03. Sejam z = n 2 (cos 45 + i sem 45 ) e w = n(cos 15 + isen15 ), em. igual a. Solução: n = 4 Assim: 04. Se arg z, então um valor para arg(-2iz) é

Tamanho: px
Começar a partir da página:

Download "03. Sejam z = n 2 (cos 45 + i sem 45 ) e w = n(cos 15 + isen15 ), em. igual a. Solução: n = 4 Assim: 04. Se arg z, então um valor para arg(-2iz) é"

Transcrição

1 . Sjam z = (cos + i sm ) w = (cos + is ), m. Dsja-s trocar uma moda d ctavos, usado-s apas modas d, ctavos. Etão, o úmro d difrts mairas m qu a moda d ctavos pod sr trocada é igual a a) b) c) d) ) mairas LTERNTIV D. Dois atiradors acrtam o alvo uma vz a cada três disparos. S os dois atiradors disparam simultaamt, tão a probabilidad do alvo sr atigido plo mos uma vz é igual a a) b) c) 9 9 d) 9 P = acrto P = acrtos ) qu é o mor itiro positivo tal qu ( + i) é ral. Etão, igual a a) i b) c) d) ) i i i / Mas R s k = ssim: W i cos is k Z i k i i z w i LTERNTIV B i cos is. S arg z, tão um valor para arg(-iz) é a) b) c) d) ) arg(-iz) = arg(-i) + argz = arg(-i) + argz = arg(-iz) = LTERNTIV E z é w P = (P P ) P(acrtar) = P(rrar) = E = 9 E E = 9 E = 9 = LTERNTIV D. Sjam r, r r úmros rais tais qu r r r + r + r são racioais. Das afirmaçõs: I. S r é racioal ou r é racioal, tão r é racioal; II. S r é racioal, tão r + r é racioal; III. S r é racioal, tão r r são racioais, é (são) smpr vrdadira(s) a) apas I b) apas II c) apas III d) apas I II ) I, II III r, r, r rais r r racioal r + r + r racioal I. Vrdadira Como r r é racioal, s r é racioal tmos r racioal portato, r é racioal. S r é racioal tmos r racioal portato, r é racioal. II. Vrdadira Como r + r + r é racioal, s r é racioal, tão r + r é racioal. III. Vrdadira Not qu (r r ) + (r + r + r ) = r + r é racioal. ssim, s r é racioal sgu qu r é racioal como r r é racioal sgu qu r é racioal. GGE RESPONDE IT MTEMÁTIC LTERNTIV E

2 . s raízs, do poliômio p() = + a ( + ) + stão rlacioadas plas quaçõs: Etão, o coficit a é igual a a) ( ) b) ( ) c) ( ) d) ) ( ) Sja p() ( ) a Plas rlaçõs d Girard; tmos Portato, tmos um sistma liar dado por: Escaloado o sistma, a matriz complta é dada por: Logo ( ) ( ) ( ) ( ) Logo = Como p( ) = p() = ssim + a + - (+ ) = + a = a + ( - ) = a + ( - ) = a = ( -) LTERNTIV C. Sab-s qu ( + y, y, y, y + z) é uma progrssão aritmética com o último trmo igual a. Etão, o produto yz é igual a a) b) c) d) ) ( + y, y, y, y + z) é uma P.. y + z = - (I) ( y) = + y + y y = 9 = - y (II) ( y) = y + y + z y = y + z + y z = X + y z = (III) D (I) (III) sgu qu: y z y z + y = - (IV) D (II) (IV), tmos y y - = = - y = z = Logo: yz = - LTERNTIV. Cosidr um poliômio p(), d grau, com coficits rais. Sab-s qu i i - são duas d suas raízs. Sab-s, aida, qu dividido-s p() plo poliômio q() = obtém-s rsto zro qu p() = ( + a) b) c) d) ) Sja p() R[]; grau d p() = ). Etão, p(- ) é igual a Como Z = - i Z i são raízs d p() Tmos qu Z = i Z i são raízs d p(), plo torma das raízs cojugadas. Mas p() possui grau ímpar coficit rais, logo p() possui plo mos uma raiz ral. Como p() é divisívl por q() = tmos qu = é a raiz ral d p(). Usado o torma d dcomposição tmos qu p() pod sr scrito da sguit maira. p() = ( i)( + i)( + - i )( + + i)( ) Como p() p() ( i)( i)( i)( i)( ) p() p () ssim = - Portato p() ssim p( ) p( ) p( ) i i i i i i i i LTERNTIV C GGE RESPONDE IT MTEMÁTIC

3 9. Um triâgulo BC tm lados com mdidas a = cm, b = cm c = cm. Uma circufrêcia é tagt ao lado a também aos prologamtos dos outros dois lados do triâgulo, ou sja, a circufrêcia é -iscrita ao triâgulo. Etão, o raio da circufrêcia, m cm, é igual a: a) b) c) d) ) = (, ), B = (, ), C = (, ) Dtrmiado o barictro, tmos: G,, Cálculo da distâcia tr G : dg dg ( ) 9 9 LTERNTIV B 9. ára do quadrilátro dfiido plos ios coordados as rtas r: y + = s: + y =, m uidads d ára, é igual a 9 a) b) c) 9 d) ) (r): y + = (s): + y = S abc S S S abc CI BI S a a BCIa b R c R a R Sabc R Sabc (b c a) Sabc R b c a LTERNTIV. Sjam = (, ), B = (, ) C = (, ) vértics d um triâgulo. distâcia do barictro dst triâgulo ao vértic, m uidads d distâcia, é igual a a) d) 9 b) ) c) 9 y y y Vértics do quadrilátro: (,); (,); (,); (,) Cálculo da ára do triâgulo d vértics (,); (,); (,) Ára Cálculo da ára do triâgulo d vértics (,); (,); (,) Ára Ára do quadrilátro = LTERNTIV D GGE RESPONDE IT MTEMÁTIC

