TANGÊNCIA E CONCORDÂNCIA

Tamanho: px
Começar a partir da página:

Download "TANGÊNCIA E CONCORDÂNCIA"

Transcrição

1 TANGÊNCIA E CNCRDÂNCIA 1. TANGÊNCIA ENTRE RETA E CIRCUNFERÊNCIA: A RETA TANGENTE A UM ARC DE CIRCUNFERÊNCIA SEMPRE VAI SER PERPENDICULAR A RAI D ARC, N PNT DE TANGÊNCIA

2 Tangente por um ponto da curva Para traçar uma tangente a uma circunferência por um de seus pontos: t T 2 1 Seja o ponto T um ponto da circunferência: 1.Traçar o raio no ponto T Prolongar o raio e sobre ele marcar os pontos 1 e 2, eqüidistantes de T Traçar a mediatriz do segmento12. Esta mediatriz é a tangente à circunferência no ponto T.

3 Exercício de concordância: Desenhar um arco de circunferência que concorde com a reta r no ponto T e passe pelo ponto P. P P r T r 1 T 2 Dados: Ponto P, reta r e o ponto T 1. Pelo ponto T levantar uma perpendicular à reta r;

4 P P P r r T r T 2. Traçar a mediatriz do segmento TP; 3. A intersecção da perpendicular com a mediatriz é o ponto, centro do arco procurado.

5 Tangentes a uma circunferência por um ponto exterior Pelo ponto P, desenhar retas tangentes à circunferência. P M P Dados: a circunferência e o ponto P exterior àcurva: 1. Traçar a mediatriz do segmento P e marcar o ponto M, ponto médio do segmento

6 T M P M P T 2. Traçar uma circunferência com centro no ponto M e raio M. A intersecção das duas circunferência são os pontos de tangência T e T 3. Traçar as retas T e T, tangentes à circunferência.

7 Retas tangente a duas circunferências a) Tangentes exteriores Dadas duas circunferências: r1 r2 r3 M 1. Traçar uma circunferência auxiliar com centro em e raio r3 = r1 - r2 2. Traçar o ponto médio entre os centros das duas circunferências

8 1 M 2 3. Traçar uma circunferência com centro no ponto M até cortar a circunferência auxiliar nos pontos 1 e Traçar as tangentes auxiliares 1 e 2

9 T1 1 T3 2 T2 T4 5. Traçar os raios 1 e 2 e prolongá-los até cortar a a circunferência de raio r1 nos pontos T1e T2 6. Centrar o compasso no pontot1 e com raio 1 marcar o ponto T3 na circunferência de raio r2. T1T3 é a primeira tangente as duas circunferência. 7. Centrar o compasso no pontot2 e com raio 2 marcar o ponto T4 na circunferência de raio r2. T2T4 é a outra tangente as duas circunferência.

10 SLUÇÃ D PRBLEMA

11 b) Tangentes interiores Dadas duas circunferências: r1 r2 r3 M 1. Traçar uma circunferência auxiliar com centro em e raio r3 = r1 + r2 2. Traçar o ponto médio entre os centros das duas circunferências

12 1 M 2 3. Traçar uma circunferência com centro no ponto M até cortar a circunferência auxiliar nos pontos 1 e Traçar as tangentes auxiliares 1 e 2

13 T1 1 M T4 T2 T Traçar os raios 1 e 2 os quais cortam a circunferência de raio r1 nos pontos T1e T2 6. Centrar o compasso no pontot1 e com raio 1 marcar o ponto T3 na circunferência de raio r2. T1T3 é a primeira tangente as duas circunferência. 7. Centrar o compasso no pontot2 e com raio 2 marcar o ponto T4 na circunferência de raio r2. T2T4 é a outra tangente as duas circunferência.

14 SLUÇÃ D PRBLEMA

15 2. TANGÊNCIA ENTRE CIRCUNFERÊNCIAS: PRIMEIR PRINCÍPI: CIRCUNFERÊNCIAS TANGENTES TÊM SEUS CENTRS E PNT DE TANGÊNCIA PERTENCENTES À MESMA RETA

16 EXERCÍCI: TRAÇAR UM ARC DE CIRCUNFERÊNCIA QUE CNTENHA PNT P E TANGENCIE ARC DAD N PNT T. DADS ARC DE CENTR E S PNTS T E P 1. TRAÇAR A RETA T.

17 2. TRAÇARA A MEDIATRIZ D SEGMENT TP. 3. PRLNGAR A MEDIATRIZ ATÉ CRTAR A RETA T. A INTERSECÇÃ DAS DUAS RETAS É PNT, CENTR D ARC PRCURAD.

18 4. CM CENTR EM E RAI T U P, TRAÇAR ARC TANGENTE..

