Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I

Save this PDF as:

Tamanho: px
Começar a partir da página:

Download "Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I"

Transcrição

1 Escola Secundária com º ciclo D. Dinis 10º no de Matemática Geometria no Plano e no Espaço I Trabalho de casa nº 5 Estes trabalhos de casa, até ao fim do período, vão ser constituídos por exercícios propostos pelo GVE como exemplos dos problemas com maior grau de dificuldade a incluir nas provas intermédias. 1. Nas figuras 1 e estão representados, a tracejado, hexágonos regulares geometricamente iguais e de lado. Cada um dos hexágonos tem inscrita uma estrela com 1 vértices. estrela representada na figura 1 tem seis vértices coincidentes com os pontos médios dos lados do hexágono; cada um dos outros vértices coincide com o ponto médio de um segmento de recta cujos extremos são o centro e um vértice do hexágono. estrela representada na figura tem seis vértices coincidentes com os vértices do hexágono; cada um dos outros vértices coincide com o ponto médio de um segmento de recta cujos extremos são o centro e o ponto médio de um lado do hexágono. Mostre que as áreas das duas estrelas são iguais.. Na figura estão representadas duas circunferências: uma de centro O, de que [D] e [FE] são dois diâmetros perpendiculares; outra de que [BC] e [FO] são dois diâmetros, também perpendiculares..1. Calcule a área do pentágono [BCDE], supondo que O =.. Designe O por r. Mostre que a área do pentágono [BCDE] é dada por 7 r 4... dmita agora que O = 4. Mostre que a área da região tracejada é igual a ( π ). Professora: Rosa Canelas 1 no Lectivo 009/010

2 . Na figura 4 está representado o cubo [BCDEFGH]. Cada um dos pontos I, J, K, L, M e N é ponto médio de uma aresta. O volume do cubo é Considere o trajecto mais curto de I a J que passa pela aresta [EF]. Determine o comprimento desse trajecto. Sugestão: comece por desenhar uma planificação do cubo, na qual esse trajecto possa ser representado por um segmento de recta... Seja P o ponto do trajecto referido na alínea anterior que pertence a [EF]. Determine a distância do ponto P a cada um dos extremos dessa aresta... Na figura 5 está desenhada, em tamanho reduzido, uma planificação do cubo. Represente, neste desenho, a região do cubo que está sombreada..4. Determine a altura da pirâmide [FLMN], relativa à base [LMN]. Sugestão: comece por determinar o volume da pirâmide, tomando para base uma das faces sombreadas..5. Considere a secção produzida no cubo pelo plano IJK Desenhe essa secção, utilizando a figura Determine o seu perímetro..5.. Determine a sua área Professora: Rosa Canelas no Lectivo 009/010

3 Escola Secundária com º ciclo D. Dinis 10º no de Matemática Geometria no Plano e no Espaço I Trabalho de casa nº 5 proposta de resolução Estes trabalhos de casa, até ao fim do período, vão ser constituídos por exercícios propostos pelo GVE como exemplos dos problemas com maior grau de dificuldade a incluir nas provas intermédias. 1. Nas figuras 1 e estão representados, a tracejado, hexágonos regulares geometricamente iguais e de lado. Cada um dos hexágonos tem inscrita uma estrela com 1 vértices. estrela representada na figura 1 tem seis vértices coincidentes com os pontos médios dos lados do hexágono; cada um dos outros vértices coincide com o ponto médio de um segmento de recta cujos extremos são o centro e um vértice do hexágono. Sabendo nós que um hexágono regular tem o lado igual ao raio da circunferência que o circunscreve, podemos concluir que os doze triângulos que com a estrela constituem o hexágono são triângulos equiláteros de lado igual a 1. Calculando a área do hexágono e subtraindo-lhe a área dos 1 triângulos equiláteros de lado 1 obtemos a área da estrela. O apótema do hexágono é a altura de um triângulo equilátero de lado pelo que mede =, o volume do hexágono é então, de acordo com a fórmula P 1 = ap, = = 6 Professora: Rosa Canelas no Lectivo 009/010

