + a s Movimento angula: m = θ ω ; α m = ω ; v = ω ; a = α Segunda lei de Newton: F = ma Foça centípeta: Foça de atito: Foça elástica:

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

PEA2410 Sistemas de Potência I. Cálculo de Parâmetros de Linhas de Transmissão

PEA2410 Sistemas de Potência I. Cálculo de Parâmetros de Linhas de Transmissão 1 Samuel Domingos Maganeti Lazain 17/05/005 Otávio Luís de Oliveia Lucas Blattne Matinho Pofesso: Luiz Cea Zanetta Junio PEA410 Sistemas de Potência I Cálculo de Paâmetos de Linhas de Tansmissão Paa ealiza

Leia mais

Análise Vetorial. Sistemas de coordenadas

Análise Vetorial. Sistemas de coordenadas Análise Vetoial Sistemas de coodenadas Retangula (,, ), cilíndico (, φ, ) e esféico (, θ, φ) são os tês sistemas de coodenadas mais utiliados em eletomagnetismo. No sistema etangula, um ponto P é definido

Leia mais

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2 Séie 2 vesão 26/10/2013 Electomagnetismo Séie de execícios 2 Nota: Os execícios assinalados com seão esolvidos nas aulas. 1. A figua mosta uma vaa de plástico ue possui uma caga distibuída unifomemente

Leia mais

FORÇA MAGNÉTICA SOBRE CONDUTORES

FORÇA MAGNÉTICA SOBRE CONDUTORES ELETROMAGNETSMO 95 11 FORÇA MAGNÉTCA SOBRE CONDUTORES Até então, nossos estudos sobe campos magnéticos o enfatiaam como sendo oiginado pela ciculação de uma coente elética em um meio conduto. No entanto,

Leia mais

Campo Elétrico Carga Distribuída

Campo Elétrico Carga Distribuída Aula _ Campo lético Caga Distibuída Física Geal e peimental III Pof. Cláudio Gaça Capítulo Campos léticos de distibuições contínuas de caga elética Fundamentos: (Lei de Coulomb Pincípio da Supeposição)

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

Electricidade e Magnetismo

Electricidade e Magnetismo Electicidade e Magnetismo 1. Campos Elécticos. A lei de Gauss 3. Potencial Eléctico 4. Capacidade e Dielécticos 5. Coentes e Resistência 6. Cicuitos de Coente Contínua 7. Cicuitos de Coente Altenada 8.

Leia mais

Física e Química 11.º Ano Proposta de Resolução da Ficha N.º 3 Forças e Movimentos

Física e Química 11.º Ano Proposta de Resolução da Ficha N.º 3 Forças e Movimentos ísica e Química 11.º Ano Poposta de Resolução da icha N.º 3 oças e ovimentos 1. Dados: v = const a = 15,0 N R N = 6,0 N Gupo I Estando o copo em equilíbio R = 0 N ou seja: a = sen e R N = cos explicitando

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

Aula-5 Capacitância. Curso de Física Geral F-328 1 o semestre, 2008

Aula-5 Capacitância. Curso de Física Geral F-328 1 o semestre, 2008 Aula-5 apacitância uso de Física Geal F-38 o semeste, 8 apacitância apacitoes Dois condutoes caegados com cagas Q e Q e isolados, de fomatos abitáios, fomam o ue chamamos de um capacito. A sua utilidade

Leia mais

Prova de Física 1 o Série 1 a Mensal 1 o Trimestre TIPO - A

Prova de Física 1 o Série 1 a Mensal 1 o Trimestre TIPO - A Pova de Física 1 o Séie 1 a Mensal 1 o Timeste TIPO - A 01) A fómula matemática a segui mosta a elação que existe ente volume,, em m, de uma pessoa e sua massa, m, em kg. m a) Utilizando a fómula, calcule

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges Exercícios Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Exercício 01 01)

Leia mais

3. Potencial Eléctrico

3. Potencial Eléctrico 3. Potencial Eléctico 3.1. Difeença de Potencial e Potencial Eléctico. 3.2. Difeenças de Potencial num Campo Eléctico Unifome. 3.3. Potencial Eléctico e Enegia Potencial de Cagas pontuais. 3.4. Potencial

Leia mais

UPM/EE/DEM/FT-II-5C/Profa. Dra. Míriam Tvrzská de Gouvêa/2004-2S UPM/EE/DEM&DEE/FT-II-4E/F/Profa. Dra. Esleide Lopes Casella/2004-2S

UPM/EE/DEM/FT-II-5C/Profa. Dra. Míriam Tvrzská de Gouvêa/2004-2S UPM/EE/DEM&DEE/FT-II-4E/F/Profa. Dra. Esleide Lopes Casella/2004-2S Questão paa eflexão: em sítios, não é incomum nos fogões a lenha te-se uma tubulação que aquece água, a qual é conduzida paa os chuveios e toneias sem o uso de bombas. Explique o po quê. (figua extaída

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SCOL POLITÉCIC UIVRSI SÃO PULO epatamento de ngenhaia ecânica P 100 CÂIC 1 Pova Substitutiva 1 de julho de 017 - uação: 110 minutos (não é pemitido o uso de celulaes, tablets, calculadoas e dispositivos

Leia mais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais Antenas e Popagação Folha de execícios nº1 Conceitos Fundamentais 1. Uma onda electomagnética plana com fequência de oscilação de 9.4GHz popaga-se no polipopileno ( 2. 25 e 1). Se a amplitude do campo

Leia mais

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de

Leia mais

comportamento Metálico

comportamento Metálico Teoia de Dude paa o compotamento Metálico Paul Kal Ludwig Dude, 1863 1906 Dude, Annalen de Physik 1, 566 e 3, 369 (1900) Sólidos Rede cistalina O que ea conhecido na época Taité de cistallogaphie, 18 1897