19 SLUÇÃ D PRBLEMA

20 SEGUND PRINCÍPI: A MEDIATRIZ ENTRE S CENTRS DE DUAS CIRCUNFERÊNCIAS DE MESM RAI, É LUGAR GEMÉTRIC DS CENTRS DE TDAS AS CIRCUNFERÊNCIAS TANGENTES, SIMULTANEAMENTE, AS DUAS.

21 EXERCÍCIS: TRAÇAR ARCS TANGENTES A DUAS CICUNFERÊNCIAS a. TANGENTES EXTERIRES TRAÇAR UM ARC TANGENTE, SIMULTANEAMENTE, AS DUAS CIRCUNFERÊNCIAS. PNT T É UM DS PNTS DE TANGÊNCIA. DADS: AS DUAS CIRCUNFERÊNCIA E PNT DE TANGÊNCIA T. 1. TAÇAR A RETA QUE CNTEM CENTR E PNT T. 2. SBRE ESTA RETA E A PARTIR DE T, MARCAR RAI DA CIRDUNFERENCIA DE CENTR, BTEND PNT A.

22 3. TAÇAR A CIRCUNFERÊNCIA AUXILIAR CM CENTR N PNT A E RAI IGUAL A DA CIECUNFERÊNCIA DE CENTR N PNT. 4. TAÇAR A MEDIATRIZ D SEGMENT A.

23 5. DETERMINAR PNT, INTERSECÇÃ DA MEDIATRIZ CM A RETA TA 6. TAÇAR A RETA, PRLNGAR ESTA RETA ATÉ ENCNTRAR PNT T, SEGUNG PNT DE TANGÊNCIA. 7. TRAÇAR ARC CM CENTR EM E RAI T = T. ESTE É ARC TANGENTE AS DUAS CIRCUNFERÊNCIAS.

24 SLUÇÃ D PRBLEMA

25 EXERCÍCIS: TRAÇAR ARCS TANGENTES A DUAS CICUNFERÊNCIAS b. TANGENTES INTERIRES TRAÇAR UM ARC TANGENTE, SIMULTANEAMENTE, AS DUAS CIRCUNFERÊNCIAS. PNT T É UM DS PNTS DE TANGÊNCIA. DADS: AS DUAS CIRCUNFERÊNCIA E PNT DE TANGÊNCIA T. 1. TAÇAR A RETA QUE CNTEM CENTR E PNT T. 2. SBRE ESTA RETA E A PARTIR DE T, MARCAR RAI DA CIRDUNFERENCIA DE CENTR N PNT, BTEND PNT A.

26 3. TAÇAR A CIRCUNFERÊNCIA AUXILIAR CM CENTR N PNT A E RAI IGUAL A DA CIECUNFERÊNCIA DE CENTR N PNT. 4. TAÇAR A MEDIATRIZ D SEGMENT A.

27 5. DETERMINAR PNT, INTERSECÇÃ DA MEDIATRIZ CM A RETA TA 6. TAÇAR A RETA, PRLNGAR ESTA RETA ATÉ ENCNTRAR PNT T, SEGUNG PNT DE TANGÊNCIA. 7. TRAÇAR ARC CM CENTR EM E RAI T = T. ESTE É ARC TANGENTE AS DUAS CIRCUNFERÊNCIAS.

28 SLUÇÃ D PRBLEMA

Construções Fundamentais. r P r

Construções Fundamentais. r P r 1 Construções Fundamentais 1. De um ponto traçar a reta paralela à reta dada. + r 2. De um ponto traçar a perpendicular à reta r, sabendo que o ponto é exterior a essa reta; e de um ponto P traçar a perpendicular

Leia mais

5 LG 1 - CIRCUNFERÊNCIA

5 LG 1 - CIRCUNFERÊNCIA 40 5 LG 1 - CIRCUNFERÊNCIA Propriedade: O lugar geométrico dos pontos do plano situados a uma distância constante r de um ponto fixo O é a circunferência de centro O e raio r. Notação: Circunf(O,r). Sempre

Leia mais

5. DESENHO GEOMÉTRICO

5. DESENHO GEOMÉTRICO 5. DESENHO GEOMÉTRICO 5.1. Retas Paralelas e Perpendiculares No traçado de retas paralelas ou perpendiculares é indispensável o manejo adequado dos esquadros. Na construção das retas perpendiculares e

Leia mais

Desenho geométrico. Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta:

Desenho geométrico. Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta: Desenho geométrico Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta: Linha que estabelece a menor distância entre 2 pontos. Por 1 ponto podem passar infinitas retas. Por 2

Leia mais

AV1 - MA 13-2011 UMA SOLUÇÃO. b x

AV1 - MA 13-2011 UMA SOLUÇÃO. b x Questão 1. figura abaixo mostra uma sequência de circunferências de centros 1,,..., n com raios r 1, r,..., r n, respectivamente, todas tangentes às retas s e t, e cada circunferência, a partir da segunda,

Leia mais

ELIPSES INSCRITAS NUM TRIÂNGULO

ELIPSES INSCRITAS NUM TRIÂNGULO ELIPSES INSCRITAS NUM TRIÂNGULO SERGIO ALVES IME-USP Freqüentemente apresentada como um exemplo notável de sistema dedutivo, a Geometria tem, em geral, seus aspectos indutivos relegados a um segundo plano.

