Física: Eletricidade Eletrodinâmica e Eletrostática

Tamanho: px
Começar a partir da página:

Download "Física: Eletricidade Eletrodinâmica e Eletrostática"

Transcrição

1 Física: Eletricidade Eletrodinâmica e Eletrostática 1. (Uerj 016) Aceleradores de partículas são ambientes onde partículas eletricamente carregadas são mantidas em movimento, como as cargas elétricas em um condutor. No Laboratório Europeu de Física de Partículas CERN, está localizado o mais potente acelerador em operação no mundo. Considere as seguintes informações para compreender seu funcionamento: - os prótons são acelerados em grupos de cerca de 3000 pacotes, que constituem o feixe do acelerador; - esses pacotes são mantidos em movimento no interior e ao longo de um anel de cerca de 30 km de comprimento; - cada pacote contém, aproximadamente, próximas à da luz no vácuo; - a carga do próton é igual a m s prótons que se deslocam com velocidades 19 1,6 10 C e a velocidade da luz no vácuo é igual a Nessas condições, o feixe do CERN equivale a uma corrente elétrica, em ampères, da ordem de grandeza de: a) b) c) d) (Uerj 016) Uma rede elétrica fornece tensão eficaz de 100 V a uma sala com três lâmpadas, L 1, L e L. 3 Considere as informações da tabela a seguir: Lâmpada Tipo Características elétricas nominais L 1 incandescente 00 V 10 W L incandescente 100 V 60 W L 3 fluorescente 100 V 0 W As três lâmpadas, associadas em paralelo, permanecem acesas durante dez horas, sendo E 1, E e E 3 as energias consumidas, respectivamente, por L 1, L e L. 3 A relação entre essas energias pode ser expressa como: a) E1 E E3 b) E1 E E3 c) E E1 E3 d) E E3 E1 1

2 3. (Epcar (Afa) 015) Uma pequenina esfera vazada, no ar, com carga elétrica igual a 1μ C e massa 10 g, é perpassada por um aro semicircular isolante, de extremidades A e B, situado num plano vertical. Uma partícula carregada eletricamente com carga igual a 4μ C é fixada por meio de um suporte isolante, no centro C do aro, que tem raio R igual a 60 cm, conforme ilustra a figura abaixo. Despreze quaisquer forças dissipativas e considere a aceleração da gravidade constante. Ao abandonar a esfera, a partir do repouso, na extremidade A, pode-se afirmar que a intensidade da reação normal, em newtons, exercida pelo aro sobre ela no ponto mais baixo (ponto D) de sua trajetória é igual a a) 0,0 b) 0,40 c) 0,50 d) 0,60 4. (Pucrj 015) Dois bastões metálicos idênticos estão carregados com a carga de 9,0 μ C. Eles são colocados em contato com um terceiro bastão, também idêntico aos outros dois, mas cuja carga líquida é zero. Após o contato entre eles ser estabelecido, afastam-se os três bastões. Qual é a carga líquida resultante, em μ C, no terceiro bastão? a) 3,0 b) 4,5 c) 6,0 d) 9,0 e) 18

3 5. (Unesp 015) Em um experimento de eletrostática, um estudante dispunha de três esferas metálicas idênticas, A, B e C, eletrizadas, no ar, com cargas elétricas 5Q, 3Q e Q, respectivamente. Utilizando luvas de borracha, o estudante coloca as três esferas simultaneamente em contato e, depois de separá-las, suspende A e C por fios de seda, mantendo-as próximas. Verifica, então, que elas interagem eletricamente, permanecendo em equilíbrio estático a uma distância d uma da outra. Sendo k a constante eletrostática do ar, assinale a alternativa que contém a correta representação da configuração de equilíbrio envolvendo as esferas A e C e a intensidade da força de interação elétrica entre elas. a) b) c) d) e) 6. (G1 - cps 015) O transporte de grãos para o interior dos silos de armazenagem ocorre com o auxílio de esteiras de borracha, conforme mostra a figura, e requer alguns cuidados, pois os grãos, ao caírem sobre a esteira com velocidade diferente dela, até assimilarem a nova velocidade, sofrem escorregamentos, eletrizando a esteira e os próprios grãos. Essa eletrização pode provocar faíscas que, no ambiente repleto de fragmentos de grãos suspensos no ar, pode acarretar incêndios. 3

4 Nesse processo de eletrização, os grãos e a esteira ficam carregados com cargas elétricas de sinais a) iguais, eletrizados por atrito. b) iguais, eletrizados por contato. c) opostos, eletrizados por atrito. d) opostos, eletrizados por contato. e) opostos, eletrizados por indução. 7. (Mackenzie 015) Uma esfera metálica A, eletrizada com carga elétrica igual a 0,0 μc, é colocada em contato com outra esfera idêntica B, eletricamente neutra. Em seguida, encostase a esfera B em outra C, também idêntica eletrizada com carga elétrica igual a 50,0 μ C. Após esse procedimento, as esferas B e C são separadas. A carga elétrica armazenada na esfera B, no final desse processo, é igual a a) 0,0 μ C b) 30,0 μ C c) 40,0 μ C d) 50,0 μ C e) 60,0 μ C 8. (Pucrj 015) Em um laboratório de eletrônica, um aluno tem à sua disposição um painel de conexões, uma fonte de 1 V e quatro resistores, com resistências R1 10 Ω, R 0 Ω, R3 30 Ω e R4 40 Ω. Para armar os circuitos dos itens abaixo, ele pode usar combinações em série e/ou paralelo de alguns ou todos os resistores disponíveis. a) Sua primeira tarefa é armar um circuito tal que a intensidade de corrente fornecida pela fonte seja de 8,0 A. Faça um esquema deste circuito. Justifique. b) Agora o circuito deve ter a máxima intensidade de corrente possível fornecida pela fonte. Faça um esquema do circuito. Justifique. c) Qual é o valor da intensidade de corrente do item b? 4

5 9. (Unifesp 015) Uma carga elétrica puntiforme Q 0 está fixa em uma região do espaço e cria um campo elétrico ao seu redor. Outra carga elétrica puntiforme q, também positiva, é colocada em determinada posição desse campo elétrico, podendo mover-se dentro dele. A malha quadriculada representada na figura está contida em um plano xy, que também contém as cargas. Quando na posição A, q fica sujeita a uma força eletrostática de módulo F exercida por Q. a) Calcule o módulo da força eletrostática entre Q e q, em função apenas de F, quando q estiver na posição B. b) Adotando 1,4 e sendo K a constante eletrostática do meio onde se encontram as cargas, calcule o trabalho realizado pela força elétrica quando a carga q é transportada de A para B. 10. (Ufu 015) A Gaiola de Faraday nada mais é do que uma blindagem eletrostática, ou seja, uma superfície condutora que envolve e delimita uma região do espaço. A respeito desse fenômeno, considere as seguintes afirmativas. I. Se o comprimento de onda de uma radiação incidente na gaiola for muito menor do que as aberturas da malha metálica, ela não conseguirá o efeito de blindagem. II. Se o formato da gaiola for perfeitamente esférico, o campo elétrico terá o seu valor máximo no ponto central da gaiola. III. Um celular totalmente envolto em um pedaço de papel alumínio não receberá chamadas, uma vez que está blindado das ondas eletromagnéticas que o atingem. IV. As cargas elétricas em uma Gaiola de Faraday se acumulam em sua superfície interna. Assinale a alternativa que apresenta apenas afirmativas corretas. a) I e II. b) I e III. c) II e III. d) III e IV. 5