4 . Dados os potos (,), B = (,) C = (,), o lugar gométrico dos potos qu s cotram a uma distâcia d = da bisstriz itra, por, do triâgulo BC é um par d rtas dfiidas por ª Rsolução, y a) r, : y b) r, : y c) r, : y d) : y r, ) : y r, ª Rsolução y y y y, y y quadrats pars y quadrats impars y, C, y y LTERNTIV E, B, quação da rta suport a bisstriz do âgulo itro  do triâgulo BC é dada por. y Pois BC é rtâgulo isóscls com Ĉ =9 tg Portato o lugar gométrico da qustão é dado pla sguit quação modular y y y y y y y y y r, y ( ) ( ) y :. Sjam, B C subcojutos d um cojuto uivrso U. Das afirmaçõs: I. ( \ B C ) \ C C = (B C); II. ( \ B C ) \ C = (B C C ) C ; III. B C C C = (B C) C, é (são) smpr vrdadira(s) apas a) I b) II c) III d) I III ) II III I. ( \ B C ) \ C C = ( B) \ C C = B C (B C). FLS II. ( \ B C ) \ C = ( B) C C (B C C ) C FLS III. B C C C = (B C) C (Idtidad) VERDDEIR pas III é vrdadira LTERNTIV C. Sjam B dois cojutos disjutos, ambos fiitos ãovazios, tais qu (P() P(B)) + = (P( B)). Etão, a difrça () (B) pod assumir a) um úico valor b) apas dois valors distitos c) apas três valors distitos d) apas quatro valors distitos ) mais do qu quatro valors distitos (P() P(B)) = B (cota-s o cojuto duas vzs) (P( B)) = B como (P() (P(B)) + = (P(B)) B B B B Para o caso d B: ( B) B caso: B B é par (ão tm solução ) é ímpar GGE RESPONDE IT MTEMÁTIC

5 caso : = B Sja = B = O = = = B = ssim: () (B) = (úico valor) LTERNTIV. Cosidr um úmro ral a positivo, fiado, a quação m a + a - =, R Das afirmaçõs: I. S <, tão istm duas soluçõs rais distitas; II. S = -, tão ist apas uma solução ral; III. S =, tão ão istm soluçõs rais; IV. S >, tão istm duas soluçõs rais distitas; é (são) smpr vrdadira(s) apas a) I b) I III c) II III d) II IV ) I, III IV a + a - = R a, REL, FIXO, POSITIVO Fazdo a = y (*), tmos: y + y - = = () (-) = + = ( + ) Sial d : I. Falsa Not qu s < <, tmos < logo a quação ão tm solução ral. II. Vrdadira S = -, tmos y y + = (y ) = y = Substituido m (*) tmos a = = III. Vrdadira S =, tão y = y = substituido m (*) tmos a = (ão há solução, pois < a ) IV. Falsa S >, tão >. Sgu qu y + y - = admit duas raízs rais distitas, cujos siais são: y' y = - < y > y < (sm prda d gralidad) Sgu qu a quação admit uma úica solução ral. LTERNTIV C -y. Sja S R arc s arccos a) S = b) S = {} c) S = R + \{} d) S = R + ) S = R - S R arc s arccos Sjam - arc s arc cos ssim, [, ] Logo s cos Por outro lado, tmos, logo s s s cos Dst modo. Portato = LTERNTIV B. Sja [,] tal qu s()cos(). Etão, o produto a soma d todos os possívis valors d tg() são, rspctivamt a) b) c) d) ) Sja [,] s() s() cos() s() Dst modo cos 9 () cos () cos( ) cos() ou cos( ) ) Caso: s() cos() ssim tg() tg Mas tg() tg Dst modo tg tg tg + tg = = + =. GGE RESPONDE IT MTEMÁTIC

6 tg tg tg tg = - ão covém pois s cos possum o msmo sial. º Caso: s() cos() - ssim tg tg() tg tg = - + tg tg tg = = + = tg tg tg tg Não covém pois s cos possum o msmo sial. Soma dos valors d tg() S = + / = / Produto dos valors da tg. P P = S = / LTERNTIV B cos( k), para todo α [, ], val. soma k a) cos(α) quado é par. b) s(α) quado é par. c) cos(α) quado é ímpar. d) s(α) quado é ímpar. ) zro quado é ímpar. Sja S cos( k), para todo [, ] k S k for ímpar ; tão cos(α + k) = -cosα S k for par ; tão cos(α + k) = cosα [, ] Podmos scrvr Sja S cos( k) da sguit maira: Sja S k cos( k) k k par cos( k) k ímpar cos( k) S = q for ímpar, q N, N, tão, a sguêcia (,) possui (q + ) trmos, isto é, quatidad par. Logo: Sja S cos( k) (q )cos (q )cos k Portato: S = para ímpar. LTERNTIV E 9. Um co circular rto d altura cm gratriz cm é itrcptado por um plao parallo à sua bas, sdo dtrmiado, assim, um ovo co. Para qu st ovo co tha o msmo volum d um cubo d arsta cm, é cssário qu a distâcia do plao à bas do co origial sja, m cm, igual a a) d) R R 9 h r h h h Logo d LTERNTIV D b) ) r R cm V r h r h h c) S = q for par, q N, N, tão, a sguêcia (,) possui (q + ) trmos, isto é, quatidad ímpar. ssim: S cos( k) (q )cos qcos S cos s for par k GGE RESPONDE IT MTEMÁTIC