4 área de cada triângulo equilátero de lado 1 e altura 1 destes triângulos têm área 1 = 4 área da estrela da figura 1 é 6 = 1= é 1 = = e 4 Nota: também podiam encontrar a área da estrela da figura 1 considerando que cada uma das 6 partes em que está dividida é um losango em que a diagonal maior é o apótema do hexágono e a diagonal menor e metade do lado do hexágono. estrela1 = 6 =. 1bico 1 = = e estrela representada na figura tem seis vértices coincidentes com os vértices do hexágono; cada um dos outros vértices coincide com o ponto médio de um segmento de recta cujos extremos são o centro e o ponto médio de um lado do hexágono. Os doze triângulos que com a estrela da figura, constituem o hexágono são triângulos rectângulos com um cateto a medir 1 (metade do lado do hexágono) e outro a medir (metade do apótema do hexágono). ssim, cada triângulo tem área 1 = = e 1 triângulos têm área 4 1 = 4 área da estrela da figura é 6 = o que mostra que as áreas das duas estrelas são iguais. Nota: também podiam encontrar a área da estrela da figura considerando que cada uma das 6 partes em que está dividida é um papagaio em que a diagonal maior é igual ao lado do hexágono e a diagonal menor e metade do apótema do hexágono. estrela = 6 =. 1bico = = e. Na figura estão representadas duas circunferências: uma de centro O, de que [D] e [FE] são dois diâmetros perpendiculares; outra de que [BC] e [FO] são dois diâmetros, também perpendiculares. Professora: Rosa Canelas 4 no Lectivo 009/010

5 .1. Calculemos a área do pentágono [BCDE], supondo que O =. a área do pentágono [BCDE] é igual á soma das áreas do triângulo [ED] e do trapézio [BCD] 4 Área do triângulo [ED]= =4 4 + Área do trapézio BCD = 1= [ ] Área do pentágono [BCDE]=4+=7.. Designemos O por r. Mostremos que a área do pentágono [BCDE] é dada por 7 r 4. área do pentágono [BCDE] é igual á soma das áreas do triângulo [ED] e do trapézio [BCD] r r Área do triângulo [ED]= =r r + r r Área do trapézio BCD = = r 4 [ ] 7 Área do pentágono [BCDE]=r + r = r dmita agora que O 4 =. Mostremos que a área da região tracejada é igual a ( ) π. área tracejada vai ser igual à área de um quarto do círculo de raio 4 menos um quarto do círculo de raio menos metade da área do trapézio [BCD] π 4 área de um quarto do círculo de raio 4 = 4 π área de um quarto do círculo de raio = 4 = 4π = π metade da área do trapézio [BCD] = = 6 área tracejada = 4π ( π + 6) = 4π π 6 = π 6 = ( π ). Na figura 4 está representado o cubo [BCDEFGH]. Cada um dos pontos I, J, K, L, M e N é ponto médio de uma aresta. O volume do cubo é 8 e daqui concluímos que a aresta do cubo é a = 8 =.1. Consideremos o trajecto mais curto de I a J que passa pela aresta [EF]. Professora: Rosa Canelas 5 no Lectivo 009/010

6 Comecemos por desenhar uma planificação adequada (com a face da frente colada à face de cima) Desenhamos o trajecto e vamos calcular o comprimento desse trajecto. J O triângulo [JI] é rectângulo com J = e E P F I = 1 pelo Teorema de Pitágoras IJ = + 1 IJ = 10 IJ = 10 I B.. Seja P o ponto do trajecto referido na alínea anterior que pertence a [EF]. Determinemos a distância do ponto P a cada um dos extremos dessa aresta ( PE e PF ). O triângulo [JI] é semelhante ao triângulo [JEP] por terem os ângulos respectivamente iguais pelo que J JE 1 1 EP I = EP 1 = EP = e então 1 5 PF = =.. Na figura 5 está desenhada, em tamanho reduzido, uma planificação do cubo. Representámos, neste desenho, a região do cubo que está sombreada. G N F M E M F N G L B C D Figura 5.4. Determine a altura da pirâmide [FLMN], relativa à base [LMN]. Volume da pirâmide (tomando para base uma das faces sombreadas.) = E M = 6 base [LMN] é um triângulo equilátero de lado 1 L ML 1 1 ML = + = e altura 6 h = h = e por B Professora: Rosa Canelas 6 no Lectivo 009/010

