Antes de resolvermos a)-c), vamos relembrar a diferença entre esperança (variância) conditional e esperança (variância) incondicional.

Tamanho: px
Começar a partir da página:

Download "Antes de resolvermos a)-c), vamos relembrar a diferença entre esperança (variância) conditional e esperança (variância) incondicional."

Transcrição

1 Econometria Avançada SOLUÇÃO Terceira lista de exercícios Problema 1. Seja r t os retornos (ou log-retornos) diários de um ativo financeiros (por exemplo, S&P500 ou Petrobrás ON) tal que r t = σ t ε t, onde ε t e σ t são independentes e ε t NID(0, 1). Portanto r t também é normal com E(r t ) = 0 e V (r t ) = E(rt ) = E(σt ). Ou seja, apesar da média condicional de r t ser zero, sua variância condicional é σ t e pode variar no tempo, um fato comumente observado em séries temporais financeiras. A curtose de r t, denotada aqui por K rt, mede o peso das caudas da distributição de r t e é dada por K rt = E(rt 4 )/{E(rt )}. Obtenha K rt para os modelos: a) ARCH(1): σt = α 0 + α 1 rt 1; b) GARCH(1,1): σt = α 0 + α 1 rt 1 + β 1 σt 1; e c) SV-AR(1): log σt = µ + φ(log σt 1 µ) + u t, onde u t N(0, τ ). Antes de resolvermos a)-c), vamos relembrar a diferença entre esperança (variância) conditional e esperança (variância) incondicional. É fácil ver que E(r t σ t ) = E(σ t ε t σ t ) σt εt == E(σ t σ t )E(ε t σ t ) = σ t 0 = 0, onde σ t ε t denota que σ t é independente de ε t. Segue, de um resultado básico de probabilidade 1, que V (r t σ ) = E(r t σ ). Portanto V (r t σ t ) = E(rt σ t ) = E(σt ε t σ t ) σt εt == E(σt σ t )E(ε t σ t ) = σt 1 = σt, pois E(ε t σ t ) = E(ε t ) = 1. Perceba que a suposição de normalidade para ε t não foi usada em nenhum momento até aqui. Usando dois resultados básicos de probabilidade, segue imediatamente que E(r t ) = E{E(r t σ t )} = E{0} = 0 V (r t ) = E{V (r t σ t )} + V {E(r t σ t )} = E{σ t } + V {0} = E(σ t ). Somente nesse momento é necessário se utilizar as estruturas ARCH, GARCH e SV. ARCH(1): V (r t ) = E(r t ) = E(σ t ) = E(α 0 + α 1 r t 1) = α 0 + α 1 E(r t 1). Como E(r t ) = E(r t 1) (esperanças incondicionais), segue que V (r t ) = α 0 1 α 1. GARCH(1,1): V (r t ) = E(r t ) = E(σ t ) = E(α 0 + α 1 r t 1 + β 1 σ t 1) = α 0 + α 1 E(r t 1) + β 1 E(σ t 1). Como E(r t ) = E(r t 1) = E(σ t ) = E(σ t 1), segue que V (r t ) = α 0 1 α 1 β 1. 1 V (X) = E(X ) {E(X)}. Portanto, quando E(X) = 0, segue que V (X) = E(X ). E(X) = E{E(X Y )} e V (X) = E{V (X Y )} + V {E(X Y )}. 1