7 . suprfíci latral d um co circular rto é um stor circular d ára igual a cm. ára total o volum dst co mdm, m cm cm, rspctivamt a) b) c) d) ) g r g r g g cm r cm T r cm r h v Mas h v g r LTERNTIV r. Dz cartõs stão umrados d a. Dpois d mbaralhados, são formados dois cojutos d cartõs cada. Dtrmi a probabilidad d qu os úmros 9 aparçam um msmo cojuto. casos favorávis P casos totais Casos totais: C, = Casos favorávis:!!! 9 C, Casos favorávis =. C, (duas caias) C,!!! Logo P C,!!! 9. Dtrmi os valors rais d d modo qu s() - cos() sja máimo. Dfiimos a sguit fução f() s() cos() Qurmos cotrar os valors R tais qu maimizm a fução f(). r Tmos qu: f() s() cos() Logo f() s() cos s cos() f() s f() s Portato f() atig o valor máimo quado s,log o - k;k z k k k. Portato o cojuto solução. S R k,k z São os valors d R qu maimizam f().. Cosidr a matriz quadrada m qu os trmos da diagoal pricipal são, +, +, + todos os outros trmos são iguais a. Sab-s qu (,,, ) é uma progrssão gométrica cujo primiro trmo é / a razão é. Dtrmi a ordm da matriz para qu o su dtrmiat sja igual a. Not qu é do tipo ( + ) ( + ) para o cálculo da dtrmiat, utilizado a rgra d Chió, obtmos: dt( ) dt( ) dt() = = como ( ) é uma P.G com = / q = tmos: ( ) ( ) GGE RESPONDE IT MTEMÁTIC

8 Por outro lado: q D sgu qu: = - (ão covém) = Como a ordm d é ( + ), tmos como ordm d. +=. Sja um úmro atural. Sabdo qu o dtrmiat da matriz log log log log log log Pé igual a 9, dtrmi também a soma dos lmtos da primira colua ivrsa -. Da soma da ª com a ª, tmos a + c = Da soma do dobro da ª com a ª, tmos: a b = b= a Substituido a ª tmos a + a a = a = a = b = c = Logo a + b + c =. Em um plao stão situados uma circufrêcia d raio cm um poto P qu dista cm do ctro d. Cosidr os sgmtos P PB tagts a os potos B, rspctivamt. o girar a rgião fchada dlimitada plos sgmtos P PB plo arco mor B m toro d um io passado plo ctro d prpdicular ao sgmto P, obtéms um sólido d rvolução. Dtrmi: dt( ) ( ) ( ) dt( ) ' (Não covém ) '' S, tão a b c d f g h i a d g b h c f i a b c a b c a b c Ára da Bas: r Ára latral do cilidro: rh Ára latral da mtad da sfra: a) T rh r r T b) V = V cilidro - V = sfra r r h r. s itrsçõs das rtas r: y + =, s: + y = t: + y =, duas a duas, rspctivamt, dfim os vértics d um triâgulo qu é a bas d um prisma rto d altura igual a uidads d comprimto. Dtrmi: a) ára total da suprfíci do prisma. b) O volum do prisma. GGE RESPONDE IT MTEMÁTIC

9 + f + g =, + f + g = (a + b + c + d) + f + g = (, + +,) + f + g =, r D C t s B, =, = Logo satisfazdo tais codiçõs!,. alis s f : R R, f(), caso afirmativo, cotr f - : R R. é bijtora, m Itrsção tr r s (poto ) y y y y ssim :(,), B:(,), C:(,). Ára: BC BD BCD BC Prímtro: P BC B BC C a) T BC P BC H PRISM T b)vprism BC HPRISM V PRISM. Dos aluos d um colégio, cada um studa plo mos uma das três matérias: Matmática, Física Química. Sab-s qu % dos aluos studam Matmática, % studam Química % studam Física. Sab-s, aida, qu % dos aluos studam apas Física Matmática, quato % studam todas as três matérias. Os aluos qu studam apas Química Física mais aquls qu studam apas Matmática Química totalizam studats. Dtrmi. Do gráfico: i) S f() f() (f ii) a R, tal qu f() a (f Logo: f é bijtora. * Cálculo da ivrsa. Sabmos qu: f() f() f (y), f (y), ssim: y y (f (y)), y (f (y)), y y (f (y)), y y (f (y)), y (f y, (y)) y, y y y, y f (y) y, y é ijtora) é sobrjtora) + d + a + b =, a + b + c + g =, d + a + f + c =, d =, a =, c + b = a + b + c + d + + f + g = + f + g = (a + b + c + d) + f + g = (, + +,) a + (b + c + d) + + f + g =,, + ( +,) + + f + g =,, + +, + + f + g =, + f + g =, GGE RESPONDE IT MTEMÁTIC 9 9. Dtrmi os valors d [, ] tais qu log tg() s(). log s tg s tg s tg s Caso : tg tg Caso : s tg tg,,,,

10 . s rtas r r são cocorrts o poto P, trior a um círculo. rta r tagcia o poto a rta r itrcpta os potos B C diamtralmt opostos. mdida do arco C é P md cm. Dtrmi a ára do stor mor d dfiido plo arco B. P cm C R O B r r F acos F a Mg qq o d cos qq cos d o a, d,d Mg a ε o = prmissividad létrica do vácuo. qq Mg a o a qq oa 9 9Mg Q Mg 9 q o a tg R R R Ára cm 9. figura mostra um sistma formado por dois blocos, B, cada um com massa m. O bloco pod dslocar-s sobr a suprfíci plaa horizotal od s cotra. O bloco B stá coctado a um fio itsívl fiado à pard, qu passa por uma polia idal com io prso ao bloco. Um suport vrtical sm atrito matém o bloco B dscdo smpr parallo a l, coform mostra a figura. Sdo µ o coficit d atrito ciético tr o bloco, a suprfíci, g a aclração da gravidad, = º matido costat, dtrmi a tração o fio após o sistma sr abadoado do rpouso. ERRT FÍSIC //. figura mostra uma chapa fia d massa M com o formato d um triâgulo quilátro, tdo um lado a posição vrtical, d comprimto a, um vértic articulado uma barra horizotal cotida o plao da figura. Em cada um dos outros vértics cotra-s fiada uma carga létrica q, a barra horizotal, a uma distâcia a / do poto d articulação, cotra-s fiada uma carga Q. Sdo as três cargas d msmo sial massa dsprzívl, dtrmi a magitud da carga Q para qu o sistma prmaça m quilíbrio. y y Calculado os torqus m toro d poto O: Bloco T N P F FB a a T f at O a P GGE RESPONDE IT MTEMÁTIC