Leia mais

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA A área de um triângul é dada

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questã Se Amélia der R$,00 a Lúcia, entã ambas ficarã cm a mesma quantia. Se Maria der um terç d que tem a Lúcia, entã esta ficará cm R$ 6,00 a mais d que Amélia. Se Amélia perder a metade d que tem, ficará

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP Péricles Bedretchuk Araújo Situações de aprendizagem: a circunferência, a mediatriz e uma abordagem com o Geogebra Dissertação apresentada à Banca Examinadora

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado ATENÇÃO: Escreva a resluçã COM- PLETA de cada questã n espaç reservad para a mesma. Nã basta escrever apenas resultad final: é necessári mstrar s cálculs racicíni utilizad. Questã Caminhand sempre cm a

Leia mais

Construções Elementares com Régua e Compasso

Construções Elementares com Régua e Compasso TERCEIRLISTDEEXERCÍCIOS Fundamentos da Matemática II MTEMÁTIC DCET UESC Humberto José ortolossi Construções Elementares com Régua e Compasso (Entregar todos os exercícios até o dia 20/04/2004) 1 Construindo

Leia mais

Mediana, Altura, Bissetriz e Mediatriz de um Triângulo

Mediana, Altura, Bissetriz e Mediatriz de um Triângulo Mediana, Altura, Bissetriz e Mediatriz de um Triângulo Mediana Definição: Denomina-se mediana de um triângulo o segmento que liga um vértice ao ponto médio do lado oposto a este vértice. AM A é mediana

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever resultad final: é necessári mstrar s cálculs u racicíni utilizad. Questã Uma pessa pssui a quantia de R$7.560,00

Leia mais

Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45).

Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Aula 12 Exercício 1: Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Exercício 2: Traçar a diagonal AB, traçar a mediatriz de AB achando M (ponto médio de AB). Com centro em AB M e raio

Leia mais

Raio é o segmento de recta que une um ponto da circunferência com o seu centro.

Raio é o segmento de recta que une um ponto da circunferência com o seu centro. Catarina Ribeiro 1 Vamos Recordar: Circunferência de centro C e raio r é o lugar geométrico de todos os pontos do plano que estão à mesma distância r de um ponto fixo C. Círculo de centro C e raio r é

Leia mais

DESENHO GEOMÉTRICO. Clarissa Ferreira Albrecht Luiza Baptista de Oliveira. Coordenadoria de Educação Aberta e a Distância

DESENHO GEOMÉTRICO. Clarissa Ferreira Albrecht Luiza Baptista de Oliveira. Coordenadoria de Educação Aberta e a Distância Departamento de Arquitetura e Urbanismo Clarissa Ferreira Albrecht Luiza Baptista de Oliveira 20 Coordenadoria de Educação Aberta e a Distância Desenho Geométrico Universidade Federal de Viçosa Reitora

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

o que se entende por lente.

o que se entende por lente. 1062.0041 As lentes esféricas e suas principais características. 1. Habilidades e cmpetências. 3. Mntagem. B ::; A términ desta atividade alun deverá ter Cas necessári cnsulte a instruçã ]992.021. cmpetência

Leia mais

Nesta aula iremos continuar com os exemplos de revisão.

Nesta aula iremos continuar com os exemplos de revisão. Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).

Leia mais

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada,

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, QUADRILÁTEROS Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, A B C Lados: AB BC CD AD Vértices: A B C D Diagonais: AC BD D Algumas

Leia mais

Bissetrizes e suas propriedades.

Bissetrizes e suas propriedades. Semana Olímpica 013 - Prof. ícero Thiago - olégio ETP/SP issetrizes e suas propriedades. Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. Então, adistância de P a XO é igual à distância de P a

Leia mais

Introdução À Astronomia e Astrofísica 2010

Introdução À Astronomia e Astrofísica 2010 CAPÍTULO 2 TRIGONOMETRIA ESFÉRICA E POSIÇÃO DO SOL Definições gerais. Triângul de Psiçã. Relações entre distância zenital ( Z ), azimute ( A ), ângul hrári ( H ), declinaçã (δ ). Efeit da precessã ds equinócis

Leia mais

APOSTILA I DAC CRIADO POR DÉBORA M. BUENO FRANCO PROFESSORA DE DESENHO ASSISTIDO POR COMPUTADOR FACULDADE EDUCACIONAL DE ARAUCÁRIA - FACEAR