2 Só nos resta obter E(r 4 t ): E(r 4 t ) = E{E(r 4 t σ t )} = E{E(σ 4 t ε 4 t σ t )} = E{σ 4 t E(ε 4 t )} = 3E(σ 4 t ), pois a curtose da distribuição normal padrão é igual a 3. ARCH(1): 1 3 E(r4 t ) = E(σt 4 ) = E{(α 0 + α 1 rt 1) } = α0 + α 0 α 1 E(rt 1) + α1e(r t 1) 4 ( ) = α0 α α 1 + α 1 α 1E(rt 1) 4 = α0 α1 + α 1 1 α 1E(r t 1) 4 1 logo e E(r 4 t ) = 3 α 0(1 + α 1 )/(1 α 1 ) 1 3α 1 K rt = E(r4 t ) {E(rt )} = 3 α 0 (1+α 1)/(1 α 1 ) 1 3α 1 = 3(1 + α 1)(1 α 1 ) α0/(1 α 1 ) 1 3α1 = 3(1 α 1). 1 3α1 GARCH(1,1): O que você tem que mostrar aqui é que ( ) 1 (α1 + β 1 ) K rt = 3 1 (α 1 + β 1 ) α1 Finalmente, duas complicações adicionais surgem quando se trata do modelo SV-AR(1): log σ t = µ + φ(log σ t 1 µ) + u t u t N(0, τ ). Em primeiro lugar, existe agora o termo de erro u t que tem que ser levado em consideração. Mas esse é um problema relativamente simples, uma vez que assumimos que ε t e u t são independentes entre si. Em segundo lugar, para se obter esperança, variância e curtose de r t é necessário se obter E(σ t ) e E(σ 4 t ), que são momentos de uma distribuição log-normal (dado que log σ t é normalmente distribuído).

3 Problema. Mostre que se r t ARCH() normal, então rt AR() com inovações não-normais. Mostre também que {r t } é uma sequência de ruídos brancos. Como r t ARCH() normal, podemos escrever (como no problema 1 acima) r t = σ t ε t ε t NID(0, 1) σt = α 0 + α 1 rt 1 + α rt de forma que, se definirmos ν t = rt σt, temos que rt = α 0 + α 1 rt 1 + α rt + ν t, ou seja, rt AR(). O que ainda resta fazer é entender o comportamento de ν t : ν t = rt σt = σt ε t σt = σt (1 ε t ). Segue que E(ν t ) = E(σt )E(1 ε t ) = 0, e E(ν t ν t+h ) = E{σt σt+h}e{(1 ε t )}E{(1 ε t+h)} = 0. Portanto o processo {ν t } é um ruído branco. 3

4 Problema 3. Suponha que r 1, r,..., r n sejam observações de uma série de log-retornos seguindo um modelo AR(1)-GARCH(1,1) normal, isto é, r t = µ + φr t 1 + u t, u t = σ t ε t σt = α 0 + α 1 u t 1 + β 1 σt 1, para ε t NID(0, 1). Perceba que o modelo acima pode ser mais compatamente escrito como r t r t 1, σ t N(µ + φ 1 r t 1, σ t ) σ t = α 0 + α 1 (r t 1 µ φr t ) + β 1 σ t 1, o que evidencia a normalidade dos log-retornos r t e também que σt depende de rt 1, rt e σt 1. Obtenha a função de log-verossimilhança condicional de (µ, φ, α 0, α 1, β 1 ). Sem perda de generalidade, assuma que σ0 = r 0 = r 1 = 0. Para se obter a função de log-verossimilhança condicional de θ = (µ, φ, α 0, α 1, β 1 ), é necessário que escrevamos a densidade conjunta dos dados condicional em θ, p(r 1,..., r n θ). Uma vez que σ 1,..., σ n são deterministicamente derivados de σ 0, r 0, r 1, θ e r 1,..., r n, segue que p(r 1,..., r n θ) = n p(r t r t 1, θ) = t=1 n { (πσt ) 1/ exp 1 t=1 (r t µ φr t 1 ) σ t }. Portanto, a função log-verossimilhança condicional de θ é [ ] l(θ) = log p(r 1,..., r n θ) = K 1 n log(π) + log σt + t=1 n t=1 σ t (r t µ φr t 1 ). O estimador de máxima verossimilhança, ˆθ, é obtido maximizando l(θ) sujeito às seguintes restrições: φ < 1, α 0, α 1, β 1 > 0 e α 1 + β 1 < 1. 4