6 11. (Mackenzie 015) Uma carga elétrica de intensidade Q 10,0 μc, no vácuo, gera um campo elétrico em dois pontos A e B, conforme figura acima. Sabendo-se que a constante eletrostática do vácuo é k Nm / C o trabalho realizado pela força elétrica para transferir uma carga q,00 μc do ponto B até o ponto A é, em mj, igual a a) 90,0 b) 180 c) 70 d) 100 e) (Unesp 015) Modelos elétricos são frequentemente utilizados para explicar a transmissão de informações em diversos sistemas do corpo humano. O sistema nervoso, por exemplo, é composto por neurônios (figura 1), células delimitadas por uma fina membrana lipoproteica que separa o meio intracelular do meio extracelular. A parte interna da membrana é negativamente carregada e a parte externa possui carga positiva (figura ), de maneira análoga ao que ocorre nas placas de um capacitor. A figura 3 representa um fragmento ampliado dessa membrana, de espessura d, que está sob ação de um campo elétrico uniforme, representado na figura por suas linhas de força paralelas entre si e orientadas para cima. A diferença de potencial entre o meio intracelular e o 6

7 extracelular é V. Considerando a carga elétrica elementar como e, o íon de potássio K, indicado na figura 3, sob ação desse campo elétrico, ficaria sujeito a uma força elétrica cujo módulo pode ser escrito por a) e V d b) e d V c) V d e d) e V d e) e V d 13. (Unesp 015) Em muitos experimentos envolvendo cargas elétricas, é conveniente que elas mantenham sua velocidade vetorial constante. Isso pode ser conseguido fazendo a carga movimentar-se em uma região onde atuam um campo elétrico E e um campo magnético B, ambos uniformes e perpendiculares entre si. Quando as magnitudes desses campos são ajustadas convenientemente, a carga atravessa a região em movimento retilíneo e uniforme. A figura representa um dispositivo cuja finalidade é fazer com que uma partícula eletrizada com carga elétrica q 0 atravesse uma região entre duas placas paralelas P 1 e P, eletrizadas com cargas de sinais opostos, seguindo a trajetória indicada pela linha tracejada. O símbolo representa um campo magnético uniforme B 0,004 T, com direção horizontal, perpendicular ao plano que contém a figura e com sentido para dentro dele. As linhas verticais, ainda não orientadas e paralelas entre si, representam as linhas de força de um campo elétrico uniforme de módulo E 0N C. Desconsiderando a ação do campo gravitacional sobre a partícula e considerando que os módulos de B e E sejam ajustados para que a carga não desvie quando atravessar o dispositivo, determine, justificando, se as linhas de força do campo elétrico devem ser orientadas no sentido da placa P 1 ou da placa P e calcule o módulo da velocidade v da carga, em m s. 14. (Fuvest 015) Em uma aula de laboratório de Física, para estudar propriedades de cargas elétricas, foi realizado um experimento em que pequenas esferas eletrizadas são injetadas na parte superior de uma câmara, em vácuo, onde há um campo elétrico uniforme na mesma direção e sentido da aceleração local da gravidade. Observou-se que, com campo elétrico de módulo igual a 3 10 V / m, uma das esferas, de massa velocidade constante no interior da câmara. Essa esfera tem 15 3, 10 kg, permanecia com 7

8 Note e adote: 19 - c arga do elétron 1,6 10 C 19 - c arga do próton 1,6 10 C - aceleração local da gravidade 10 m / s a) o mesmo número de elétrons e de prótons. b) 100 elétrons a mais que prótons. c) 100 elétrons a menos que prótons. d) 000 elétrons a mais que prótons. e) 000 elétrons a menos que prótons. 15. (Fuvest 015) A região entre duas placas metálicas, planas e paralelas está esquematizada na figura abaixo. As linhas tracejadas representam o campo elétrico uniforme existente entre as placas. A distância entre as placas é 5 mm e a diferença de potencial entre elas é 300 V. As coordenadas dos pontos A, B e C são mostradas na figura. Determine a) os módulos E A, E B e E C do campo elétrico nos pontos A, B e C, respectivamente; b) as diferenças de potencial V AB e V BC entre os pontos A e B e entre os pontos B e C, respectivamente; c) o trabalho τ realizado pela força elétrica sobre um elétron que se desloca do ponto C ao ponto A. Note e adote: O sistema está em vácuo. 19 Carga do elétron 1,6 10 C. 8

9 16. (Ufes 015) Um capacitor de placas planas e paralelas é constituído por dois idênticos discos circulares de raio R, separados por uma distância d, com R d. O espaço entre as placas é mantido sob vácuo, e aplica-se uma diferença de potencial V entre elas. O capacitor pode ser considerado ideal, ou seja, o campo elétrico no espaço entre suas placas é uniforme. Sabe-se que a capacitância de um capacitor ideal de placas planas e paralelas, no vácuo, é dada pela expressão C ε0a / d, onde ε 0 é a permissividade elétrica do vácuo, A é a área de cada placa e d é a distância entre as placas. a) Determine o módulo da carga elétrica armazenada em cada placa. b) Uma carga puntiforme positiva q, de massa m, é lançada dentro do capacitor junto ao centro da placa positivamente carregada, com uma velocidade v 0 paralela ao plano da placa. Determine quanto tempo a carga levará para atingir a placa negativamente carregada, desprezando a força gravitacional. c) Determine o módulo da velocidade da carga q no momento em que ela atinge a placa negativamente carregada, desprezando a força gravitacional. 17. (Epcar (Afa) 015) Duas grandes placas metálicas idênticas, P 1 e P, são fixadas na face dianteira de dois carrinhos, de mesma massa, A e B. Essas duas placas são carregadas eletricamente, constituindo, assim, um capacitor plano de placas paralelas. Lançam-se, simultaneamente, em sentidos opostos, os carrinhos A e B, conforme indicado na figura abaixo. Desprezadas quaisquer resistências ao movimento do sistema e considerando que as placas estão eletricamente isoladas, o gráfico que melhor representa a ddp, U, no capacitor, em função do tempo t, contado a partir do lançamento é a) b) 9

10 c) d) 18. (Uemg 015) Dirigir um carro numa noite estrelada, bem devagar, contemplando a noite. Um tatu... Há quanto tempo não via um... Aquela parecia ser mesmo uma noite especial, uma noite... O celular tocou. Alô Bem, onde você está? VILELA, 013, p.6 O celular sempre nos encontra. Esteja onde estiver, o celular o encontrará, e o tirará de reflexões que... Num carregador de celular, podem ser lidas as seguintes informações: Tensão de entrada: 100 a 40 V 0,15A. Tensão de saída: 4,75 V 0,55 A. A tensão de entrada pode variar de 100 a 40 V. Quando em sua casa, Vilela liga seu celular para carregá-lo em 17 V. Com base nessas informações, assinale a afirmação que corresponde à realidade: a) Ao receber a chamada descrita no texto acima, o celular estava submetido a uma tensão próxima de 17 V. b) Ao ligar o carregador de celular, em casa, haveria uma transformação de tensão de 17 V para 4,75 V, que é a tensão nos terminais da bateria do celular. c) A potência elétrica de entrada (consumo da rede elétrica) do aparelho é de 17 V. d) O celular recebe da rede elétrica uma corrente contínua, mas, sem estar ligado à rede, funciona com corrente alternada, quando a pessoa recebe a ligação, como foi o caso da personagem no trecho acima. 19. (G1 - cftmg 015) As afirmativas a seguir referem-se às precauções que um técnico eletricista deve tomar com relação à segurança no seu trabalho. Assinale (V) para as afirmativas verdadeiras ou (F), para as falsas. ( ) O risco de choque elétrico ocorre quando se toca em dois ou mais fios ao mesmo tempo. ( ) O eletricista deve usar luvas de borracha adequadas e evitar curtos-circuitos entre dois ou mais fios, quando trabalhar com a rede elétrica energizada. ( ) O uso de botas de borracha impede a ocorrência de choques elétricos. 10