7 isso com área 6 1 = = = = 4 4 Podemos agora determinar a altura da pirâmide [FLMN], relativa à base [LMN] que vamos representar por x. 1 = 1 x x = 1 x = 6.5. Considere a secção produzida no cubo pelo plano IJK Desenhámos essa secção, utilizando a figura 6. J K.5.. Determinemos o seu perímetro. O lado do hexágono mede porque é a hipotenusa de um triângulo rectângulo isósceles de catetos a medirem 1. O perímetro é P = 6 por o hexágono ser regular, os seus vértices são os pontos médios das arestas a que pertencem..5.. Determinemos a sua área O apótema do hexágono é a altura de um triângulo equilátero com lado I figura 6 pelo que mede 6 ap = ap = área será = = = = Professora: Rosa Canelas 7 no Lectivo 009/010

8 Escola Secundária com º ciclo D. Dinis 10º no de Matemática Geometria no Plano e no Espaço I Trabalho de casa nº 5 Critérios de correcção Indicar a estratégia para calcular a área da 1ª estrela.. 5 plicar a estratégia e calcular a área igual a. 5 Indicar a estratégia para calcular a área da ª estrela.. 5 plicar a estratégia e calcular a área igual a. 5 Concluir que as duas estrelas são iguais Calcular a área do triângulo.. Calcular a área do trapézio.. Calcular a área do pentágono Escrever em função de r a área do triângulo.. Escrever em função de r a área do triângulo.. 5 Calcular, em função de r a área do pentágono Escolher uma estratégia adequada.. Calcular um quarto da área do círculo de raio 4.. Calcular um quarto da área do círculo de raio.. 1 Calcular a área do trapézio.... Calcular a área tracejada Desenhar uma planificação adequada.. Desenhar o trajecto.. Calcular o comprimento do trajecto Reconhecer as semelhanças dos triângulos..... Calcular PE.... Professora: Rosa Canelas 8 no Lectivo 009/010

9 Calcular PF Desenhar o triângulo [MFL]..... Desenhar o triângulo [NFL]..... Desenhar o triângulo [MFN] Calcular o volume da pirâmide.. Calcular a área do triângulo [MNL] Determinar a altura pedida Desenhar a secção Calcular a aresta do hexágono Concluir o valor do perímetro Calcular o apótema do hexágono 4 Calcular a área... 4 Total 100 Professora: Rosa Canelas 9 no Lectivo 009/010

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I Escola Secundária com 3º ciclo D. Dinis 0º Ano de Matemática A Geometria no Plano e no Espaço I Trabalho de casa nº 6 Estes trabalhos de casa, até ao fim do período, vão continuar a ser constituídos por

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I Escola Secundária com º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I º Teste de avaliação versão1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. TPC nº 7 entregar no dia

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. TPC nº 7 entregar no dia Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I TPC nº 7 entregar no dia 4 0 013 1. O cubo da figura tem as faces paralelas aos planos coordenados

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 3º Teste de avaliação versão2.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 3º Teste de avaliação versão2. Escola Secundária com 3º ciclo D. Dinis 10º no de Matemática TEM 1 GEMETRI N PLN E N ESPÇ I 3º Teste de avaliação versão Grupo I s cinco questões deste grupo são de escolha mqaúltipla. Para cada uma delas

Leia mais

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Geometria no Plano e no Espaço I Trabalho de casa nº 7 GRUPO I 1. Num certo prisma, cada uma das bases tem n vértices. Quantas faces e quantas

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. Grupo I scola Secundária com º ciclo. inis 10º no de Matemática TM 1 OMTRI NO PLNO NO SPÇO I 1º Teste de avaliação versão1 rupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. Grupo I scola Secundária com º ciclo. inis 10º no de Matemática TM 1 OMTRI NO PLNO NO SPÇO I 1º Teste de avaliação versão rupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas

Leia mais

10º Ano de Matemática A Geometria no Plano e no Espaço I 2º Teste de avaliação Proposta de resolução. Grupo I

10º Ano de Matemática A Geometria no Plano e no Espaço I 2º Teste de avaliação Proposta de resolução. Grupo I 10º Ano de Matemática A Geometria no Plano e no Espaço I º Teste de avaliação Proposta de resolução Grupo I 8 1. (B) Os pontos A 3,7 e B 5,7 são simétricos em A B relação à recta de equação 1 6 4. (D)

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano)

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) MTMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados um cilindro e um prisma quadrangular regular [ ] de bases []

Leia mais

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2.