11 Bloco B T FB PB y cos ab cos y Bloco B FB mab mg T maby Bloco ab a Tcos FB fat ma Ts N mg T a ab a D T cos FB N ma, FB ma B ma T cos ma N ma T cos N ma, N mg T Ts T cos (mg T Ts) ma D a ab y cos g Daí : T m cos T T cos (mg T Ts) m g cos m T cos Ts T T cos mg cos mg Ts mgcos s mgcos mgcos T cos T cos T cos s cos T,s mg mg GGE RESPONDE IT MTEMÁTIC

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul?

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul? (9) - www.litcampias.com.br O ELITE RESOLVE IME 8 TESTES MATEMÁTICA MATEMÁTICA QUESTÃO D quatas mairas bolas idêticas podm sr distribuídas m três cstos d cors vrd, amarlo azul? a) b) d) ( )! ) Rsolução

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [maio 2018]

Novo Espaço Matemática A 12.º ano Proposta de Teste [maio 2018] Novo Espaço Matmática A 1.º ao Proposta d Tst [maio 018] Nom: Ao / Turma: N.º: Data: - - Não é prmitido o uso d corrtor. Dvs riscar aquilo qu prtds qu ão sja classificado. A prova iclui um formulário.

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [janeiro ]

Novo Espaço Matemática A 12.º ano Proposta de Teste [janeiro ] Novo Espaço Matmática A.º ao Proposta d Tst [jairo - 08] Nom: Ao / Turma: N.º: Data: / / Não é prmitido o uso d corrtor. Dvs riscar aquilo qu prtds qu ão sja classificado. A prova iclui um formulário.

Leia mais

CADERNO 1. (É permitido o uso de calculadora gráfica) N.º de possibilidades de representar os 4 algarismos ímpares e a sequência de pares: 5!

CADERNO 1. (É permitido o uso de calculadora gráfica) N.º de possibilidades de representar os 4 algarismos ímpares e a sequência de pares: 5! Novo Espaço Matmática A º ao Proposta d Rsolução [jairo - 08] Algarismos ímpars:,,, 7, 9 Algarismos pars:, 4, 6, 8 CADERNO (É prmitido o uso d calculadora gráfica) Nº d possibilidads para o algarismo das

Leia mais

Proposta de Exame Final de Matemática A

Proposta de Exame Final de Matemática A Proposta d Eam Fial d Matmática. N DE ESCLRIDDE Duração da prova: 50 miutos. Tolrâcia: 30 miutos Data: Grupo I Na rsposta aos its dst grupo, slcio a opção corrta. Escrva, a olha d rspostas, o úmro do itm

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [maio 2018]

Novo Espaço Matemática A 12.º ano Proposta de Teste [maio 2018] Proposta d Tst [maio 018] Nom: Ao / Turma: Nº: Data: - - Não é prmitido o uso d corrtor Dvs riscar aquilo qu prtds qu ão sja classificado A prova iclui um formulário As cotaçõs dos its cotram-s o fial

Leia mais

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase XXXI Olimpíada Brasilira d Matmática GABARITO Primira Fas Soluçõs Nívl Uivrsitário Primira Fas PROBLEMA ( x) a) A drivada da fução f é f ( x) =, qu s aula apas para x =, sdo gativa para x < positiva para

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [novembro 2018]

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [novembro 2018] Novo Espaço Matmática A.º ao Proposta d tst d avaliação [ovmbro 08] Nom: Ao / Trma: N.º: Data: - - Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário.

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [janeiro 2019]

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [janeiro 2019] Novo Espaço Matmática A 11.º ao Nom: Ao / Trma: N.º: Data: - - Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário. As cotaçõs dos its cotram-s o fial

Leia mais

CADERNO 1 (É permitido o uso de calculadora gráfica.)

CADERNO 1 (É permitido o uso de calculadora gráfica.) Nom: Ao / Trma: Nº: Data: - - Não é prmitido o so d corrtor Dvs riscar aqilo q prtds q ão sja classificado A prova icli m formlário As cotaçõs dos its cotram-s o fial do ciado da prova CADERNO 1 (É prmitido

Leia mais

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019]

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019] Nom: Ao / Trma: Nº: Data: - - Não é prmitido o so d corrtor Dvs riscar aqilo q prtds q ão sja classificado A prova icli m formlário As cotaçõs dos its cotram-s o fial do ciado da prova CADERNO (É prmitido

Leia mais

Questão (a) 3.(b) 3.(c) 3.(d) 4.(a) 4.(b) 5.(a) 5.(b) 6 Cotação

Questão (a) 3.(b) 3.(c) 3.(d) 4.(a) 4.(b) 5.(a) 5.(b) 6 Cotação Faculdad d Ciêcias Exatas da Egharia PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR PARA MAIORES DE ANOS - 07 Matmática - 4/06/07 Atção: Justifiqu os raciocíios utilizados

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de Teste [março ]

Novo Espaço Matemática A 11.º ano Proposta de Teste [março ] Novo Espaço Matmática A.º ao Proposta d Tst [março - 08] Nom: Ao / Trma: N.º: Data: / / Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário. As cotaçõs

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre aculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 009-0 - º Smstr Eam ial d ª Época m d Jairo d 00 Duração: horas 0 miutos É proibido usar máquias d calcular ou tlmóvis Não tha o su

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de Teste [janeiro ]

Novo Espaço Matemática A 11.º ano Proposta de Teste [janeiro ] Nom: Ao / Trma: N.º: Data: / / Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário. As cotaçõs dos its cotram-s o fial do ciado da prova. CADERNO (É

Leia mais

Não serão feitos esclarecimentos individuais sobre questões durante a prova. Não se esqueça que tudo é para justificar.