11 A sequência correta encontrada é a) V - V - F. b) V - F - F. c) F - V - F. d) V - F - V. 0. (Unesp 015) O poraquê é um peixe elétrico que vive nas águas amazônicas. Ele é capaz de produzir descargas elétricas elevadas pela ação de células musculares chamadas eletrócitos. Cada eletrócito pode gerar uma diferença de potencial de cerca de 0,14 V. Um poraquê adulto possui milhares dessas células dispostas em série que podem, por exemplo, ativar-se quando o peixe se encontra em perigo ou deseja atacar uma presa. A corrente elétrica que atravessa o corpo de um ser humano pode causar diferentes danos biológicos, dependendo de sua intensidade e da região que ela atinge. A tabela indica alguns desses danos em função da intensidade da corrente elétrica. intensidade de corrente elétrica Até 10 ma De 10 ma até 0 ma De 0 ma até 100 ma De 100 ma até 3A acima de 3A dano biológico apenas formigamento contrações musculares convulsões e parada respiratória fibrilação ventricular parada cardíaca e queimaduras graves (José Enrique R. Duran. Biofísica: fundamentos e aplicações, 003. Adaptado.) Considere um poraquê que, com cerca de 8000 eletrócitos, produza uma descarga elétrica sobre o corpo de uma pessoa. Sabendo que a resistência elétrica da região atingida pela descarga é de 6000 Ω, de acordo com a tabela, após o choque essa pessoa sofreria a) parada respiratória. b) apenas formigamento. c) contrações musculares. d) fibrilação ventricular. e) parada cardíaca. 11

12 Gabarito: Resposta da questão 1: [A] ΔQ n e n e v , im 0,48 A 1 A Δt ΔS ΔS v 0 im 10 A. Resposta da questão : [C] As lâmpadas L e L 3 estão ligadas corretamente, consumindo a potência nominal. Porém, L 1 não está ligada de acordo com as suas especificações consumindo potência diferente da nominal. Calculemos essa nova potência supondo que sua resistência permaneça constante ' U R P1 100 ' 10 P P 1 30 W. R ' 100 P1 R A energia consumida é diretamente proporcional ao tempo de operação: ΔE PΔt. Assim, consome mais energia a lâmpada que dissipa maior potência. ' P P1 P 3 E E1 E 3. Resposta da questão 3: [B] A força resultante no ponto D é a força centrípeta conforme diagrama: F r F c m vd N P Fe (1) R 1

13 A força elétrica F e é dada pela Lei de Coulomb q1 q q1 q Fe k0 k 0 d R () Por conservação de energia, calculamos a velocidade da esfera no ponto D vd gr (3) E, ainda P m g (4) Substituindo as equações, 3 e 4 na equação 1 e isolando a força normal: 1 m gr q q N m g k0 R R q1 q N 3m g k0 R N 3 0, ,6 N 0,3 0,1 N 0,4 N Resposta da questão 4: [C] Esta questão trata da eletrização por contato, onde bastões metálicos idênticos são colocados em contato, sendo dois com carga de 9,0 μ C e outro neutro. A resolução desta questão impõe o princípio da conservação de carga, isto é, o somatório das cargas é constante antes e depois do contato. A carga líquida resultante em um bastão será este somatório de cargas dividido igualmente pelos três bastões. Portanto: Qt Q1 Q Q3 constante Q 9,0 μc 9,0 μc 0 18,0 μc t E a carga de cada bastão após o contato será: ' Qt 18,0 μc Q3 6,0 μc 3 3 Resposta da questão 5: [B] Calculando a carga final (Q') de cada esfera é aplicando a lei de Coulomb; vem: ' ' ' ' QA QB QC 5Q 3Q Q ' QA QB QC Q Q Q. 3 3 ' ' k Q A QC k Q 4 k Q F F. d d d 13

14 Como as cargas têm mesmo sinal, as forças repulsivas (ação-reação) têm mesma intensidade. Resposta da questão 6: [C] Os grãos sofrem eletrização por atrito e, assim, ficam eletrizados com cargas opostas em relação à correia transportadora. Resposta da questão 7: [A] Dados: QA 0 μc; QB 0; QC 50 μc. Como as esferas são condutoras e idênticas, após cada contato cada uma armazena metade da carga total. QA QB 0 0 1º Contato : A B Q B1 QB1 10 μc. QC QB º Contato : B C Q B QB 0 μc. Resposta da questão 8: a) A resistência equivalente deste circuito é dada pela 1ª Lei de Ohm: U R i Sendo U a diferença de potencial elétrico em volts, R a resistência elétrica equivalente do circuito em ohms e i a intensidade da corrente elétrica em ampères. U 1 V Req 15 Ω i 0,8 A Para que a resistência equivalente do circuito chegue a 15 Ω devemos ter dois resistores de 30 Ω em paralelo, mas como não há dois resistores iguais podemos somar 30 Ω usando uma associação em série entre os resistores de 10 Ω e 0 Ω. Agora fazendo a resistência equivalente em paralelo, obtém-se 30Ω Req/par 15 Ω Sendo o circuito equivalente: 14

15 b) Para o circuito ter a máxima intensidade de corrente possível, a resistência elétrica deve ser a mínima, pois são inversamente proporcionais. Com isso, devemos construir um circuito com todos os resistores possíveis em paralelo. Assim a resistência equivalente será menor que a menor das resistências utilizadas Req Req 4,8 Ω c) A intensidade da corrente será: U 1 i,5 A Req 4,8 Resposta da questão 9: a) Analisemos a figura: Na figura dada vemos que: da 4 d. O triângulo retângulo QAB é isósceles. db da db 4 d. Aplicando a lei de Coulomb para as duas situações propostas: k Q q F d A F' da F' d A F F' k Q q F db F d A F' db b) Aplicando o teorema da energia potencial: 15

16 A B k Q q k Q q k Q q k Q q WAB E pot E pot W AB W AB da db 4d 4 d k Q q 1 1 k Q q 1 k Q q W AB W AB W AB d 4 4 d 4 8 d 8 k Q q 1,4 k Q q 6 W AB W AB d 8 d 80 3kQ q W AB. 40 d Resposta da questão 10: [B] [I] (Verdadeira) Se a gaiola metálica for feita com tela metálica de abertura muito maior que o comprimento de onda a blindagem torna-se ineficiente, pois a onda consegue penetrar a gaiola. [II] (Falsa) No interior da gaiola o campo elétrico é nulo. [III] (Verdadeira) O papel alumínio, sendo metálico, agirá como uma gaiola de Faraday, impedindo o recebimento de ondas eletromagnéticas, isto é, o celular não recebe chamadas, pois o campo elétrico no interior do invólucro de alumínio é nulo. [IV] (Falsa) As cargas se acumulam na superfície externa da gaiola. Resposta da questão 11: [A] Usando o teorema da energia potencial: k B A 0Q q k0q q WF EPot E Pot db da W F k0 Q q WF db da 1 WF 90 mj. Resposta da questão 1: [E] V E d V E ev d F. d F q E F e E Resposta da questão 13: Aplicando as regras práticas (da mão direita ou da esquerda) do eletromagnetismo, conclui-se que a força magnética é vertical e para cima. Para que a partícula eletrizada não sofra desvio a resultante das forças deve ser nula. Assim a força elétrica tem direção vertical e para baixo. Como a carga é positiva, a força elétrica tem o mesmo sentido das linhas de força do campo elétrica, ou seja, as linhas de força do campo elétrico dever sem orientadas no sentido da placa P, como indicado na figura. 16