5 Problema 4. O arquivo sp500.csv contém preços diários do S&P500 para o período de 03/01/1950 a 3/04/015 (1643 observações). Veja a figura 1 com os dados. a) Ajuste modelos ARCH(1), GARCH(1,1) e SV-AR(1) para essa série temporal financeira. Mais precisamente, para r t = σ t ε t, onde ε t e σ t são independentes e ε t NID(0, 1), ajuste os modelos a1) ARCH(1): σ t = α 0 + α 1 r t 1. a) GARCH(1,1): σ t = α 0 + α 1 r t 1 + β 1 σ t 1. a3) SV-AR(1): log σ t = µ + φ(log σ t 1 µ) + u t, onde u t N(0, τ ). Veja os resultados na próxima página e nas figuras a 3. ARCH(1) Parameter Estimate Std. Error alpha e e-07 alpha e e-0 GARCH(1,1) Parameter Estimate Std. Error alpha e e-08 alpha e e-03 beta e e-03 SV-AR(1) mu phi sigma 1st Qu Median Mean rd Qu VARIANCE, STANDARD DEVIATION AND KURTOSIS Sample ARCH(1) GARCH(1,1) SV-AR(1) Variance St.Dev Kurtosis b) Divida a série em grupos de 5 anos (13 grupos, portanto) e repita as análises de a). Como se comportam os parâmetros dos modelos ao longo do tempo? Comente seus resultados. 5

6 Price /3/50 5/5/66 9/3/8 1//98 4/3/15 days Log price /3/50 5/5/66 9/3/8 1//98 4/3/15 days Log price /4/50 5/6/66 9/4/8 1//98 4/3/15 days Figure 1: S&P500: preços, log-preços e log-retornos. 6

7 Standard deviation ARCH(1) GARCH(1,1) 1/4/50 5/6/66 9/4/8 1//98 4/3/15 Days Figure : S&P500: Estimativas dos desvios-padrões pelos modelos ARCH(1) e GARCH(1,1). 7

8 ARCH(1) GARCH(1,1) Standardized residuals Standardized residuals /4/50 5/6/66 9/4/8 1//98 4/3/15 Days 1/4/50 5/6/66 9/4/8 1//98 4/3/15 Days ACF squared residuals ACF squared residuals ACF ACF Lag Lag PACF squared residuals PACF squared residuals Partial ACF Partial ACF Lag Lag Figure 3: S&P500: Análise residual dos modelos ARCH(1) e GARCH(1,1). 8

Modelos ARCH e GARCH Aula 8. Morettin e Toloi, 2006, Capítulo 1 e 14 Morettin, 2011, Capítulo 1 e 5 Bueno, 2011, Capítulo 8

Modelos ARCH e GARCH Aula 8. Morettin e Toloi, 2006, Capítulo 1 e 14 Morettin, 2011, Capítulo 1 e 5 Bueno, 2011, Capítulo 8 Modelos ARCH e GARCH Aula 8 Morettin e Toloi, 2006, Capítulo 1 e 14 Morettin, 2011, Capítulo 1 e 5 Bueno, 2011, Capítulo 8 Motivação Pesquisadores que se dedicam a prever séries temporais, tais como preços

Leia mais

Aula 22/10/2018 José Luiz Padilha 22 de outubro de 2018

Aula 22/10/2018 José Luiz Padilha 22 de outubro de 2018 Modelando a Variância Estimação Aula 22/10/2018 José Luiz Padilha 22 de outubro de 2018 A estimação dos parâmetros α 0 e α 1 em um modelo ARCH(1) é geralmente realizada por verossimilhança condicional.

Leia mais

Econometria em Finanças e Atuária

Econometria em Finanças e Atuária Ralph S. Silva http://www.im.ufrj.br/ralph/especializacao.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Maio-Junho/2013 Modelos condicionalmente

Leia mais

Aula 17/10/2018 José Luiz Padilha 17 de outubro de 2018

Aula 17/10/2018 José Luiz Padilha 17 de outubro de 2018 Modelando a Variância Introdução Aula 17/10/2018 José Luiz Padilha 17 de outubro de 2018 Nos modelos vistos até aqui a variância dos erros foi assumida constante ao longo do tempo, e estávamos interessados

Leia mais

Econometria IV Modelos Lineares de Séries Temporais. Fernando Chague

Econometria IV Modelos Lineares de Séries Temporais. Fernando Chague Econometria IV Modelos Lineares de Séries Temporais Fernando Chague 2016 Estacionariedade Estacionariedade Inferência estatística em séries temporais requer alguma forma de estacionariedade dos dados Intuição:

Leia mais

3 Dados e metodologia

3 Dados e metodologia 3 Dados e metodologia 3.1 Apresentação de Dados Para a realização dessa pesquisa foram utilizados os dados da série histórica dos preços da soja (em grão) do Estado do Paraná, obtidos da base de dados

Leia mais

Técnicas computacionais em probabilidade e estatística II

Técnicas computacionais em probabilidade e estatística II Técnicas computacionais em probabilidade e estatística II Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco AULA 1: Problemas Computacionais em Inferência Estatística.