Não serão feitos esclarecimentos individuais sobre questões durante a prova. Não se esqueça que tudo é para justificar. Eam m 7 d Jairo d 007 Cálculo ATENÇÃO: FOLHAS DE EXAE NÃO IDENTIFICADAS NÃO SERÃO COTADAS Cálculo / Eam fial ª Época 7 Jairo d 007 Duração: horas 0 miutos Rsolva os grupos do am m folhas sparadas O uso

Leia mais

( )( ) ( ) 2 2 ( ) ( ) 2. Questões tipo exame. Pág θ =. θ =, logo. Portanto, 1.1. ( ) 2. = θ 4.º Q, ou. = θ, tem-se.

( )( ) ( ) 2 2 ( ) ( ) 2. Questões tipo exame. Pág θ =. θ =, logo. Portanto, 1.1. ( ) 2. = θ 4.º Q, ou. = θ, tem-se. + 8...... Sdo Arg( ) θ, tm-s sja, taθ θ.º quadrat, tão Portato,. Pág. 8 taθ θ.º Q, ou θ. + + b ( + ) + b( + ) + c b c + + + + c + + + b b c b+ b+ c ( b ) b+ c+ b+ c b c + b b c b Portato, b c.. + S Arg(

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [outubro 2018]

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [outubro 2018] Novo Espaço Matmática A.º ao Proposta d tst d avaliação [otbro 08] Nom: Ao / Trma: N.º: Data: - - Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário.

Leia mais

( C) lim g( x) 2x 4 0 ( D) lim g( x) 2x

( C) lim g( x) 2x 4 0 ( D) lim g( x) 2x AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha d Trabalho º6 - Fuçõs - º ao Eams 0 a 04. Na figura stá rprstada um rfrcial o.. Oy, part do gráfico d uma fução g, d domíio 3,. A rta d quação y 4 é assítota do

Leia mais

( ) Novo Espaço Matemática A 11.º ano Proposta de Teste [abril 2018] V x =, 3. CADERNO 1 (É permitido o uso de calculadora gráfica) π x 0, 2 0, 2

( ) Novo Espaço Matemática A 11.º ano Proposta de Teste [abril 2018] V x =, 3. CADERNO 1 (É permitido o uso de calculadora gráfica) π x 0, 2 0, 2 Novo Espaço Matmática A 11.º ao Proposta d Tst [abril 018] Nom: Ao / Trma: N.º: Data: - - Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário. As cotaçõs

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smstr / CORRECÇÃO DO EXAME ª ÉPOCA Maio Duração: horas miutos Não é prmitido o uso d aluladoras. Não pod dsagraar as olhas do uiado. Rspoda d orma justiiada

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 7 - Funções - 12º ano Exames 2015 a 2017 k 3 log 3? 9

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 7 - Funções - 12º ano Exames 2015 a 2017 k 3 log 3? 9 AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha d Trabalho º 7 - Fuçõs - º ao Eams 05 a 07 k 3 log 3? 9. Qual das sguits prssõs é, para qualqur úmro ral k, igual a k k ( A) ( B) k ( C) ( D) k 9 (05-ª) 9. Cosidr

Leia mais

sen( x h) sen( x) sen xcos h sen hcos x sen x

sen( x h) sen( x) sen xcos h sen hcos x sen x MAT00 Cálculo Difrcial Itgral I RESUMO DA AULA TEÓRICA Livro do Stwart: Sçõs 3., 3.4 3.8. DEMONSTRAÇÕES Nssa aula srão aprstadas dmostraçõs, ou sboços d dmostraçõs, d algus rsultados importats do cálculo

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de Teste [outubro ]

Novo Espaço Matemática A 11.º ano Proposta de Teste [outubro ] Novo Espaço Matmática A 11.º ao Proposta d Tst [otbro - 017] Nom: Ao / Trma: N.º: Data: / / Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário. As cotaçõs

Leia mais

( ) ( ) Novo Espaço Matemática A 12.º ano Proposta de Teste [abril 2018] CADERNO 1 (É permitido o uso de calculadora gráfica)

( ) ( ) Novo Espaço Matemática A 12.º ano Proposta de Teste [abril 2018] CADERNO 1 (É permitido o uso de calculadora gráfica) Novo Espaço Matmática º ao Proposta d Tst [abril 08] Nom: o / Trma: Nº: Data: - - Não é prmitido o so d corrtor Dvs riscar aqilo q prtds q ão sja classificado prova icli m formlário s cotaçõs dos its cotram-s

Leia mais

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [outubro 2018]

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [outubro 2018] Novo Espaço Matmática A,.º ao Proposta d tst d avaliação [otbro 08] Nom: Ao / Trma: N.º: Data: - - Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário.