17 Dados: 3 E 0 N/C; B 0,004 T 4 10 T. Combinando as expressões das forças elétrica e magnética, calculamos o módulo da velocidade da partícula. E 0 3 q v B q E v v 5 10 m/s. B Resposta da questão 14: [B] Dados: q e 1,6 10 C; g 10 m/s ; E 10 N/m; m 3, 10 kg. Como a velocidade é constante, a resultante das forças que agem sobre essa esfera é nula. Isso significa que o peso e a força elétrica têm mesma intensidade e sentidos opostos. Assim, a força elétrica tem sentido oposto ao do campo elétrico, indicando que a carga dessa esfera é negativa. Portanto, a esfera tem mais elétrons que prótons. A figura ilustra a situação. Sendo n o número de elétrons a mais, temos: F P q E m g n e E m g 15 mg 3, n n ee , n 100. Resposta da questão 15: a) Dados: A figura ilustra os dados. 3 V 300 V; d 5 mm 5 10 m. 17

18 Como se trata de campo elétrico uniforme, EA = EB = EC = E. V E d V E E 6 10 V/m. d b) Da figura: xa = 1 mm e xb = 4 mm. 4 3 VAB E dab E xb xa VAB 180 V. Como os pontos B e C estão na mesma superfície equipotencial: VBC 0 V. c) Dado: 19 q 1,6 10 C. Analisando a figura dada: VCA VBA VAB 180V. 19 τ q VCA 1, τ,88 10 J. Resposta da questão 16: a) A capacitância é dada pela razão entre a carga e a diferença de potencial A πr, Q C e pela equação fornecida C ε V 0A / d, explicitando a carga e usando ε temos: 0π Q R V, que representa a equação para o módulo da carga Q. d b) Neste caso, temos um movimento semelhante ao lançamento horizontal de projéteis em que a aceleração da gravidade seria substituída pela aceleração a gerada pelo campo elétrico entre as placas carregadas conforme a figura. 18

19 No eixo horizontal temos um MRU, pois a velocidade é constante v0x v 0, portanto não há aceleração nesta direção ax 0. No eixo vertical temos um MRUV sendo válidas as equações horárias em módulo: 1 y y0 v 0y(t t 0 ) a y(t t 0 ) (1) vy v0y a y(t t 0 ) () Usando as condições iniciais: F t0 0, y y0 d, v0y 0 e elétrica qe qv ay m m md Aplicando na equação (1) temos o tempo que a carga leva até atingir a placa negativa do capacitor: qv d t t d md m qv c) Para termos o módulo da velocidade que a carga q toca a placa, devemos calcular a velocidade no eixo vertical horizontal v y e depois somá-la vetorialmente com a velocidade do eixo v x, pois se trata de uma composição de movimentos. Da equação () substituindo as condições iniciais ficamos com qv m qv vy d md qv m Logo, a velocidade de impacto v em módulo será: v vx vy v qv v0 m Resposta da questão 17: [A] As duas placas carregadas com cargas contrárias constituem um capacitor. No mesmo existe, então, uma força de atração entre as placas que são lançadas em sentido contrário, constituindo um movimento uniformemente variado. Essa força será responsável por desacelerar cada placa até que elas parem na máxima distância entre elas tendo a máxima diferença de potencial. Após o que iniciam o movimento de aproximação, diminuindo a 19

20 diferença de potencial na medida em que se aproximam, de acordo com as equações para em capacitor entre placas paralelas: Q C e ε 0 C A U d Em que C é a capacitância U é a diferença de potencial Q é a intensidade da carga elétrica (constante) d é a distância entre as placas ε 0 é a permissibilidade absoluta no vácuo A é a área da placas Igualando as duas equações e explicitando U, temos: Q U d ε0a Para o movimento uniformemente variado (MUV): a d v0t t Aplicando na equação anterior, ficamos com uma função quadrática entre U e t obtendo-se uma parábola com a concavidade voltada para baixo, devido à aceleração negativa. Q a U v0t t ε0a Sendo assim, o gráfico que melhor representa a situação é o da alternativa [A]. Resposta da questão 18: [B] O carregador do celular é um transformador que transforma a tensão de entrada da rede para a tensão de saída, compatível com a da bateria do aparelho. Resposta da questão 19: [C] [F] O risco de choque elétrico ocorre quando se toca em dois ou mais fios, energizados, submetidos a diferentes tensões e não devidamente isolados, ao mesmo tempo. [V] O eletricista deve usar luvas de borracha adequadas e evitar curtos-circuitos entre dois ou mais fios, quando trabalhar com a rede elétrica energizada. [F] O uso de botas de borracha impede a ocorrência de choques elétricos apenas entre o corpo da pessoa e um outro contato externo, mas não protege de choques entre diferentes partes do corpo. Resposta da questão 0: [D] Dados: n 8.000; E 0,14 V; R Ω. Os eletrócitos funcionam como baterias em série. Aplicando a 1ª lei de Ohm, vem: ne ,14 U R i n E R i i i 0,19 A R i 190 ma. Consultando a tabela dada, concluímos que após o choque essa pessoa sofreria fibrilação ventricular. 0

Lista de Eletrostática da UFPE e UPE

Lista de Eletrostática da UFPE e UPE Lista de Eletrostática da UFPE e UPE 1. (Ufpe 1996) Duas pequenas esferas carregadas repelem-se mutuamente com uma força de 1 N quando separadas por 40 cm. Qual o valor em Newtons da força elétrica repulsiva

Leia mais

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA RECUPERAÇÃO TURMAS: 2º ANO Professor: XERXES DATA: 22 / 11 / 2015 RECUPERAÇÃO FINAL FORÇA ELÉTRICA (LEI DE COULOMB) FÍSICA Para todas as questões, considere a constante eletrostática no vácuo igual a 9.10

Leia mais

Lista de Eletrostática - Mackenzie

Lista de Eletrostática - Mackenzie Lista de Eletrostática - Mackenzie 1. (Mackenzie 1996) Uma esfera eletrizada com carga de + mc e massa 100 g é lançada horizontalmente com velocidade 4 m/s num campo elétrico vertical, orientado para cima

Leia mais

Problemas de eletricidade

Problemas de eletricidade Problemas de eletricidade 1 - Um corpo condutor está eletrizado positivamente. Podemos afirmar que: a) o número de elétrons é igual ao número de prótons. b) o número de elétrons é maior que o número de

Leia mais

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07 1. O campo elétrico de uma carga puntiforme em repouso tem, nos pontos A e B, as direções e sentidos indicados pelas flechas na figura a seguir. O módulo do campo elétrico no ponto B vale 24V/m. O módulo

Leia mais

Introdução à Eletricidade e Lei de Coulomb

Introdução à Eletricidade e Lei de Coulomb Introdução à Eletricidade e Lei de Coulomb Introdução à Eletricidade Eletricidade é uma palavra derivada do grego élektron, que significa âmbar. Resina vegetal fossilizada Ao ser atritado com um pedaço

Leia mais

Aula de Véspera - Inv-2008

Aula de Véspera - Inv-2008 01. Um projétil foi lançado no vácuo formando um ângulo θ com a horizontal, conforme figura abaixo. Com base nesta figura, analise as afirmações abaixo: (001) Para ângulos complementares teremos o mesmo

Leia mais

Prof. Rogério Porto. Assunto: Eletrostática

Prof. Rogério Porto. Assunto: Eletrostática Questões COVEST Física Elétrica Prof. Rogério Porto Assunto: Eletrostática 1. Duas esferas condutoras A e B possuem a mesma carga Q. Uma terceira esfera C, inicialmente descarregada e idêntica às esferas