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Motivação Por exemplo, queremos analisar a série

Leia mais

Inferência Estatística Estimação de Parâmetros

Inferência Estatística Estimação de Parâmetros Inferência Estatística Estimação de Parâmetros Pedro Paulo Balestrassi www.pedro.unifei.edu.br ppbalestrassi@gmail.com 35-36291161 / 88776958 (cel) 1 Inferência Estatística: uma amostra ajudando a entender

Leia mais

Análise de dados em Geociências

Análise de dados em Geociências Análise de dados em Geociências Modelação estatística Susana Barbosa Mestrado em Ciências Geofísicas 2014-2015 Resumo Modelação estatística Conceitos básicos de modelação estatística Modelação - identificação

Leia mais

INTRODUÇÃO A ECONOMETRIA

INTRODUÇÃO A ECONOMETRIA INTRODUÇÃO A ECONOMETRIA Análise de regressão e uso do Eviews Introdução O modelo de regressão linear se utiliza para estudar a relação que existe entre uma variável dependente e uma ou várias variáveis

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

Estimação no Domínio do tempo: Covariâncias e modelos ARIMA

Estimação no Domínio do tempo: Covariâncias e modelos ARIMA Estimação no Domínio do tempo: Covariâncias e modelos ARIMA Airlane Pereira Alencar 8 de Março de 2019 Alencar, A.P., Rocha, F.M.M. (IME-USP) Processos Estocásticos 8 de Março de 2019 1 / 26 Índice 1 Estacionariedade

Leia mais

Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito

Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito Unidade IV - Regressão Regressões Lineares Modelo de Regressão Linear Simples Terminologia Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito Regressão correlação Diferença

Leia mais

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 9

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 9 em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 9 Data Mining Equação básica: Amostras finitas + muitos modelos = modelo equivocado. Lovell (1983, Review

Leia mais

Análise de dados em Geociências

Análise de dados em Geociências Análise de dados em Geociências Regressão Susana Barbosa Mestrado em Ciências Geofísicas 2014-2015 Resumo Introdução Regressão linear dados independentes séries temporais Regressão de quantis Regressão

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 6 a Lista de Exercícios Teoria da Estimação pontual e intervalar 1) Marcar como verdadeira ou falsa as seguintes

Leia mais

Universidade Federal de Pernambuco Departamento de Estatística Inferência Estatística (PGE 951) Método de Máxima Verossimilhança (M.M.V.

Universidade Federal de Pernambuco Departamento de Estatística Inferência Estatística (PGE 951) Método de Máxima Verossimilhança (M.M.V. Universidade Federal de Pernambuco Departamento de Estatística Inferência Estatística (PGE 95) Método de Máxima Verossimilhança (MMV) Definição: Qualquer ˆθ = ˆθ(X,, X n ) Θ tal que L(ˆθ; x,, x n ) = Sup{L(θ)

Leia mais

CC-226 Aula 07 - Estimação de Parâmetros

CC-226 Aula 07 - Estimação de Parâmetros CC-226 Aula 07 - Estimação de Parâmetros Carlos Henrique Q. Forster - Instituto Tecnológico de Aeronáutica 2008 Estimação de Parâmetros Para construir o classificador bayesiano, assumimos as distribuições

Leia mais

Econometria em Finanças e Atuária

Econometria em Finanças e Atuária Ralph S. Silva http://www.im.ufrj.br/ralph/especializacao.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Maio-Junho/2013 Tópicos Tópicos Séries

Leia mais

Exame Final de Métodos Estatísticos

Exame Final de Métodos Estatísticos Exame Final de Métodos Estatísticos Data: de Junho de 26 Duração: 3h. Nome: Curso: Declaro que desisto N. Mec. Regime: As cotações deste exame encontram-se na seguinte tabela. Responda às questões utilizando