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2. 1. Encontre a área de um losango qualquer em função de suas diagonais. 2. Se dois triângulos ABC e DEF são semelhantes com razão de semelhança k, mostre que A ABC A DEF = k 2. 3. Na figura 1, ABCD e EF

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Grupo I

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Grupo I scola Secundária com º ciclo. inis 10º no de Matemática eometria no lano e no spaço I 1º Teste de avaliação rupo I s cinco questões deste grupo são de escolha múltipla. ara cada uma delas são indicadas

Leia mais

Exame Nacional ª Chamada

Exame Nacional ª Chamada Matemática Exame Nacional 007.ª Chamada Nome completo: Bilhete de identidade n.º: Assinatura do Estudante: Prova.ª Chamada Emitido em (Localidade): Duração da prova: 90 minutos Não escrevas o teu nome

Leia mais

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila

Leia mais

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos) MATEMÁTICA 3º CICLO FICHA 16 Geometria regular inscrito numa circunferência Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) é uma figura plana limitada por segmentos de

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Trabalho de casa nº 14 1. Um cilindro como o da figura tem 10 cm de

Leia mais

Teste Intermédio 2012

Teste Intermédio 2012 Teste Intermédio 01 1. Uma escola básica tem duas turmas de 9. ano: a turma e a turma. Os alunos da turma distribuem-se, por idades, de acordo com o seguinte diagrama circular. Idades dos alunos da turma

Leia mais

Volume do dodecaedro e do icosaedro

Volume do dodecaedro e do icosaedro Capítulo Volume do dodecaedro e do icosaedro.1 Introdução. Os cálculos do volume dos sólidos platônicos que geralmente são abordados pelos livros didáticos de Matemática do ensino médio, resumem-se ao

Leia mais

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Inscrição e circunscrição de sólidos geométricos Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Introdução Nosso último estudo em Geometria será destinado aos sólidos inscritos

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

Medida de Ângulos em Radianos

Medida de Ângulos em Radianos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Medida de Ângulos

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Tema: Circunferência e Polígonos. Rotações

Tema: Circunferência e Polígonos. Rotações Nome: N.º: Turma: 9.º no Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência e Polígonos. Rotações 1. Na figura está representado um decágono regular [ BCDEFGHIJ

Leia mais

CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO

CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO CRONOGRAMA DE RECUPERAÇÃO SÉRIE: 1ª série do EM DISCIPLINA: MATEMÁTICA 2 Cadernos Assuntos 3 e 4 Áreas e perímetros de figuras planas Lei dos senos e cossenos Trigonometria no triângulo retângulo Teorema

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo D indicado.

Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo D indicado. aculdade de Ciências Departamento de Matemática e Informática Licenciatura em Informática, Diurno 1 0 Teste de undamentos de Geometria. Correcção. ariante Duração: 90 minutos 18.0.01 1. ( valores) Sabe-se

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 9 (entregar em 11-03-011)

Leia mais

Escola Secundária com 3º Ciclo D. Dinis. Ficha de Apoio nº2

Escola Secundária com 3º Ciclo D. Dinis. Ficha de Apoio nº2 Escola Secundária com 3º Ciclo D. Dinis Ano Lectivo 2008 /2009 Matemática B Ano 10º Turma D 1. Observe a figura. 1.1.Indique as coordenadas dos pontos A, B, C, A, B e C. 1.2. Descreva a transformação geométrica

Leia mais

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação: Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 25 de fevereiro de 2013 Nome: N.º Turma:

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

MA13 Geometria I Avaliação

MA13 Geometria I Avaliação 13 eometria I valiação 011 abarito Questão 1 (,0) figura abaixo mostra um triângulo equilátero e suas circunferências inscrita e circunscrita. circunferência menor tem raio 1. alcule a área da região sombreada.