Leia mais

Associação de Geradores

Associação de Geradores Associação de Geradores 1. (Epcar (Afa) 2012) Um estudante dispõe de 40 pilhas, sendo que cada uma delas possui fem igual a 1,5 V e resistência interna de 0,25. Elas serão associadas e, posteriormente,

Leia mais

ELETROSTÁTICA 3ª SÉRIE

ELETROSTÁTICA 3ª SÉRIE ELETROSTÁTICA 3ª SÉRIE 1. (Pucrj 013) Duas cargas pontuais q1 3,0 μc e q 6,0 μc são colocadas a uma distância de 1,0 m entre si. Calcule a distância, em metros, entre a carga q 1 e a posição, situada entre

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Upe 2013) Considere a Terra como uma esfera condutora, carregada uniformemente, cuja carga total é 6,0 μ C, e a distância entre o centro da Terra e um ponto P na superfície da Lua é de aproximadamente

Leia mais

Considerando que = 9,0

Considerando que = 9,0 LISTA 4 POTENIAL ELÉTRIO 01 - (FEPES DF) onsidere uma carga puntiforme positiva q fixa num ponto do espaço. Verifica-se que o campo elétrico em um ponto P 1, a uma distância R dessa carga, tem módulo E

Leia mais

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará.

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará. TC 3 UECE 01 FASE POF.: Célio Normando Conteúdo: Lâmpadas Incandescentes 1. A lâmpada incandescente é um dispositivo elétrico que transforma energia elétrica em energia luminosa e energia térmica. Uma

Leia mais

( ) ( ) ( ( ) ( )) ( )

( ) ( ) ( ( ) ( )) ( ) Física 0 Duas partículas A e, de massa m, executam movimentos circulares uniormes sobre o plano x (x e representam eixos perpendiculares) com equações horárias dadas por xa ( t ) = a+acos ( ωt ), ( t )

Leia mais

Sobriedade e objetividade nessa caminhada final e que a chegada seja recheado de SUCESSO! Vasco Vasconcelos

Sobriedade e objetividade nessa caminhada final e que a chegada seja recheado de SUCESSO! Vasco Vasconcelos Prezado aluno, com o intuito de otimizar seus estudos para a 2ª fase do Vestibular da UECE, separamos as questões, por ano, por assunto e com suas respectivas resoluções! Vele a pena dar uma lida e verificar

Leia mais

tem Note e adote: ELETROSTÁTICA 3ª SÉRIE 3,2 10 kg, permanecia com velocidade constante no interior da câmara. Essa esfera carga do elétron 1,6 10 C

tem Note e adote: ELETROSTÁTICA 3ª SÉRIE 3,2 10 kg, permanecia com velocidade constante no interior da câmara. Essa esfera carga do elétron 1,6 10 C 1. (Mackenzie 015) Uma esfera metálica A, eletrizada com carga elétrica igual a 0,0 μc, é colocada em contato com outra esfera idêntica B, eletricamente neutra. Em seguida, encosta-se a esfera B em outra

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo 01 - (PUC SP) Na figura abaixo temos a representação de dois

Leia mais

Valores eternos. MATÉRIA PROFESSOR(A) ---- ----

Valores eternos. MATÉRIA PROFESSOR(A) ---- ---- Valores eternos. TD Recuperação ALUNO(A) MATÉRIA Física I PROFESSOR(A) Raphael ANO SEMESTRE DATA 2º 1º Julho/2013 TOTAL DE ESCORES ESCORES OBTIDOS ---- ---- 1. Em um determinado local do espaço, existe

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Potencial Elétrico 01. O gráfico que melhor descreve a relação entre potencial elétrico V, originado por uma carga elétrica Q < 0, e a distância d de um ponto qualquer à carga, é: 05. Duas cargas

Leia mais

(www.inpe.br/webelat/homepage/menu/el.atm/perguntas.e.respostas.php. Acesso em: 30.10.2012.)

(www.inpe.br/webelat/homepage/menu/el.atm/perguntas.e.respostas.php. Acesso em: 30.10.2012.) 1. (G1 - ifsp 2013) Raios são descargas elétricas de grande intensidade que conectam as nuvens de tempestade na atmosfera e o solo. A intensidade típica de um raio é de 30 mil amperes, cerca de mil vezes

Leia mais

COLÉGIO NOSSA SENHORA DE FÁTIMA ALUNO(A): Nº PROF.: André Harada

COLÉGIO NOSSA SENHORA DE FÁTIMA ALUNO(A): Nº PROF.: André Harada COLÉGIO NOSSA SENHORA DE FÁTIMA ALUNO(A): Nº PROF.: André Harada DISCIPLINA: Física II SÉRIE: 2ª Ensino Médio TURMA: DATA: 1. (Uerj 2000) Duas partículas de cargas +4Q e -Q coulombs estão localizadas sobre

Leia mais

POTENCIAL ELÉTRICO E FORÇA ELÉTRICA

POTENCIAL ELÉTRICO E FORÇA ELÉTRICA POTENCIAL ELÉTRICO E FORÇA ELÉTRICA 1. No movimento de A para B (figura) ao longo de uma linha de campo elétrico, o campo realiza 3,94 x 10-19 J de trabalho sobre um elétron. Quais são as diferenças de

Leia mais

Um pouco de história. Um pouco de história. Um pouco de história. Um pouco de história CORPOS ELETRIZADOS E NEUTROS CARGA ELÉTRICA

Um pouco de história. Um pouco de história. Um pouco de história. Um pouco de história CORPOS ELETRIZADOS E NEUTROS CARGA ELÉTRICA Um pouco de história O conhecimento de eletricidade data de antes de Cristo ~ 600 a.c. Ambar, quando atritado, armazena eletricidade William Gilbert em 1600 conseguiu eletrizar muitas substâncias diferentes

Leia mais

18 a QUESTÃO Valor: 0,25

18 a QUESTÃO Valor: 0,25 6 a A 0 a QUESTÃO FÍSICA 8 a QUESTÃO Valor: 0,25 6 a QUESTÃO Valor: 0,25 Entre as grandezas abaixo, a única conservada nas colisões elásticas, mas não nas inelásticas é o(a): 2Ω 2 V 8Ω 8Ω 2 Ω S R 0 V energia

Leia mais

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Capacitores e Dielétricos Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Imaginemos uma configuração como a de um capacitor em que os

Leia mais

Exercícios de Eletrização

Exercícios de Eletrização Exercícios de Eletrização 1-Um corpo inicialmente neutro recebe 10 milhões de elétrons. Este corpo adquire uma carga de: (e = 1,6. 10 19 C). a) 1,6. 10 12 C b) 1,6. 10 12 C c) 16. 10 10 C d) 16. 10 7 C

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA EXERCÍCIOS NOTAS DE AULA I Goiânia - 014 1. Um capacitor de placas paralelas possui placas circulares de raio 8, cm e separação

Leia mais

TURMA: 3º ANO: Campo Elétrico

TURMA: 3º ANO: Campo Elétrico DISCIPLINA: FÍSICA SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR UNIDADE POLIVALENTE MODELO VASCO

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 1 a QUESTÃO Valor: 1,00 A L 0 H mola apoio sem atrito B A figura acima mostra um sistema composto por uma parede vertical

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Capacitores e) 12,5 J 1-Capacitores são elementos de circuito destinados a: a) armazenar corrente elétrica. b) permitir a passagem de corrente elétrica de intensidade constante. c) corrigir

Leia mais

TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor

TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor 1. (Ita) Considere as afirmações a seguir: I. Em equilíbrio eletrostático, uma superfície metálica é equipotencial. II. Um objeto eletrostaticamente carregado induz uma carga uniformemente distribuída

Leia mais

Exercícios Leis de Kirchhoff

Exercícios Leis de Kirchhoff Exercícios Leis de Kirchhoff 1-Sobre o esquema a seguir, sabe-se que i 1 = 2A;U AB = 6V; R 2 = 2 Ω e R 3 = 10 Ω. Então, a tensão entre C e D, em volts, vale: a) 10 b) 20 c) 30 d) 40 e) 50 Os valores medidos

Leia mais

Trabalho e Potencial de uma carga elétrica

Trabalho e Potencial de uma carga elétrica Trabalho e Potencial de uma carga elétrica 1. (Uem 2011) Uma carga puntual positiva, 6 q 2 10 C 6 Q 510 C, está disposta no vácuo. Uma outra carga puntual positiva,, é abandonada em um ponto A, situado

Leia mais

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador Geradores elétricos Geradores elétricos são dispositivos que convertem um tipo de energia qualquer em energia elétrica. Eles têm como função básica aumentar a energia potencial das cargas que os atravessam

Leia mais

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F.