Leia mais

Como 2 a b c, a única possibilidade é: Portanto:

Como 2 a b c, a única possibilidade é: Portanto: (9) 5- O ELIE RESOLVE IME ISCURSIVS MEMÁIC MEMÁIC QUESÃO Cosidr log a 4, com a úmros rais positivos. trmi o valor d m, úmro ral, para qu a quação m 8 log 8 log ( ) m x x a mx a tha três raízs m progrssão

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo

Leia mais

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [novembro 2018]

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [novembro 2018] Nom: Ao / Trma: N.º: Data: - - Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário. As cotaçõs dos its cotram-s o fial do ciado da prova. CADERNO 1 (É

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I. Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

Exercícios de Cálculo Numérico - Erros

Exercícios de Cálculo Numérico - Erros Ercícios d Cálculo Numérico - Erros. Cosidr um computador d bits com pot máimo ( a rprstação m aritmética lutuat a bas. (a Dtrmi o mor úmro positivo rprstávl sta máquia a bas. (b Dtrmi o maior úmro positivo

Leia mais

TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I

TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I Faculdad d Ecoomia Uivrsidad Nova d Lisboa TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I Ao Lctivo 7-8 - º Smstr Eam Fial d 1ª Época m d Juho d 8 Duração: horas 3 miutos É proibido usar máquias d calcular

Leia mais

1 Eliminação gaussiana com pivotamento parcial

1 Eliminação gaussiana com pivotamento parcial 1 Elimiação gaussiaa com pivotamto parcial Exmplo sm pivotamto parcial Costruimos a matriz complta: 0 2 2 1 1 1 6 0 2 2 1 2 1 1 1 1 0 2 2 1 1 1 6 1 2 0 0 2 0 6 x y z = 9 6 0 2 2 0 1 0 3 1 0 0 2 0 2 0 6

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

TÓPICOS. Sinais contínuos e sinais discretos. Função impulso unitário discreto.

TÓPICOS. Sinais contínuos e sinais discretos. Função impulso unitário discreto. Not bm: a litura dsts apotamtos ão dispsa d modo algum a litura atta da bibliografia pricipal da cadira hama-s a atção para a importâcia do trabalho pssoal a ralizar plo aluo rsolvdo os problmas aprstados

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Rsoluçõs d Ercícios MATEMÁTICA II Capítulo 0 Fução Poliomial do o Grau Rsolução d Problmas; Composição d Fuçõs; Fução Ivrsa Iquaçõs BLOCO 0 BLOCO 0 Cohcimtos Algébricos 0 A Nos miutos iiciais, trmos a

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

CPV O cursinho que mais aprova na FGV

CPV O cursinho que mais aprova na FGV O cursiho que mais aprova a FGV FGV ecoomia a Fase 0/dezembro/00 MATEMÁTICA 0. Se P é 0% de Q, Q é 0% de R e S é 0% de R, etão P S é igual a: 0 c 0. Dado um petágoo regular ABCDE, costrói-se uma circuferêcia

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Espaço Amostral = todas as possibilidades de se formar dois conjuntos com 5 elementos cada.

Espaço Amostral = todas as possibilidades de se formar dois conjuntos com 5 elementos cada. Dez cartões estão umeradas de 1 a 10. Depois de embaralhados, são formados dois cojuto de 5 cartões cada. Determie a probabilidade de que os úmeros 9 e 10 apareçam um mesmo cojuto. C, C,..., C 1 10 Espaço

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Um úmero atural é primo quado ele

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, esboçamos

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Cosidere as retas perpediculares

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A 1º Ao Dração: 9 mitos Março/ 9 Nom Nº T: Classificação O Prof. (Lís Abr) 1ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Teste de MATEMÁTICA A 12º Ano

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Teste de MATEMÁTICA A 12º Ano Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Maio/ Nom Nº T: ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio a rsposta corrcta d tr as altrativas

Leia mais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais UFRGS Instituto d Matmática DMPA - Dpto. d Matmática Pura Aplicada MAT 0 353 Cálculo Gomtria Analítica I A Gabarito da a PROVA fila A 5 d novmbro d 005 Qustão (,5 pontos Vrifiqu s a função f dada abaixo

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

Notas de Aulas de Cálculo Diferencial e Integral II Engenharia de Materiais Prof.: Adriana Borssoi 5

Notas de Aulas de Cálculo Diferencial e Integral II Engenharia de Materiais Prof.: Adriana Borssoi 5 Prof: Adriaa Borssoi 5 FUNÇÕES DE VÁRIAS VARIÁVEIS Ercícios Rcomdados: ANTON, H, BIVENS, I DAVIS, S Cálculo vol Tradução: Claus I Dorig 8 d Porto Algr: Bookma, 007 Págias, d 93 à 936 Págias, d 944 945

Leia mais

Variáveis aleatórias Conceito de variável aleatória

Variáveis aleatórias Conceito de variável aleatória Variávis alatórias Muitos primtos alatórios produzm rsultados ão-uméricos. Ats d aalisá-los, é covit trasformar sus rsultados m úmros, o qu é fito através da variávl alatória, qu é uma rgra d associação

Leia mais

Capítulo 5 Transformadas de Fourier

Capítulo 5 Transformadas de Fourier Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através da rsposta m frquêcia 5.2 Trasformadas d Fourir propridads Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através

Leia mais

4.21 EXERCÍCIOS pg. 176

4.21 EXERCÍCIOS pg. 176 78 EXERCÍCIOS pg 7 Nos rcícios d clculr s drivds sucssivs t ordm idicd, 5 7 IV V 7 c d c, 5, 8 IV V VI 8 8 ( 7) ( 8), ( ) ( ) '' ( ) ( ) ( ) ( ) 79 5, 5 8 IV, 8 7, IV 8 l, 9 s, 7 8 cos IV V VI VII 5 s

Leia mais

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta?