APOSTILA I DAC CRIADO POR DÉBORA M. BUENO FRANCO PROFESSORA DE DESENHO ASSISTIDO POR COMPUTADOR FACULDADE EDUCACIONAL DE ARAUCÁRIA - FACEAR APOSTILA I DAC FORMATOS DE PAPEL ESTABELECIDOS PELA ABNT Os tamanhos de papel são padronizados para a elaboração de desenhos técnicos. A base do formato do papel é A0 (origem alemã Deutsch Industrien Normen-A

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

PROBLEMAS SELECIONADOS DE DESENHO GEOMÉTRICO Parte II: Polígonos e Círculos. Sergio Lima Netto sergioln@lps.ufrj.br

PROBLEMAS SELECIONADOS DE DESENHO GEOMÉTRICO Parte II: Polígonos e Círculos. Sergio Lima Netto sergioln@lps.ufrj.br PROLEMS SELECIONDOS DE DESENHO GEOMÉTRICO Parte II: Polígonos e Círculos Sergio Lima Netto sergioln@lps.ufrj.br versão julho de 008 Prólogo Foi feito um grande esforço para reproduzir os desenhos que acompanham

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

Questão 2. Questão 1. Questão 3. alternativa E. alternativa D. alternativa E

Questão 2. Questão 1. Questão 3. alternativa E. alternativa D. alternativa E NOTAÇÕES C é cnjunt ds númers cmplexs. R é cnjunt ds númers reais. N {,,,...}. i denta a unidade imaginária, u seja, i. z é cnjugad d númer cmplex z. Se X é um cnjunt, P(X) denta cnjunt de tds s subcnjunts

Leia mais

APÊNDICES ATIVIDADES OBJETOS DE APRENDIZAGEM

APÊNDICES ATIVIDADES OBJETOS DE APRENDIZAGEM APÊNDICES ATIVIDADES OBJETOS DE APRENDIZAGEM APÊNDICE A - Análise dos softwares GeoGebra e Winplot I Objetivo: Identificar o software que será utilizado para desenvolver as atividades. II Metodologia:

Leia mais

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA),

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA), 0 - (UERN) A AVALIAÇÃO UNIDADE I -05 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Em uma sorveteria, há x sabores de sorvete e y sabores de cobertura.

Leia mais

Resumo. Maria Bernadete Barison apresenta aulas práticas sobre RETAS em Desenho Geométrico. Geométrica vol.1 n.1d. 2006 RETAS CAD

Resumo. Maria Bernadete Barison apresenta aulas práticas sobre RETAS em Desenho Geométrico. Geométrica vol.1 n.1d. 2006 RETAS CAD 1 1. INTRODUÇÃO. RETAS CAD Iniciaremos o estudo das retas construindo no CAD alguns exercícios já construídos na aula teórica utilizando a régua e o compasso. Entretanto, o nosso compasso aqui será o comando

Leia mais

Geometria Descritiva

Geometria Descritiva Geometria Descritiva Revisão: Interseção entre um plano projetante e um plano não projetante INTERSEÇÃO entre DOIS PLANOS NÃO PROJETANTES Interseção entre um plano projetante e um plano não projetante

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 24.05.2013 12.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março????????????? Na

Leia mais

SIMULADO. Matemática. 2 (Unimontes-MG) 1 (Enem)

SIMULADO. Matemática. 2 (Unimontes-MG) 1 (Enem) (Enem) (Unimontes-MG) A resolução das câmeras digitais modernas é dada em megapixels, unidade de medida que representa um milhão de pontos. As informações sobre cada um desses pontos são armazenadas, em

Leia mais

5o Encontro da RPM 3 a 4 de junho de 2011 Salvador - BA Minicurso. Computador na sala de aula: atividades com Geometria Dinâmica

5o Encontro da RPM 3 a 4 de junho de 2011 Salvador - BA Minicurso. Computador na sala de aula: atividades com Geometria Dinâmica 1 5o Encontro da RPM 3 a 4 de junho de 2011 Salvador - BA Minicurso Computador na sala de aula: atividades com Geometria Dinâmica Cristina Cerri IME USP Cada vez mais estamos incorporando o computador

Leia mais

REFLEXÃO. Leis da reflexão Os fenômenos em que acontecem as reflexões, tanto regular quanto difusa, obedecem a duas leis fundamentais que são:

REFLEXÃO. Leis da reflexão Os fenômenos em que acontecem as reflexões, tanto regular quanto difusa, obedecem a duas leis fundamentais que são: REFLEXÃO Como já foi dito anteriormente, reflexão é o fenômeno pelo qual, a luz incide sobre uma superfície e retorna ao meio de incidência. Iremos agora, estudar a reflexão da luz em espelhos planos e

Leia mais

AA3 PRODUÇÃO DE DESENHO GEOMÉTRICO

AA3 PRODUÇÃO DE DESENHO GEOMÉTRICO AA3 PRODUÇÃO DE DESENHO GEOMÉTRICO Vamos agora colocar em prática o nosso conhecimento sobre desenho geométrico, desenvolver a habilidade de fazer traçados e de pensar espacialmente. O objetivo deste exercício