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F. Exercícios - Aula 6 8) (UFMG) Considere as seguintes situações: I) Um carro, subindo uma rua de forte declive, em movimento retilíneo uniforme. II) Um carro, percorrendo uma praça circular, com movimento

Leia mais

CURSO DE APROFUNDAMENTO FÍSICA ENSINO MÉDIO

CURSO DE APROFUNDAMENTO FÍSICA ENSINO MÉDIO CURSO DE APROFUNDAMENTO FÍSICA ENSINO MÉDIO Prof. Cazuza 1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura: Considere nula a resistência elétrica

Leia mais

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 2ª Etapa 2014

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 2ª Etapa 2014 COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 2ª Etapa 2014 Disciplina: Física Série: 3ª Professor (a): Marcos Vinicius Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

Professor João Luiz Cesarino Ferreira

Professor João Luiz Cesarino Ferreira Exercícios 1º Lei de Ohm e Potência elétrica 1º) 2º) 3º) Um fio com uma resistência de 6,0Ω é esticado de tal forma que seu comprimento se torna três vezes maior que o original. Determine a resistência

Leia mais

Primeira lista de física para o segundo ano 1)

Primeira lista de física para o segundo ano 1) Primeira lista de física para o segundo ano 1) Dois espelhos planos verticais formam um ângulo de 120º, conforme a figura. Um observador está no ponto A. Quantas imagens de si mesmo ele verá? a) 4 b) 2

Leia mais

Interbits SuperPro Web Física XIII Paulo Bahiense, Naldo, Wilson e Ausgusto

Interbits SuperPro Web Física XIII Paulo Bahiense, Naldo, Wilson e Ausgusto 1. (Unesp 015) Em um experimento de eletrostática, um estudante dispunha de três esferas metálicas idênticas, A, B e C, eletrizadas, no ar, com cargas elétricas 5Q, 3Q e Q, respectivamente. Utilizando

Leia mais

Carga Elétrica e Eletrização dos Corpos

Carga Elétrica e Eletrização dos Corpos ELETROSTÁTICA Carga Elétrica e Eletrização dos Corpos Eletrostática Estuda os fenômenos relacionados às cargas elétricas em repouso. O átomo O núcleo é formado por: Prótons cargas elétricas positivas Nêutrons

Leia mais

Aula 13 Eletrostática Vestibulares de SP

Aula 13 Eletrostática Vestibulares de SP 1. (Pucsp 2010) Considere quatro esferas metálicas idênticas, separadas e apoiadas em suportes isolantes. Inicialmente as esferas apresentam as seguintes cargas: Q A = Q, Q B = Q/2, Q C = 0 (neutra) e

Leia mais

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A.

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A. FISIC 01. Raios solares incidem verticalmente sobre um canavial com 600 hectares de área plantada. Considerando que a energia solar incide a uma taxa de 1340 W/m 2, podemos estimar a ordem de grandeza

Leia mais

Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas

Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas elétricas ou a seleção de freqüências em filtros para caixas

Leia mais

RESOLUÇÕES DA PROVA DE FÍSICA UFC 2006. PROFESSOR Célio Normando

RESOLUÇÕES DA PROVA DE FÍSICA UFC 2006. PROFESSOR Célio Normando RESOLUÇÕES DA PROVA DE FÍSICA UFC 006 Ari Duque de Caxias Ari Washington Soares Ari Aldeota Da 5ª Série ao Pré-Vestibular Sede Hildete de Sá Cavalcante (da Educação Infantil ao Pré-Vestibular) Rua Monsenhor

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor

Leia mais

Associação de Resistores

Associação de Resistores Associação de Resistores 1. (Pucrj 2013) No circuito mostrado na figura, a diferença de potencial entre os pontos B e A vale, em Volts: a) 3,0 b) 1,0 c) 2,0 d) 4,5 e) 0,75 2. (Uerj 2011) Observe a representação

Leia mais

Unidade 12 - Capacitores

Unidade 12 - Capacitores Unidade 1 - Capacitores Capacidade Eletrostática Condutor Esférico Energia Armazenada em um capacitor Capacitor Plano Associação de Capacitores Circuitos com capacitores Introdução Os primeiros dispositivos

Leia mais

ELETROSTÁTICA: EXERCÍCIOS

ELETROSTÁTICA: EXERCÍCIOS ELETROSTÁTICA: EXERCÍCIOS 1. (Uerj) Duas partículas de cargas +4Q e -Q coulombs estão localizadas sobre uma linha, dividida em três regiões I, II e III, conforme a figura abaixo. Observe que as distâncias

Leia mais

O que você deve saber sobre

O que você deve saber sobre O que você deve saber sobre Além de resistores, os circuitos elétricos apresentam dispositivos para gerar energia potencial elétrica a partir de outros componentes (geradores), armazenar cargas, interromper

Leia mais

Receptores elétricos

Receptores elétricos Receptores elétricos 1 Fig.20.1 20.1. A Fig. 20.1 mostra um receptor elétrico ligado a dois pontos A e B de um circuito entre os quais existe uma d.d.p. de 12 V. A corrente que o percorre é de 2,0 A. A

Leia mais

Questão 57. Questão 58. alternativa D. alternativa C. seu mostrador deverá indicar, para esse mesmo objeto, o valor de

Questão 57. Questão 58. alternativa D. alternativa C. seu mostrador deverá indicar, para esse mesmo objeto, o valor de OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representado por g. Quando necessário, adote: para g, o valor 10 m/s ; para a massa específica

Leia mais

Questão 1. Questão 2. Resposta

Questão 1. Questão 2. Resposta Questão 1 A energia que um atleta gasta pode ser determinada pelo volume de oxigênio por ele consumido na respiração. Abaixo está apresentado o gráfico do volume V de oxigênio, em litros por minuto, consumido

Leia mais

E irr = P irr T. F = m p a, F = ee, = 2 10 19 14 10 19 2 10 27 C N. C kg = 14 1027 m/s 2.

E irr = P irr T. F = m p a, F = ee, = 2 10 19 14 10 19 2 10 27 C N. C kg = 14 1027 m/s 2. FÍSICA 1 É conhecido e experimentalmente comprovado que cargas elétricas aceleradas emitem radiação eletromagnética. Este efeito é utilizado na geração de ondas de rádio, telefonia celular, nas transmissões

Leia mais

Lista de Exercícios - Unidade 6 Aprendendo sobre energia

Lista de Exercícios - Unidade 6 Aprendendo sobre energia Lista de Exercícios - Unidade 6 Aprendendo sobre energia Energia Cinética e Potencial 1. (UEM 01) Sobre a energia mecânica e a conservação de energia, assinale o que for correto. (01) Denomina-se energia

Leia mais

CIÊNCIAS 9º Ano do Ensino Fundamental. Professora: Ana Paula Souto. Se precisar use as equações: i = ΔQ Δt ; E = PΔt.