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta? Abuso Sual nas Escolas Não dá para acitar Por uma scola livr do SID A Rpública d Moçambiqu Matmática Ministério da Educação ª Época ª Class/0 Conslho Nacional d Eams, Crtificação Equivalências 0 Minutos

Leia mais

Gabarito da Prova Amarela Letra E ,70 = 16,90 ( preço do suco. ) 3. 2p 3

Gabarito da Prova Amarela Letra E ,70 = 16,90 ( preço do suco. ) 3. 2p 3 1 - Ltra A 140 - Ltra E Cos são rsposávis pla visão m cors. 16 - Ltra C Aalisado o gráfico vmos qu l prmac imóvl d 6 aos 8 mi, um total d miutos. 17 - Ltra C A 8 x 8 04 m 18 - Ltra E Prços iiciais: Morago

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Eam Fial d ª Época m d Jairo 9 Tópicos d Corrcção Duração: horas miutos É proibido usar máquias d calcular ou tlmóvis

Leia mais

Ánálise de Fourier tempo discreto

Ánálise de Fourier tempo discreto Faculdad d Egharia Áális d Fourir tmpo discrto 4 3.5 3.5.5.5.5.5 -.5 -.5 - - -8-6 -4-4 6 8 - - -5 5 5 5 3 SS MIEIC 8/9 Aális d Fourir m tmpo discrto aula d hoj Faculdad d Egharia Rsposta d SLITs discrtos

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES RESOLUÇÃO A1 Primiramnt, dividimos a figura B m dois triângulos B1 B2, um altura d 21 m bas d 3 m outro altura bas mdindo 15 m. Mosaico 1: Tmos qu os dois triângulos

Leia mais

1. O domínio de uma sucessão é o conjunto dos números naturais. A única representação gráfica que obedece a esta condição é a da opção D.

1. O domínio de uma sucessão é o conjunto dos números naturais. A única representação gráfica que obedece a esta condição é a da opção D. Prarar o Exam 05/06 Matmática A Págia 69. O domíio d uma sucssão é o cojuto dos úmros aturais. A úica rrstação gráfica qu obdc a sta codição é a da oção D. Nota qu DA, D B 0 DC. Rsosta: D. Numa rogrssão

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Eam Fial d ª Época m d Jairo 9 Tópicos d Corrcção Duração: horas miutos É proibido usar máquias d calcular ou tlmóvis

Leia mais

Regra dos Trapézios Composta i :

Regra dos Trapézios Composta i : FP_Ex1: Calcul um valor aproximado do itgral I = / 0 x si( x) dx com um rro d trucatura, ão suprior, m valor absoluto a 0.01 usado: a) a rgra dos Trapézios a rgra d Simpso (composta) Rgra dos Trapézios

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Fvriro/ Nom Nº T: Classificação O Prof. (Lís Abr) ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio a

Leia mais

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro.

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro. Gabarito da a Prova Unificada d Cálculo I- 15/, //16 1. (,) Um cilindro circular rto é inscrito m uma sfra d raio r. Encontr a maior ára d suprfíci possívl para ss cilindro. Solução: Como o cilindro rto

Leia mais

III Integrais Múltiplos

III Integrais Múltiplos INTITUTO POLITÉCNICO DE TOMA Escola uprior d Tcnologia d Tomar Ára Intrdpartamntal d Matmática Anális Matmática II III Intgrais Múltiplos. Calcul o valor dos sguints intgrais: a) d d ; (ol. /) b) d d ;

Leia mais

Lista de exercícios sugerida Capítulo 28: 28.4,.12, 13, 14, 15, 16, 19, 20, 21, 33, 35, 38, 42, 43, 52

Lista de exercícios sugerida Capítulo 28: 28.4,.12, 13, 14, 15, 16, 19, 20, 21, 33, 35, 38, 42, 43, 52 CAPÍUO 8 9: Física Quâtica Atôica RSOUÇÃO D XRCÍCIOS RVISÃO SIMUADO PARA A PROVA ista d rcícios sugrida Capítulo 8: 8.,., 3,, 5, 6, 9,,, 33, 35, 38,, 3, 5 ista d rcícios sugrida Capítulo 9: 9.,, 7, 9,,

Leia mais

Departamento de Matemática e Ciências Experimentais Curso de Educação e Formação Tipo 6 Nível 3

Departamento de Matemática e Ciências Experimentais Curso de Educação e Formação Tipo 6 Nível 3 Dpartamto d Matmática Ciêcias Exprimtais Curso d Educação Formação Tipo 6 Nívl 3 Txto d apoio.º 4 Assuto: Forças d Atrito As forças d atrito são muito importats a vida quotidiaa. S por um lado, provocam

Leia mais

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c = MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab

Leia mais

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO 0 Nos rcícios a) ), ncontr a drivada da função dada, usando a dfinição a) f ( ) + b) f ( ) c) f ( ) 5 d) f ( )

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Em um paralelepípedo retâgulo,

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 O poliômio p( ) 5 04 +

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, o

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, ABCD

Leia mais

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma. ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

VIBRAÇÕES LIVRES SEM AMORTECIMENTO DE SISTEMAS com 1 GL

VIBRAÇÕES LIVRES SEM AMORTECIMENTO DE SISTEMAS com 1 GL UNIVERSIDADE FEDERA DA PARAÍBA CENTRO DE TECNOOGIA DEPARTAENTO DE ENGENHARIA ECÂNICA VIBRAÇÕES DOS SISTEAS ECÂNICOS VIBRAÇÕES IVRES SE AORTECIENTO DE SISTEAS com G NOTAS DE AUAS Virgílio doça da Costa

Leia mais

EXAME NACIONAL DE SELEÇÃO 2016

EXAME NACIONAL DE SELEÇÃO 2016 EXAME NACIONAL DE SELEÇÃO 016 PROA DE MATEMÁTICA o Dia: 4/09/015 QUINTA-EIRA HORÁRIO: 8h00m às 10h15m (horário d Brasília) EXAME NACIONAL DE SELEÇÃO 016 PROA DE MATEMÁTICA º Dia: 4/09 - QUINTA-EIRA (Mahã)

Leia mais

Momento do dipolo magnetico. Antonio Saraiva = q. e e. e e. e-- Frequencia de Compton; Re-- Raio do electrão.