Leia mais

LISTÃO UNIDADE IV. Mensagem:

LISTÃO UNIDADE IV. Mensagem: LISTÃO UNIDADE IV Mensagem: A Matemática é uma ciência poderosa e bela; problemiza ao mesmo tempo a harmonia divina do universo e a grandeza do espírito humano. (F. Gomes Teieira) 01. Efetue as operações:

Leia mais

Noções de Topografia Para Projetos Rodoviarios

Noções de Topografia Para Projetos Rodoviarios Página 1 de 8 Noções de Topografia Para Projetos Rodoviarios Capitulos 01 - Requisitos 02 - Etaqpas 03 - Traçado 04 - Trafego e Clssificação 05 - Geometria 06 - Caracteristicas Técnicas 07 - Distancia

Leia mais

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03. Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois

Leia mais

Caderno 1 : Domínios de Definição, Limites e Continuidade

Caderno 1 : Domínios de Definição, Limites e Continuidade Institut Superir de Ciências d Trabalh e Empresa Curs: Gestã e GEI, An Cadeira: Optimizaçã Cadern : Dmínis de Definiçã, Limites e Cntinuidade (Tópics de teria e eercícis) Elabrad pr: Diana Aldea Mendes

Leia mais

Aula 03 Circuitos CA

Aula 03 Circuitos CA Campus I Jã Pessa Disciplina: Análise de Circuits Curs Técnic Integrad em Eletrônica Prfª: Rafaelle Felician 1. Elements de Circuits n dmíni de Fasres Intrduçã Para cmpreender a respsta de dispsitivs básics

Leia mais

Fornecer provas para alguns dos resultados apresentados sem demonstração. http://www.univ-ab.pt/~mjoao/geometrizacao.html

Fornecer provas para alguns dos resultados apresentados sem demonstração. http://www.univ-ab.pt/~mjoao/geometrizacao.html INTRDUÇÃ Este conjunto de testes formativos para a cadeira de Geometrização baseiase na matéria do livro Geometria, Barnett Rich, Schaum s easy outlines, McGraw Hill. Com este conjunto de testes formativos

Leia mais

Exercícios de Matemática Geometria Analítica Cônicas

Exercícios de Matemática Geometria Analítica Cônicas Eercícios de Matemática Geometria Analítica Cônicas ) (ITA-004) Considere todos os números z = + i que têm módulo e estão na elipse + 4 = 4. Então, o produto deles é igual a 9 49 8 4 ) (VUNESP-00) A figura

Leia mais

Unidade 7: Sínteses de evidências para políticas

Unidade 7: Sínteses de evidências para políticas Unidade 7: Sínteses de evidências para plíticas Objetiv da Unidade Desenvlver um entendiment cmum d que é uma síntese de evidências para plíticas, que inclui e cm pde ser usada 3 O que é uma síntese de

Leia mais

Jardim de Números. Série Matemática na Escola

Jardim de Números. Série Matemática na Escola Jardim de Números Série Matemática na Escola Objetivos 1. Introduzir plano cartesiano; 2. Marcar pontos e traçar objetos geométricos simples em um plano cartesiano. Jardim de Números Série Matemática na

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 0/novembro/008 MTEMÁTI 0. umentando a base de um triângulo em 0% e reduzindo a altura relativa a essa base em 0%, a área do triângulo aumenta em %.

Leia mais

Quarta lista de exercícios.

Quarta lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2015 Quarta lista de exercícios. Circunferência e círculo. Teorema de Tales. Semelhança de triângulos. 1. (Dolce/Pompeo) Um ponto P dista 7 cm do centro

Leia mais

O Desenho Geométrico no Vestibular do ITA. c 2013, Sergio Lima Netto

O Desenho Geométrico no Vestibular do ITA. c 2013, Sergio Lima Netto O Desenho Geométrico no Vestibular do ITA c 2013, Sergio Lima Netto Parte I Prólogo Este material é complementar ao livro A Matemática no Vestibular do ITA, de minha autoria, editado em 2013 pela VestSeller.