CIÊNCIAS 9º Ano do Ensino Fundamental. Professora: Ana Paula Souto. Se precisar use as equações: i = ΔQ Δt ; E = PΔt. CIÊNCIAS º Ano do Ensino Fundamental Professora: Ana Paula Souto Nome: n o : Turma: Exercícios Estudo da eletricidade (PARTE ) Se precisar use as equações: i = ΔQ Δt ; E = PΔt V = Ri ; P = Vi ) Observe

Leia mais

d) F 4 ; F 9 e F 16 e) 4F; 6F e 8F Dado: Lei de COULOMB F = K.Q Q d CIÊNCIAS DA NATUREZA E SUAS TECNOLOGIAS - Vol. II 39

d) F 4 ; F 9 e F 16 e) 4F; 6F e 8F Dado: Lei de COULOMB F = K.Q Q d CIÊNCIAS DA NATUREZA E SUAS TECNOLOGIAS - Vol. II 39 Aula n ọ 09 01. Em um experimento realizado em sala de aula, um professor de física mostrou duas pequenas esferas metálicas idênticas, suspensas por fios isolantes, em uma situação de atração. Na tentativa

Leia mais

ELETROSTÁTICA. Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com

ELETROSTÁTICA. Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com ELETROSTÁTICA Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com Quantidade de carga elétrica Q = n. e Q = quantidade de carga elétrica n = nº de elétrons ou de prótons e =

Leia mais

γ = 5,0m/s 2 2) Cálculo da distância percorrida para a velocidade escalar reduzir-se de 30m/s para 10m/s. V 2 2

γ = 5,0m/s 2 2) Cálculo da distância percorrida para a velocidade escalar reduzir-se de 30m/s para 10m/s. V 2 2 OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representado por g. Quando necessário, adote: para g, o valor 10 m/s 2 ; para a massa específica

Leia mais

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR TC 3 UECE - 03 FASE MEICINA e EGULA SEMANA 0 a 5 de dezembro POF.: Célio Normando. A figura a seguir mostra um escorregador na forma de um semicírculo de raio = 5,0 m. Um garoto escorrega do topo (ponto

Leia mais

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Circuitos Elétricos 1º parte Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Introdução Um circuito elétrico é constituido de interconexão de vários

Leia mais

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Francisco Erberto de Sousa 11111971 Saulo Bezerra Alves - 11111958 Relatório: Capacitor, Resistor, Diodo

Leia mais

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO 1. (Fuvest 96) A figura esquematiza um ímã permanente, em forma de cruz de pequena espessura, e oito pequenas bússolas, colocadas sobre uma mesa. As letras N e S representam, respectivamente, pólos norte

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física Eletrostática. Pré Universitário Uni-Anhanguera 01 - (MACK SP)

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física Eletrostática. Pré Universitário Uni-Anhanguera 01 - (MACK SP) Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física Eletrostática 01 - (MACK SP) Fixam-se as cargas puntiformes q 1 e q 2, de

Leia mais

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315.

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315. SISTEMAS DE BLOCOS E FIOS PROF. BIGA 1. (G1 - cftmg 01) Na figura, os blocos A e B, com massas iguais a 5 e 0 kg, respectivamente, são ligados por meio de um cordão inextensível. Desprezando-se as massas

Leia mais

TD de Física 2 Capacitores

TD de Física 2 Capacitores 1. (Ufpr 2014) No circuito esquematizado abaixo, deseja-se que o capacitor armazene uma energia elétrica de 125 μ J. As fontes de força eletromotriz são consideradas ideais e de valores ε1 10 V e ε2 5

Leia mais

Circuitos de Corrente Contínua

Circuitos de Corrente Contínua Circuitos de Corrente Contínua Conceitos básicos de eletricidade Fundamentos de Eletrostática Potencial, Diferença de Potencial, Corrente Tipos de Materiais Circuito Elétrico Resistores 1 Circuitos de

Leia mais

Valores eternos. MATÉRIA. PROFESSOR(A) Hermann ---- ---- 1. Para a associação da figura, a resistência equivalente entre os terminais A e B é igual a:

Valores eternos. MATÉRIA. PROFESSOR(A) Hermann ---- ---- 1. Para a associação da figura, a resistência equivalente entre os terminais A e B é igual a: Valores eternos. TD Recuperação ALUNO(A) MATÉRIA Física III PROFESSOR(A) Hermann ANO SEMESTRE DATA 3º 1º Julho/2013 TOTAL DE ESCORES ESCORES OBTIDOS ---- ---- 1. Para a associação da figura, a resistência

Leia mais

Eletricidade Aula 1. Profª Heloise Assis Fazzolari

Eletricidade Aula 1. Profª Heloise Assis Fazzolari Eletricidade Aula 1 Profª Heloise Assis Fazzolari História da Eletricidade Vídeo 2 A eletricidade estática foi descoberta em 600 A.C. com Tales de Mileto através de alguns materiais que eram atraídos entre

Leia mais

Primeira Lei de Ohm. Podemos dizer que a resistência elétrica deste circuito é de: a) 2,0 m b) 0,2 c) 0,5 d) 2,0 k e) 0,5 k

Primeira Lei de Ohm. Podemos dizer que a resistência elétrica deste circuito é de: a) 2,0 m b) 0,2 c) 0,5 d) 2,0 k e) 0,5 k Primeira Lei de Ohm 1. (Pucrj 2013) O gráfico abaixo apresenta a medida da variação de potencial em função da corrente que passa em um circuito elétrico. Podemos dizer que a resistência elétrica deste

Leia mais

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo. (MECÂNICA, ÓPTICA, ONDULATÓRIA E MECÂNICA DOS FLUIDOS) 01) Um paraquedista salta de um avião e cai livremente por uma distância vertical de 80 m, antes de abrir o paraquedas. Quando este se abre, ele passa

Leia mais

AULA 3 FORÇA ELÉTRICA. O conceito de força é a capacidade de provocar a mudança de intensidade, direção e sentido da velocidade.

AULA 3 FORÇA ELÉTRICA. O conceito de força é a capacidade de provocar a mudança de intensidade, direção e sentido da velocidade. AULA 3 FORÇA ELÉTRICA O conceito de força é a capacidade de provocar a mudança de intensidade, direção e sentido da velocidade. - Um objeto em repouso (v= 0) entra em movimento, mediante a aplicação de

Leia mais

ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015

ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015 Nome: 3ª série: n o Professor: Luiz Mário Data: / / 2015. ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015 Orientações: - Este estudo dirigido poderá ser usado para revisar a matéria que será cobrada

Leia mais

Atividade extra. Fascículo 5 Física Unidade 11. Exercício 1 Adaptado de UFES. Exercício 2 Adaptado de UFGO - 1986

Atividade extra. Fascículo 5 Física Unidade 11. Exercício 1 Adaptado de UFES. Exercício 2 Adaptado de UFGO - 1986 Atividade extra Fascículo 5 Física Unidade 11 Exercício 1 Adaptado de UFES Num dia bastante seco, uma jovem de cabelos longos, percebe que depois de penteá-los o pente utilizado atrai pedaços de papel.