Leia mais

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica Barbosa, L.S. leonardosantos.inf@gmail.com 4 de junho de 014 Sumário I Provas 5 1 Matemática 013 1 7 II Soluções 11 Matemática

Leia mais

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles

Leia mais

Tarefa nº 9. (Plano de trabalho nº 4)

Tarefa nº 9. (Plano de trabalho nº 4) ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Tarefa nº 9 VAMOS DESCOBRIR NOVOS POLIEDROS A PARTIR DO CUBO Pretende-se, com esta actividade, e utilizando o que estudou e trabalhou até

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega

Leia mais

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico UNIVERSIDADE ESTADUAL VALE DO ACARAÚ- UVA DEPARTAMENTO DE MATEMÁTICA Desenho Geométrico Desenho Geométrico Desenho Geométrico Desenho Geometrico Daniel Caetano de Figueiredo Daniel Caetano de Figueiredo

Leia mais

Ficha de Trabalho: Exames e Testes intermédios do 9º ano: Teorema de Pitágoras, áreas e volumes

Ficha de Trabalho: Exames e Testes intermédios do 9º ano: Teorema de Pitágoras, áreas e volumes Ficha de Trabalho: Exames e Testes intermédios do 9º ano: Teorema de Pitágoras, áreas e volumes 1. Considera a figura ao lado, onde: [ABFG] é um quadrado de área 36; [BCDE] é um quadrado de área 64; F

Leia mais

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA Poliedross 1.5 Superfície poliédrica fechada Uma superfície poliédrica fechada é composta de um número finito (quatro ou mais) de superfícies poligonais planas, de modo que cada lado de uma dessas superfícies

Leia mais

QUESTÃO 03 (OBMEP) Os quadrados abaixo tem todos o mesmo tamanho. Em qual deles a região sombreada tem a maior área?

QUESTÃO 03 (OBMEP) Os quadrados abaixo tem todos o mesmo tamanho. Em qual deles a região sombreada tem a maior área? / /017 QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. Considere que cada quadrícula da malha equivale

Leia mais

Geometria Espacial: Sólidos Geométricos

Geometria Espacial: Sólidos Geométricos Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.

Leia mais

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação: Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 19 de fevereiro de 2013 Nome: N.º Turma:

Leia mais

MATEMÁTICA - 3o ciclo Figuras semelhantes (7 o ano)

MATEMÁTICA - 3o ciclo Figuras semelhantes (7 o ano) MTMÁTI - 3o ciclo Figuras semelhantes (7 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura seguinte, estão representadas duas semirretas, Ȯ e Ȯ, e duas retas paralelas, r e s. a reta

Leia mais

TESTE DE LÓGICA, ÁLGEBRA E GEOMETRIA 10.º ANO

TESTE DE LÓGICA, ÁLGEBRA E GEOMETRIA 10.º ANO TESTE DE LÓGICA, ÁLGEBRA E GEOMETRIA 10.º ANO NOME: N.º: TURMA: ANO LETIVO: / DATA: / / DURAÇÃO DO TESTE: 90 MINUTOS O teste é constituído por dois grupos. O Grupo I é constituído por itens de seleção

Leia mais

TESTE INTERMÉDIO DE MATEMÁTICA A RESOLUÇÃO - VERSÃO 1

TESTE INTERMÉDIO DE MATEMÁTICA A RESOLUÇÃO - VERSÃO 1 TESTE INTERMÉDIO DE MATEMÁTICA A RESOLUÇÃO - VERSÃO 1 Grupo I 1. Se uma recta é paralela ao eixo SD, qualquer vector director dessa recta tem primeira e segunda coordenadas iguais a zero. Resposta B 2.

Leia mais

A Geometria nas Provas de Aferição

A Geometria nas Provas de Aferição Escola E.B. 2 e 3 de Sande Ficha de Trabalho de Matemática 6.º Ano A Geometria nas Provas de Aferição Nome: N.º Turma: 1. Assinala com um x a figura em que os triângulos representados são simétricos em

Leia mais

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas. PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada

Leia mais

Proposta de teste de avaliação Matemática 9

Proposta de teste de avaliação Matemática 9 Proposta de teste de avaliação Matemática 9 Oo Nome da Escola no letivo 0-0 Matemática 9.º ano Nome do luno Turma N.º Data Professor - - 0 PRTE Nesta parte é permitido o uso da calculadora.. Relativamente