Leia mais

MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS

MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS I. Simplesmente Funções Considera: a função f, de domínio IR \ 4, definida por 2 f x ; 4 x a função g, de domínio IR, definida por 1 3 3 2 g x x x 4x 5 6 2 1. Determina

Leia mais

LISTA DE MATEMÁTICA II

LISTA DE MATEMÁTICA II Ensino Médio Unidade São Judas Tadeu Professora: Oscar Aluno (a): Série: 3ª Data: / / 2015. LISTA DE MATEMÁTICA II 1) (Fuvest-SP) Um lateral L faz um lançamento para um atacante A, situado 32 m à sua frente

Leia mais

UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam. Lista 1. Curvas

UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam. Lista 1. Curvas UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam Lista 1 Curvas 1. Desenhe as imagens das seguintes curvas: (a) γ(t) = (1, t) (b) γ(t) = (cos

Leia mais

AULÃO FAETEC /CEFET QUESTÕES DE GEOMETRIA

AULÃO FAETEC /CEFET QUESTÕES DE GEOMETRIA AULÃO FAETEC /CEFET QUESTÕES DE GEOMETRIA FAETEC 2016/UERJ 2017 18/06/2016 FAETEC 2016-1 A figura abaixo é formada por um retângulo e dois círculos de mesmo diâmetro, que são tangentes entre si e a exatamente

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (D) 80 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 0 cm a medida, em cm, de XZ é: (A) 0 (B)

Leia mais

José A. Cancela. Pág. 1

José A. Cancela. Pág. 1 José A. Cancela. Pág. 1 Índice 1. Configurações das barras de ferramentas 4 2. Configuração do fundo da tela 4 3. Configuração do cursor 5 4. Criar Arquivo 5 4.1. Tipo de arquivo 6 5. Salvar arquivo 6

Leia mais

Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA. Professor Responsável: Ivan José Coser Tutora: Rafaela Seabra Cardoso Leal

Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA. Professor Responsável: Ivan José Coser Tutora: Rafaela Seabra Cardoso Leal Universidade Tecnológica Federal do Paraná Câmpus Apucarana Projeto Novos Talentos Edital CAPES 55/12 Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA Professor Responsável: Ivan José Coser

Leia mais

PLANIFICAÇÃO POR UNIDADE TEMÁTICA MATEMÁTICA 6.º ANO 2015/2016

PLANIFICAÇÃO POR UNIDADE TEMÁTICA MATEMÁTICA 6.º ANO 2015/2016 Uma Escola de Cidadania Uma Escola de Qualidade Agrupamento de Escolas Dr. Francisco Sanches PLANIFICAÇÃO POR UNIDADE TEMÁTICA MATEMÁTICA 6.º ANO 2015/2016 Tema 1: Números naturais. Potências de expoente

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

Informática Educativa no Ensino da Matemática Estudo de Geometria com o Software GeoGebra.

Informática Educativa no Ensino da Matemática Estudo de Geometria com o Software GeoGebra. Informática Educativa no Ensino da Matemática Estudo de Geometria com o Software GeoGebra. Orientador: Sérgio Antônio Wielewski Autora: Veridiana Cristina Soares de Melo e-mail: veridianacsm@gmail.com

Leia mais

ICARO SISTEMA DE ENSINO MATEMÁTICA APLICADA. www.portalicaro.com.br atendimento@portalicaro.com.br

ICARO SISTEMA DE ENSINO MATEMÁTICA APLICADA. www.portalicaro.com.br atendimento@portalicaro.com.br MATEMÁTICA APLICADA Disciplina: Matemática Aplicada Trigonometria e aplicações Introduzimos aqui alguns conceitos relacionados com a Trigonometria no triângulo retângulo, assunto comum na oitava série

Leia mais

Profa. Dra. Silvia M de Paula

Profa. Dra. Silvia M de Paula Prfa. Dra. Silvia M de Paula Espelhs Esférics Certamente tds nós já estivems diante de um espelh esféric, eles sã superfícies refletras que têm a frma de calta esférica. Em nss ctidian ficams diante de

Leia mais

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é ÁRES 01 (UFMG) Um terreno tem a forma da figura abaixo. Se,, = 10 m, = 70 m, = 40 m e = 80 m, então a área do terreno é a) 1 500 m b) 1 600 m c) 1 700 m d) 1 800 m 0 (FMMG) - Observe a figura. Nessa figura,

Leia mais

Atividade 7. Figura 1 (1) Figura 2 (2)

Atividade 7. Figura 1 (1) Figura 2 (2) Atividade 7 1) PROBLEMATIZAÇÃO: No dia-a-dia não é difícil nos depararmos com situações em que há o emprego de superfícies curvas refletindo luz. Dentre elas, podem ser citados os espelhos esféricos e

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

Exame Nacional de 2009 1. a chamada

Exame Nacional de 2009 1. a chamada 1. A agência de viagens ViajEuropa tem como destinos turísticos as capitais europeias. A taela 1 mostra o número de viagens vendidas pela agência nos primeiros três meses do ano. Cotações Meses Taela 1

Leia mais

Planificação de Matemática -6ºAno

Planificação de Matemática -6ºAno DGEstE - Direção-Geral de Estabelecimentos Escolares Direção de Serviços Região Alentejo Agrupamento de Escolas de Moura código n.º 135471 Escola Básica nº 1 de Moura (EB23) código n.º 342294 Planificação

Leia mais

Grupo de trabalho: OBJECTIVOS. Realizar actividades em parceria com outras escolas.