Momento do dipolo magnetico. Antonio Saraiva = q. e e. e e. e-- Frequencia de Compton; Re-- Raio do electrão. Moto do dipolo agtico toio araiva ajps@otail.co Para o lctrão: p c + µ p-- Moto caóico; -- Massa do lctrão; c Vlocidad da luz; c-- Moto ciético; µ -- Moto potcial (falso oto do dipolo agético). µ q ; c

Leia mais

TÓPICOS. Vectores livres. Vectores em R 2 e R 3. Vectores em R n. Vectores iguais. Soma de vectores. Notação matricial.

TÓPICOS. Vectores livres. Vectores em R 2 e R 3. Vectores em R n. Vectores iguais. Soma de vectores. Notação matricial. Not bm: a litra dsts apotamtos ão dispsa d modo algm a litra atta da bibliografia pricipal da cadira TÓPICOS Vctors lirs. AULA 09 Chama-s a atção para a importâcia do trabalho pssoal a ralizar plo alo

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES voc m o c voc RESOLUÇÃO voc A1 A4 (ABCD) = AB.BC AB.2 = 6 AB = 3 cm (BCFE) = BC.BE 2.BE = 10 BE = 5 cm Um dos lados vai tr a mdida 10-2x o outro 8-2x. A altura

Leia mais

Ficha de Trabalho Matemática 12ºano Temas: Trigonometria ( Triângulo rectângulo e círculo trigonométrico) Proposta de correcção

Ficha de Trabalho Matemática 12ºano Temas: Trigonometria ( Triângulo rectângulo e círculo trigonométrico) Proposta de correcção COLÉGIO PAULO VI Ficha d Trabalho Matmática ºano Tmas: Trigonomtria ( Triângulo rctângulo círculo trigonométrico) Proposta d corrcção Rlmbrar qu um radiano é, m qualqur circunfrência, a amplitud do arco

Leia mais

PROVA DE MATEMÁTICA 2 a FASE

PROVA DE MATEMÁTICA 2 a FASE PROVA DE MATEMÁTICA a FASE DEZ/04 Questão 1 a)o faturameto de uma empresa esse ao foi 10% superior ao do ao aterior; obteha o faturameto do ao aterior sabedo-se que o desse ao foi de R$1 40 000,00 b)um

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva. Teste de MATEMÁTICA A 12º Ano. Duração: 90 minutos Março/ 2014. Nome Nº T:

Escola Básica e Secundária Dr. Ângelo Augusto da Silva. Teste de MATEMÁTICA A 12º Ano. Duração: 90 minutos Março/ 2014. Nome Nº T: Escola Básica Scdária Dr Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Março/ Nom Nº T: Classificação O Prof (Lís Abr) ª PARTE Para cada ma das sgits qstõs d scolha múltipla slcio a rsposta

Leia mais

Estatística Clássica

Estatística Clássica Estatística Clássica As rgias das difrts partículas do sistma (um istat particular s distribum d acordo com uma fução distribuição d probabilidad distribuição d Boltzma qu dpd da tmpratura T. Um xmplo

Leia mais

Definição clássica de probabilidade. Seja S finito e S, o número de elementos de S, por exemplo, quaisquer!,! 0 2 S. Então

Definição clássica de probabilidade. Seja S finito e S, o número de elementos de S, por exemplo, quaisquer!,! 0 2 S. Então Dfiição clássica probabili Dfiição Sja S fiito S o úmro lmtos S por xmplo S {a b c S 3 Supoha P({) P({ 0 )para quaisr 0 2 S Etão P({) /S Dmostração Como S é do tipo S { 2 o S sgu S { [ { 2 [ [ { portato

Leia mais

2 A) E) 2 3 B) 2 3. Questão 03. é real. Então. , em que n é o menor inteiro positivo tal que 1. i z w é igual a A) 3 i. Questão 04

2 A) E) 2 3 B) 2 3. Questão 03. é real. Então. , em que n é o menor inteiro positivo tal que 1. i z w é igual a A) 3 i. Questão 04 : cojuto dos úmeros aturais : cojuto dos úmeros reais : cojuto dos úmeros reais NOTAÇÕES arg z : argumeto do úmero compleo z a, b : a b A \ B : A e B ão-egativos i : uidade imagiária; i A : complemetar

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=.

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=. Prova d Conhcimntos Espcíficos 1 a QUESTÃO: (1,5 ponto) Considr a função f dfinida por Dtrmin: -x f(x). a) as quaçõs das assíntotas horizontais vrticais, caso xistam; b) as coordnadas dos pontos d máximo

Leia mais

Questões para o concurso de professores Colégio Pedro II

Questões para o concurso de professores Colégio Pedro II Qustõs para o concurso d profssors Colégio Pdro II Profs Marilis, Andrzinho Fábio Prova Discursiva 1ª QUESTÃO Jhosy viaja com sua sposa, Paty, sua filha filho para a Rgião dos Lagos para curtir um friadão

Leia mais

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO º ANO COMPILAÇÃO TEMA NÚMEROS COMPLEXOS Sit: http://wwwmathsuccsspt Facbook: https://wwwfacbookcom/mathsuccss TEMA NÚMEROS COMPLEXOS Matmática A º Ano Fichas d Trabalho Compilação Tma

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares - Parte 2

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares - Parte 2 Matrial Tórico - Módulo Triângulo tângulo, Lis dos ossnos dos Snos, Poĺıgonos gulars laçõs Métricas m Poĺıgonos gulars - Part Nono no utor: Prof. Ulisss Lima Parnt visor: Prof. ntonio aminha M. Nto 3 d

Leia mais

FÍSICA COMENTÁRIO DA PROVA DE FÍSICA

FÍSICA COMENTÁRIO DA PROVA DE FÍSICA COMENTÁIO DA POVA DE FÍSICA A prova d conhcimntos spcíficos d Física da UFP 009/10 tv boa distribuição d assuntos, dntro do qu é possívl cobrar m apnas 10 qustõs. Quanto ao nívl, classificamos ssa prova

Leia mais