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

- Física e Segurança no Trânsito -

- Física e Segurança no Trânsito - - Física e Seguança no Tânsito - - COLISÕES E MOMENTUM LINEAR - COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES O QUE É MELHOR: - Se atopelado

Leia mais

Teoria clássica das vibrações. Cap 22 ASHCROFT- MERMIN Cap 4 KITTEL

Teoria clássica das vibrações. Cap 22 ASHCROFT- MERMIN Cap 4 KITTEL Teoia clássica das vibações Cap ASHCOFT- MEMIN Cap 4 KITTEL Hoje: Falhas do modelo da ede estática tica Teoia clássica do cistal hamônico Calo específico de um cistal clássico Lei de Dulong-Petit Teoia

Leia mais

CF360 - Resumo Experimentos Prova 2

CF360 - Resumo Experimentos Prova 2 CF360 - Resumo Experimentos Prova 2 Fabio Iareke 19 de dezembro de 2011 1 Força Magnética sobre Condutores de Corrente 1.1 Roteiro de Estudos 1. Qual é a expressão para o campo magnético

Leia mais

FÍSICA III - FGE a Prova - Gabarito

FÍSICA III - FGE a Prova - Gabarito FÍICA III - FGE211 1 a Pova - Gabaito 1) Consiee uas cagas +2Q e Q. Calcule o fluxo o campo elético esultante essas uas cagas sobe a supefície esféica e aio R a figua. Resposta: Pela lei e Gauss, o fluxo

Leia mais

Quasi-Neutralidade e Oscilações de Plasma

Quasi-Neutralidade e Oscilações de Plasma Quasi-Neutalidade e Oscilações de Plasma No pocesso de ionização, como é poduzido um pa eléton-íon em cada ionização, é de se espea que o plasma seja macoscopicamente uto, ou seja, que haja tantos elétons

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

a) Qual é a energia potencial gravitacional, em relação à superfície da água, de um piloto de 60kg, quando elevado a 10 metros de altura?

a) Qual é a energia potencial gravitacional, em relação à superfície da água, de um piloto de 60kg, quando elevado a 10 metros de altura? 1. (Espcex (Aan) 17) U cubo de assa 4 kg está inicialente e epouso sobe u plano hoizontal se atito. Duante 3 s, aplica-se sobe o cubo ua foça constante, hoizontal e pependicula no cento de ua de suas faces,

Leia mais

Prof. Dr. Oscar Rodrigues dos Santos

Prof. Dr. Oscar Rodrigues dos Santos FÍSICA 017-1º. Semeste Pof. D. Osca Rodigues dos Santos oscasantos@utfp.edu.b ou pofoscafisica@gmail.com EMENTA Gavitação. Mecânica dos Fluidos. Oscilações. Ondas Mecânicas. Óptica Geomética. Tempeatua.

Leia mais

II MATRIZES DE RIGIDEZ E FLEXIBILIDADE

II MATRIZES DE RIGIDEZ E FLEXIBILIDADE Cuso de nálise Maticial de stutuas II MTIZS D IGIDZ FXIBIIDD II.- elação ente ações e deslocamentos II.. quação da oça em temos do deslocamento F u Onde a igidez da mola () é a oça po unidade de deslocamento,

Leia mais

Aula 11 Introdução à Física Atômica

Aula 11 Introdução à Física Atômica Aula 11 Intodução à Física Atômica Espectos Atômicos Especto Contínuo SUPERFÍCIE SÓLIDA: Alta tempeatua >>> adiação eletomagnética >>>> especto contínuo (copo nego) Especto Disceto ÁTOMOS LIVRES: a adiação

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss.

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss. lectomagnetismo e Óptica LTI+L 1ºSem 1 13/14 Pof. J. C. Fenandes http://eo-lec lec-tagus.ist.utl.pt/ lectostática 1.4 Teoema de Gauss (cálculo de Campos). ρ dv = O integal da densidade de caga dá a caga

Leia mais

Corrente Alternada. Circuitos Monofásicos (Parte 2)

Corrente Alternada. Circuitos Monofásicos (Parte 2) Corrente Alternada. Circuitos Monofásicos (Parte 2) SUMÁRIO Sinais Senoidais Circuitos CA Resistivos Circuitos CA Indutivos Circuitos CA Capacitivos Circuitos RLC GERADOR TRIFÁSICO Gerador Monofásico GRÁFICO

Leia mais

&21'8725(6(,62/$17(6

&21'8725(6(,62/$17(6 45 &'875(6(,6/$7(6 Ao final deste capítulo você deveá se capaz de: ½ efini o que são mateiais condutoes, isolantes e semicondutoes. ½ ntende o compotamento do veto intensidade de campo elético e do veto

Leia mais

LISTA COMPLETA PROVA 03

LISTA COMPLETA PROVA 03 LISTA COMPLETA PROVA 3 CAPÍTULO 3 E. Quato patículas seguem as tajetóias mostadas na Fig. 3-8 quando elas passam atavés de um campo magnético. O que se pode conclui sobe a caga de cada patícula? Fig. 3-8

Leia mais

Análise Eletromagnética de cabos OPGW Utilizando o Método de Elementos Finitos

Análise Eletromagnética de cabos OPGW Utilizando o Método de Elementos Finitos Análise Eletomagnética de cabos OPGW Utilizando o Método de Elementos Finitos Luciana Gonzalez 1, João Tavaes Pinho 1, Victo Dmitiev 1, Ségio Colle 2, Macelo Andade 3, João Calos V. da Silva 3, Mauo Bedia

Leia mais