Grupo de trabalho: OBJECTIVOS. Realizar actividades em parceria com outras escolas. FAZER HISTÓRIA: descobrir o valor do raio da Terra e estimar a distância à Lua Data: / / Grupo de trabalho: OBJECTIVOS Relacionar a sombra projectada pelo Sol em lugares com diferentes latitudes, para

Leia mais

Geometria Analítica Plana.

Geometria Analítica Plana. Geometria Analítica Plana. Resumo teórico e eercícios. 3º Colegial / Curso Etensivo. Autor - Lucas Octavio de Souza (Jeca) Estudo de Geometria Analítica Plana. Considerações gerais. Este estudo de Geometria

Leia mais

UNIMAR - UNIVERSIDADE DE MARÍLIA FACULDADE DE ENGENHARIA, ARQUITETURA E TECNOLOGIA

UNIMAR - UNIVERSIDADE DE MARÍLIA FACULDADE DE ENGENHARIA, ARQUITETURA E TECNOLOGIA UNIMAR - UNIVERSIDADE DE MARÍLIA FACULDADE DE ENGENHARIA, ARQUITETURA E TECNOLOGIA ANOTAÇÕES DE AULAS DESENHO TÉCNICO CARLOS EDUARDO TROCCOLI PASTANA. Sugestões: pastana@flash.tv.br MARÍLIA. 2006. Revisão

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ RESOLUÇÃO VLIÇÃO E MTEMÁTI o NO O ENSINO MÉIO T: 05/0/1 PROFESSOR: MLTEZ QUESTÃO 01 São dados os triângulos retângulos E e TE conforme a figura ao lado; T se = E = E = 60 cm, então: E Os triângulos e TE

Leia mais

Preparação para o teste intermédio de Matemática 8º ano

Preparação para o teste intermédio de Matemática 8º ano Preparação para o teste intermédio de Matemática 8º ano Conteúdos do 7º ano Conteúdos do 8º ano Conteúdos do 8º Ano Teorema de Pitágoras Funções Semelhança de triângulos Ainda os números Lugares geométricos

Leia mais

Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada: ANTON, H. Cálculo: Um novo horizonte. Volume 2. Páginas 311 a 323.

Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada: ANTON, H. Cálculo: Um novo horizonte. Volume 2. Páginas 311 a 323. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Faculdade de Matemática - Departamento de Matemática Cálculo B (Informática) Turmas 18 e 138 Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada:

Leia mais

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,

Leia mais

Geometria Métrica Espacial. Geometria Métrica Espacial

Geometria Métrica Espacial. Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma:

MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre/013 Aluno(a): Número: Turma: 1) Determine

Leia mais

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade

Leia mais

Software Régua e Compasso

Software Régua e Compasso 1 COORDENAÇÃO DE PESQUISA E PÓS-GRADUAÇÃO CPPG TECNOLOGIAS DE INFORMAÇÃO E COMUNICAÇÃO NO PROCESSO DE ENSINO- APRENDIZAGEM DE MATEMÁTICA 1ª Parte - Consulta Rápida Software Régua e Compasso A primeira

Leia mais

Desenho geométrico, para que serve isso?

Desenho geométrico, para que serve isso? Desenho geométrico, para que serve isso? Jorge Alexandre dos Santos Gaspar Resolução de equações pelo Método Euclidiano: uma aplicação do Desenho Geométrico nas salas de hoje. Manual para professores do

Leia mais

Exercícios de Matemática Retas e Planos

Exercícios de Matemática Retas e Planos Exercícios de Matemática Retas e Planos 3. (Unesp) Considere o cubo da figura adiante. Das alternativas a seguir, aquela correspondente a pares de vértices que determinam três retas, duas a duas reversas,

Leia mais

MINICURSO: CONSTRUÇÕES GEOMÉTRICAS INTERATIVAS COM A UTILIZAÇÃO DO SOFTWARE GEOGEBRA

MINICURSO: CONSTRUÇÕES GEOMÉTRICAS INTERATIVAS COM A UTILIZAÇÃO DO SOFTWARE GEOGEBRA ISSN 2177-9139 MINICURSO: CONSTRUÇÕES GEOMÉTRICAS INTERATIVAS COM A UTILIZAÇÃO DO SOFTWARE GEOGEBRA Vanessa Etcheverria Cassuriaga vanessa19921000@hotmail.com Fundação Universidade Federal do Pampa, Campus

Leia mais

ESCOLA BÁSICA E SECUNDÁRIA CLARA DE RESENDE

ESCOLA BÁSICA E SECUNDÁRIA CLARA DE RESENDE 1. NÚMEROS NATURAIS ESCOLA BÁSICA E SECUNDÁRIA CLARA DE RESENDE CRITÉRIOS DE AVALIAÇÃO ESPECÍFICOS (Aprovados em Conselho Pedagógico a 21 de Outubro de 2014) No caso específico da disciplina de Matemática,

Leia mais

Geometria Dinâmica com o Cinderella. - Em que um dos lados meça 4 unidades e os ângulos adjacentes 30 e 70.