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Medeiros EXERCÍCIOS NOTA DE AULA IV Goiânia - 2014 EXERCÍCIOS 1. Uma partícula eletrizada positivamente é

Leia mais

Física II Eng. Química + Eng. Materiais

Física II Eng. Química + Eng. Materiais Física II Eng. Química + Eng. Materiais Carga Eléctrica e Campo Eléctrico Lei de Gauss Potencial Eléctrico Condensadores 1. Nos vértices de um quadrado ABCD, com 10 cm de lado, estão colocadas cargas pontuais

Leia mais

Prof.: Geraldo Barbosa Filho

Prof.: Geraldo Barbosa Filho AULA 07 GERADORES E RECEPTORES 5- CURVA CARACTERÍSTICA DO GERADOR 1- GERADOR ELÉTRICO Gerador é um elemento de circuito que transforma qualquer tipo de energia, exceto a elétrica, em energia elétrica.

Leia mais

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura:

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura: PROVA DE FÍSICA QUESTÃO 0 Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura: Essa lente é mais fina nas bordas que no meio e a posição de cada um de seus focos está indicada

Leia mais

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 1. Uma ave marinha costuma mergulhar de uma altura de 20 m para buscar alimento no mar. Suponha que um desses mergulhos tenha sido feito em sentido

Leia mais

Física C Extensivo V. 8

Física C Extensivo V. 8 Extensivo V 8 Exercícios 0) E I Verdadeira C ε o A d II Falsa A capacitância se reduz à metade III Falsa Não depende da carga 0) B P Q Como o tempo de transferência é pequeno, a t potência é máxima 0)

Leia mais

Aula 06. ASSUNTOS: Circuitos elétricos de corrente contínua; potência elétrica; leis de OHM; efeito Joule.

Aula 06. ASSUNTOS: Circuitos elétricos de corrente contínua; potência elétrica; leis de OHM; efeito Joule. ASSNTOS: Circuitos elétricos de corrente contínua; potência elétrica; leis de OHM; efeito Joule. 1. (CEFET CE 007) Na figura a seguir, a bateria E, o voltímetro V e o amperímetro A são ideais. Todos os

Leia mais

POTENCIAL ELÉTRICO. por unidade de carga

POTENCIAL ELÉTRICO. por unidade de carga POTENCIAL ELÉTRICO A lei de Newton da Gravitação e a lei de Coulomb da eletrostática são matematicamente idênticas, então os aspectos gerais discutidos para a força gravitacional podem ser aplicadas para

Leia mais

CAPACIDADE ELÉTRICA. Unidade de capacitância

CAPACIDADE ELÉTRICA. Unidade de capacitância CAPACIDADE ELÉTRICA Como vimos, a energia elétrica pode ser armazenada e isso se faz através do armazenamento de cargas elétricas. Essas cargas podem ser armazenadas em objetos condutores. A capacidade

Leia mais

=30m/s, de modo que a = 30 10 =3m/s2. = g sen(30 o ), e substituindo os valores, tem-se. = v B

=30m/s, de modo que a = 30 10 =3m/s2. = g sen(30 o ), e substituindo os valores, tem-se. = v B FÍSIC 1 Considere a figura a seguir. Despreze qualquer tipo de atrito. a) O móvel de massa M = 100 kg é uniformemente acelerado (com aceleração a) a partir do repouso em t =0 segundos, atingindo B, emt

Leia mais

GABARITO DO SIMULADO DISCURSIVO

GABARITO DO SIMULADO DISCURSIVO GABARITO DO SIMULADO DISCURSIVO 1. (Unifesp 013) O atleta húngaro Krisztian Pars conquistou medalha de ouro na olimpíada de Londres no lançamento de martelo. Após girar sobre si próprio, o atleta lança

Leia mais

Capítulo 1: Eletricidade. Corrente continua: (CC ou, em inglês, DC - direct current), também chamada de

Capítulo 1: Eletricidade. Corrente continua: (CC ou, em inglês, DC - direct current), também chamada de Capítulo 1: Eletricidade É um fenômeno físico originado por cargas elétricas estáticas ou em movimento e por sua interação. Quando uma carga encontra-se em repouso, produz força sobre outras situadas em

Leia mais

Questão 46. Questão 47. Questão 48. alternativa E. alternativa C

Questão 46. Questão 47. Questão 48. alternativa E. alternativa C Questão 46 O movimento de uma partícula é caracterizado por ter vetor velocidade e vetor aceleração não nulo de mesma direção. Nessas condições, podemos afirmar que esse movimento é a) uniforme. b) uniformemente

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

Universidade Federal do Pampa - UNIPAMPA Prova Escrita de Física III A Professor: Jorge Pedraza Arpasi, SALA 325 - UNIPAMPA Alegrete

Universidade Federal do Pampa - UNIPAMPA Prova Escrita de Física III A Professor: Jorge Pedraza Arpasi, SALA 325 - UNIPAMPA Alegrete Universidade Federal do Pampa - UNIPAMPA Prova Escrita de Física III A Professor: Jorge Pedraza Arpasi, SALA 325 - UNIPAMPA Alegrete Nome: 1 Algumas instruções Na primeira questão marque com caneta com

Leia mais

Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua

Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua Segunda Lei de Newton 1. (G1 - UTFPR 01) Associe a Coluna I (Afirmação) com a Coluna II (Lei Física). Coluna I Afirmação

Leia mais

LISTA UERJ 1ª FASE LEIS DE NEWTON

LISTA UERJ 1ª FASE LEIS DE NEWTON 1. (Uerj 2013) Um bloco de madeira encontra-se em equilíbrio sobre um plano inclinado de 45º em relação ao solo. A intensidade da força que o bloco exerce perpendicularmente ao plano inclinado é igual

Leia mais

UFJF CONCURSO VESTIBULAR 2012 GABARITO DA PROVA DE FÍSICA

UFJF CONCURSO VESTIBULAR 2012 GABARITO DA PROVA DE FÍSICA UFJF CONCURSO VESTIBULAR GABARITO DA PROVA DE FÍSICA Na solução da prova, use quando necessário: Aceleração da gravidade g = m / s ; Densidade da água ρ =, g / cm = kg/m 8 Velocidade da luz no vácuo c

Leia mais

TIPO-A FÍSICA. x v média. t t. x x

TIPO-A FÍSICA. x v média. t t. x x 12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos

Leia mais

FÍSICA. Sempre que for necessário, utilize g= 10m/s 2

FÍSICA. Sempre que for necessário, utilize g= 10m/s 2 FÍSICA Sempre que for necessário, utilize g= 10m/s 2 28 d Leia com atenção a tira da Turma da Mônica mostrada abaixo e analise as afirmativas que se seguem, considerando os princípios da Mecânica Clássica.

Leia mais

Exercícios de Física sobre Circuitos Elétricos com Gabarito

Exercícios de Física sobre Circuitos Elétricos com Gabarito Exercícios de Física sobre Circuitos Elétricos com Gabarito (Unicamp-999 Um técnico em eletricidade notou que a lâmpada que ele havia retirado do almoxarifado tinha seus valores nominais (valores impressos

Leia mais

Física Unidade IV Balística Série 1 - Queda livre e lançamento vertical

Física Unidade IV Balística Série 1 - Queda livre e lançamento vertical 01 Em uma queda livre, a resultante das forças é o peso; assim: R = P m a = m g a = g = constante Então, se há um movimento uniformemente variado (MUV), os itens b, d, e, g e h estão corretos, e os itens

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questão 1 Na natureza, muitos animais conseguem guiar-se e até mesmo caçar com eficiência, devido à grande sensibilidade que apresentam para a detecção de ondas, tanto eletromagnéticas quanto mecânicas.

Leia mais

As leituras no voltímetro V e no amperímetro A, ambos ideais, são, respectivamente,

As leituras no voltímetro V e no amperímetro A, ambos ideais, são, respectivamente, 1. (Espcex (Aman) 015) Em um circuito elétrico, representado no desenho abaixo, o valor da força eletromotriz (fem) do gerador ideal é E 1,5 V, e os valores das resistências dos resistores ôhmicos são

Leia mais