Leia mais

1 Probabilidade - Modelos Probabilísticos

1 Probabilidade - Modelos Probabilísticos 1 Probabilidade - Modelos Probabilísticos Modelos probabilísticos devem, de alguma forma, 1. identificar o conjunto de resultados possíveis do fenômeno aleatório, que costumamos chamar de espaço amostral,

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE CIÊNCIAS EXATAS

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE CIÊNCIAS EXATAS 1 1) Seja X uma variável aleatória com função de densidade dada por: Pede-se: f (x) = e 2 1 (, )(x) 1.1) Qual a distribuição da variável aleatória Y = X? 1.2) Encontre o valor esperado da variável Y. 2

Leia mais

Mais sobre Modelos Continuos

Mais sobre Modelos Continuos Mais sobre Modelos Continuos Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 41 Transformação Linear da Uniforme Seja X uma variável aleatória

Leia mais

AULA 7 - Inferência em MQO: ICs e Testes de

AULA 7 - Inferência em MQO: ICs e Testes de AULA 7 - Inferência em MQO: ICs e Testes de Hipóteses Susan Schommer Econometria I - IE/UFRJ Nosso primeiro objetivo aqui é relembrar a diferença entre estimação de ponto vs estimação de intervalo. Vamos

Leia mais

AGA Análise de Dados em Astronomia I. 1. Introdução

AGA Análise de Dados em Astronomia I. 1. Introdução 1 / 22 1. Introdução AGA 0505 - Análise de Dados em Astronomia I 1. Introdução Laerte Sodré Jr. 1o. semestre, 2019 2 / 22 introdução aula de hoje: Introdução 1 objetivo 2 o que é ciência 3 dados 4 o que

Leia mais

6- Probabilidade e amostras: A distribuição das médias amostrais

6- Probabilidade e amostras: A distribuição das médias amostrais 6- Probabilidade e amostras: A distribuição das médias amostrais Anteriormente estudamos como atribuir probabilidades a uma observação de alguma variável de interesse (ex: Probabilidade de um escore de

Leia mais

Técnicas Computacionais em Probabilidade e Estatística I. Aula I

Técnicas Computacionais em Probabilidade e Estatística I. Aula I Técnicas Computacionais em Probabilidade e Estatística I Aula I Chang Chiann MAE 5704- IME/USP 1º Sem/2008 1 Análise de Um conjunto de dados objetivo: tratamento de um conjunto de dados. uma amostra de

Leia mais

AULA 17 - Variáveis binárias

AULA 17 - Variáveis binárias AULA 17 - Variáveis binárias Susan Schommer Econometria I - IE/UFRJ Variáveis binárias A variável binária (ou dummy) é um simples exemplo de variável aleatória, o qual é chamada de função indicadora de

Leia mais

PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012

PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012 PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG - 0/0 Instruções:. Cada questão respondida corretamente vale (um) ponto.. Cada questão respondida incorretamente vale - (menos um) ponto. 3.

Leia mais

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes

Leia mais

CE062c José Luiz Padilha da Silva e Cesar Augusto Taconeli 06 de novembro de 2018

CE062c José Luiz Padilha da Silva e Cesar Augusto Taconeli 06 de novembro de 2018 A função plot.gamlss() CE062c José Luiz Padilha da Silva e Cesar Augusto Taconeli 06 de novembro de 2018 Considere os dados de circunferência abdominal discutido anteriormente. relacionamos a circunferência

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Se a integração analítica não é possível ou

Leia mais

Gibbs Sampler para ANOVA e Misturas

Gibbs Sampler para ANOVA e Misturas Gibbs Sampler para ANOVA e Misturas Renato Assunção - DCC, UFMG Outubro de 014 1 Modelo ANOVA: componentes de variância Suponha que temos K grupos ou classes. Em cada grupo, temos um certo número de dados

Leia mais

ANÁLISE DE SÉRIES TEMPORAIS

ANÁLISE DE SÉRIES TEMPORAIS ANÁLISE DE SÉRIES TEMPORAIS Ralph S. Silva http://www.im.ufrj.br/ralph/seriestemporais.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Estimação

Leia mais

Modelo de regressão estável aplicado a econometria

Modelo de regressão estável aplicado a econometria Modelo de regressão estável aplicado a econometria financeira Fernando Lucambio Departamento de Estatística Universidade Federal do Paraná Curitiba/PR, 81531 990, Brasil email: lucambio@ufpr.br 1 Objetivos

Leia mais

MAE0212 Introdução à Probabilidade e Estatística II

MAE0212 Introdução à Probabilidade e Estatística II MAE01 Introdução à Probabilidade e Estatística II Gabarito-Lista 3 Exercicio 1 (a) Cada X i N(µ, σ ). Tamanho da amostra n = 9, desvio padrão σ =. A amostra é: 4.9, 7.0, 8.1, 4.5, 5.6, 6.8, 7., 5.7, 6..