Geometria Dinâmica com o Cinderella. - Em que um dos lados meça 4 unidades e os ângulos adjacentes 30 e 70. Actividade 1 Polígonos Construa um triângulo 1 : - definido por três pontos; - isósceles, não equilátero; - rectângulo; - Em que um dos lados meça 4 unidades e os ângulos adjacentes 30 e 70. Construa um

Leia mais

Desenho Técnico. Adriano Pinto Gomes. INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA MINAS GERAIS CampusOuro Preto

Desenho Técnico. Adriano Pinto Gomes. INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA MINAS GERAIS CampusOuro Preto Desenho Técnico Adriano Pinto Gomes INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA MINAS GERAIS CampusOuro Preto Ouro Preto - MG 2012 Presidência da República Federativa do Brasil Ministério da Educação

Leia mais

E-QP-ECD-078 REV. C 02/Abr/2008 PROCEDIMENTO DE CONTROLE DIMENSIONAL - GABARITO DE FORMA PARA VASOS DE PRESSÃO -

E-QP-ECD-078 REV. C 02/Abr/2008 PROCEDIMENTO DE CONTROLE DIMENSIONAL - GABARITO DE FORMA PARA VASOS DE PRESSÃO - ENGENHARIA PROCEDIMENTO DE CONTROLE DIMENSIONAL - GABARITO DE FORMA PARA VASOS DE PRESSÃO - Os comentários e sugestões referentes a este documento devem ser encaminhados ao SEQUI, indicando o item a ser

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

2012/2013. Funções e Geometria MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS

2012/2013. Funções e Geometria MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS 2012/2013 MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS I. Funções polinomiais. Considera a função f, de domínio IR definida por: 1 3 2 f x x 3x 8x 3 3 1. Determina o(s) zero(s) da função f, com aproximação às

Leia mais

Prof. Sérgio Viana. Estas notas de aula são destinadas aos alunos que. Gráfica, para um posterior estudo mais profundo.

Prof. Sérgio Viana. Estas notas de aula são destinadas aos alunos que. Gráfica, para um posterior estudo mais profundo. EXPRESSÃO GRÁFICA Prof. Sérgio Viana Estas notas de aula são destinadas aos alunos que desejam ter um conhecimento básico de Expressão Gráfica, para um posterior estudo mais profundo. 1 Caligrafia Técnica

Leia mais

CONTEÚDOS METAS / DESCRITORES RECURSOS

CONTEÚDOS METAS / DESCRITORES RECURSOS AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática 6º Ano Ano Letivo 2015/2016

Leia mais

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES B3 CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES Circunferência Circunferência é um conjunto de pontos do plano situados à mesma distância de um ponto fixo (centro). Corda é um segmento de recta cujos extremos

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

Uma Introdução às Construções Geométricas

Uma Introdução às Construções Geométricas page 1 Uma Introdução às Construções Geométricas Eduardo Wagner page 2 Texto já revisado pela nova ortografia. page 3 Eισαγωγή στ ις Γεωµετ ρική κατ ασκευές Eduardo Wagner page 4 page i Apresentação Oι

Leia mais

MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO:

MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO: PROVA DO VESTIULAR ESAMC-003- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA MATEMÁTICA 3 3 3 6. A epressão numérica ( ) 3.( ).( ).( ) equivale a: A) 9 ) - 9 C) D) - E) 6 3 3 3 3 ( ).( ).( ).(

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente,

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente, Questão Os trabalhadores A e B, trabalhando separadamente, levam cada um 9 e 0 horas, respectivamente, para construir um mesmo muro de tijolos Trabalhando juntos no serviço, sabe-se que eles assentam 0

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

Quinta lista de exercícios.

Quinta lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2015 Quinta lista de exercícios. Triângulos retângulos. Polígonos regulares. Áreas de superfícies planas. 1. Qual deve ser o comprimento de uma escada

Leia mais

Prof. Weber Campos webercampos@gmail.com. 2012 Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor.

Prof. Weber Campos webercampos@gmail.com. 2012 Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor. EP FISL Raciocínio Lógico - GEOMETRI ÁSI - TRIGONOMETRI webercampos@gmail.com 01 opyri'ght. urso gora eu Passo - Todos os direitos reservados ao autor. ÍNDIE Exercícios Resolvidos de GEOMETRI 0 Exercícios

Leia mais

1 a Questão: (10,0 pontos)

1 a Questão: (10,0 pontos) Ciências da Natureza, e suas Tecnologias 1 a Questão: (10,0 pontos) Suponha que, em certo dia de janeiro de 00, quando 1 dólar americano valia 1 peso argentino e ambos valiam,1 reais, o governo argentino

Leia mais