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:

Leia mais

Encontro 6: Áreas e perímetros - resolução de exercícios

Encontro 6: Áreas e perímetros - resolução de exercícios Encontro 6: Áreas e perímetros - resolução de exercícios Recapitulando... Área de um triângulo retângulo Área de um paralelogramo Á. 2 Á. Todos os paralelogramos de mesma base e mesma altura possuem áreas

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

9.º Ano. Escola EB 2,3 de Ribeirão (Sede) ANO LECTIVO 2009/2010

9.º Ano. Escola EB 2,3 de Ribeirão (Sede) ANO LECTIVO 2009/2010 Escola EB,3 de Ribeirão (Sede) ANO LECTIVO 009/010 Ficha Trabalho Circunferência, Trigonometria, Áreas e Volumes, Equações do º grau Maio 010 Nome: 1ª PARTE N.º: Turma: 9.º Ano 1. Observa a seguinte figura:

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. Tarefa nº 4 do plano de trabalho nº 1

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. Tarefa nº 4 do plano de trabalho nº 1 Escola Secundária com º ciclo D. Dinis º Ano de Matemática A Tema III Trigonometria e Números Compleos Tarefa nº 4 do plano de trabalo nº sen. Use a calculadora para verificar que e 0 0 sen. A partir deste

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como planificação da superfície lateral de cilindro é um retângulo, cujas medidas

Leia mais

B { } e o produto. . Resolve a equação. x admite raízes m e a sua altura mede da base. Calcula o comprimento da diagonal

B { } e o produto. . Resolve a equação. x admite raízes m e a sua altura mede da base. Calcula o comprimento da diagonal Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano - nº Data / / 010 Assunto: Preparação para o teste nº Lições nº, e Apresentação dos Conteúdos e Objectivos para o º Teste

Leia mais

PARTE 1. 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5

PARTE 1. 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5 ENSINO FUNDAMENTAL 9º ano LISTA DE EXERCÍCIOS PT 3º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA PARTE 1 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5 ) Para

Leia mais

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...

Leia mais

Área das figuras planas

Área das figuras planas AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:

Leia mais

Grupo de exercícios I - Geometria plana- Professor Xanchão

Grupo de exercícios I - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos

Leia mais

Escola Básica dos 2º e 3º Ciclos de Santo António Ficha de Trabalho. Espaço - Outra Visão

Escola Básica dos 2º e 3º Ciclos de Santo António Ficha de Trabalho. Espaço - Outra Visão Matemática Escola Básica dos 2º e 3º Ciclos de Santo António Ficha de Trabalho 9º ano Espaço - Outra Visão 1. Arrumaram-se três esferas iguais dentro de uma caixa cilíndrica (figura 1). Como se pode observar

Leia mais

Segunda Etapa 2ª ETAPA 2º DIA 11/12/2006

Segunda Etapa 2ª ETAPA 2º DIA 11/12/2006 Segunda Etapa ª ETP º DI 11/1/006 CDERNO DE PROVS FÍSIC MTEMÁTIC GEOMETRI GRÁFIC IOLOGI GEOGRFI PORTUGUÊS LITERTUR INGLÊS ESPNHOL FRNCÊS TEORI MUSICL COMISSÃO DE PROCESSOS SELETIVOS E TREINMENTOS Geometria

Leia mais

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a CONE Cones Definição e elementos Um plano Um círculo C contido em Um ponto V que não pertence a Elementos do cone Base: é o círculo C, de centro O, situado no plano Vértice: é o ponto V Elementos do cone

Leia mais

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas)

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) DEPARTAMENTO DE MATEMÁTICA PROFª VALÉRIA NAVARRO ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) 1. (G1 - cftrj 014) Na figura abaixo,

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m.

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m. Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Pirâmide ano/em Pirâmide Geometria Espacial II - volumes e áreas de prismas e pirâmides 1 Exercícios Introdutórios Exercício 1 Determine

Leia mais

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Considerando a expressão para o volume, V, de um tronco de pirâmide quadrangular

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

3 - œ10, Exame Nacional ª Chamada. Nome completo: Assinatura do Estudante:

3 - œ10, Exame Nacional ª Chamada. Nome completo: Assinatura do Estudante: Matemática Nome completo: Bilhete de identidade n.º: ssinatura do Estudante: Prova 23 2.ª Chamada Exame Nacional 2008 2.ª Chamada Emitido em (Localidade): Não escrevas o teu nome em mais nenhum local da

Leia mais

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados

Leia mais

MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir.

MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir. MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x cos x : cosseno de x x : módulo de x log x : logaritmo de x na base 10 6. Um

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada Tarefa n.º 1. Quando o Afonso sai

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições MATEMÁTICA A - 1o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Na figura ao lado, está representado, no plano complexo, um quadrado cujo centro coincide com

Leia mais

SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012

SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 -POLÍGONOS REGULARES -APÓTEMAS DE BASES REGULARES -PONTOS NOTÁVEIS NO TRIÂNGULO -COMPRIMENTO DA CIRCUNFERÊNCIA -ÁREA DO CÍRCULO

Leia mais

Unidade 10 Geometria Espacial. Esfera

Unidade 10 Geometria Espacial. Esfera Unidade 10 Geometria Espacial Esfera Esfera Na série anterior, você estudou dois dos chamadas corpos redondos: o cilindro e o cone Estudaremos outro sólido que sem dúvida, aparece com extrema frequência

Leia mais

Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL MATEMÁTICA 3.º CICLO DO ENSINO BÁSICO

Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL MATEMÁTICA 3.º CICLO DO ENSINO BÁSICO EXAME NACIONAL DE MATEMÁTICA 2007 3.º CICLO DO ENSINO BÁSICO A preencher pelo estudante NOME COMPLETO BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) ASSINATURA DO ESTUDANTE Não escrevas o teu nome em

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e

Leia mais

26 A 30 D 27 C 31 C 28 B 29 B

26 A 30 D 27 C 31 C 28 B 29 B 26 A O total de transplantes até julho de 2015 é de 912 transplantes. Destes, 487 são de córnea. Logo 487/912 53,39% transplantes são de córnea. 27 C O número de subnutridos caiu de 1,03 bilhões de pessoas

Leia mais

LISTA DE EXERCÍCIOS PARA PROVA FINAL/2015

LISTA DE EXERCÍCIOS PARA PROVA FINAL/2015 ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL Rua Prof Guilherme Butler, 792 - Barreirinha - CEP 82.700-000 - Curitiba/PR Fone: (41) 3053-8636 - e-mail: ease.acp@adventistas.org.br

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo

Leia mais

OS PRISMAS. 1) Conceito :

OS PRISMAS. 1) Conceito : 1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC).

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC). GRITO 13 Geometria I - valiação 3-01/ área de um triângulo será denotada por (). Questão 1. (pontuação: ) figura abaio mostra as semirretas perpendiculares r e s, três circunferências pequenas cada uma

Leia mais

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução MTMÁT - 3o ciclo sometrias (8 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. omo a reflexão do ponto e eixo é o ponto a imagem do ponto pela translação associada ao

Leia mais

Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides.

Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides. Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides. A seguir, algumas representações de pirâmides: Essa forma espacial é bastante

Leia mais

TESTE DE DIAGNÓSTICO

TESTE DE DIAGNÓSTICO TESTE DE DIAGNÓSTICO 9.º 10.º ANO NOME: N.º: TURMA: ANO LETIVO: / DURAÇÃO DO TESTE: 90 MINUTOS DATA: / / O teste é constituído por dois grupos. No Grupo I, são indicadas quatro opções de resposta para

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

Prova Escrita de Matemática. 3.º Ciclo do Ensino Básico. Prova 23/2.ª Chamada. Duração da Prova: 90 minutos. Tolerância: 30 minutos.

Prova Escrita de Matemática. 3.º Ciclo do Ensino Básico. Prova 23/2.ª Chamada. Duração da Prova: 90 minutos. Tolerância: 30 minutos. EXAME NACIONAL DO ENSINO BÁSICO Prova 3 /.ª Chamada / 11 Decreto-Lei n.º 6/1, de 18 de Janeiro A PREENCHER PELO ESTUDANTE Nome Completo Documento de Identificação BI n.º Emitido em ou CC n.º (Localidade)

Leia mais