Leia mais

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL 8 a 11 de novembro de 2002, Rio de Janeiro/RJ A PESQUISA OPERACIONAL E AS CIDADES

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL 8 a 11 de novembro de 2002, Rio de Janeiro/RJ A PESQUISA OPERACIONAL E AS CIDADES VOLATILIDADE E VALOR EM RISCO: MODELAGEM POR MÉDIAS MÓVEIS E POR EGARCH COM PARÂMETROS VARIÁVEIS Paulo Henrique Soto Costa UFF - EEIMVR - Departamento de Ciência dos Materiais Av. dos Trabalhadores 42

Leia mais

Teoria da Estimação. Fabricio Goecking Avelar. junho Universidade Federal de Alfenas - Instituto de Ciências Exatas

Teoria da Estimação. Fabricio Goecking Avelar. junho Universidade Federal de Alfenas - Instituto de Ciências Exatas Teoria da Estimação Fabricio Goecking Avelar Universidade Federal de Alfenas - Instituto de Ciências Exatas junho - 2018 Algumas distribuições importantes Sumário 1 Algumas distribuições importantes 2

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Um teorema de grande importância e bastante utilidade em probabilidade

Leia mais

Mestrado em Análise de Dados e Sistemas de Apoio à Decisão. Disciplina: Extracção e conhecimento de dados I. Trabalho nº4: Séries Temporais

Mestrado em Análise de Dados e Sistemas de Apoio à Decisão. Disciplina: Extracção e conhecimento de dados I. Trabalho nº4: Séries Temporais Mestrado em Análise de Dados e Sistemas de Apoio à Decisão Disciplina: Extracção e conhecimento de dados I Trabalho nº4: Séries Temporais Data: 6 de Fevereiro de 005 Aluno: Elisabeth Silva Fernandes Nº

Leia mais

AGA Análise de Dados em Astronomia I 7. Modelagem dos Dados com Máxima Verossimilhança: Modelos Lineares

AGA Análise de Dados em Astronomia I 7. Modelagem dos Dados com Máxima Verossimilhança: Modelos Lineares 1 / 0 AGA 0505- Análise de Dados em Astronomia I 7. Modelagem dos Dados com Máxima Verossimilhança: Modelos Lineares Laerte Sodré Jr. 1o. semestre, 018 modelos modelagem dos dados dado um conjunto de dados,

Leia mais

3. Estimação pontual USP-ICMC-SME. USP-ICMC-SME () 3. Estimação pontual / 25

3. Estimação pontual USP-ICMC-SME. USP-ICMC-SME () 3. Estimação pontual / 25 3. Estimação pontual USP-ICMC-SME 2013 USP-ICMC-SME () 3. Estimação pontual 2013 1 / 25 Roteiro Formulação do problema. O problema envolve um fenômeno aleatório. Interesse em alguma característica da população.

Leia mais

Introdução Regressão linear Regressão de dados independentes Regressão não linear. Regressão. Susana Barbosa

Introdução Regressão linear Regressão de dados independentes Regressão não linear. Regressão. Susana Barbosa Regressão Susana Barbosa Mestrado em Ciências Geofísicas 2012-2013 Regressão linear x : variável explanatória y : variável resposta Gráfico primeiro! Gráfico primeiro! Gráfico primeiro! Modelo linear x

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Qui-quadrado 02/14 1 / 1 Definição 14.1: Uma variável aleatória contínua X tem

Leia mais

Econometria Financeira

Econometria Financeira Ralph S. Silva http://www.im.ufrj.br/ralph/econometriafinanceira.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Setembro-Dezembro/2015 Análise

Leia mais

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS 4 SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS Em muitos problemas de probabilidade que requerem o uso de variáveis aleatórias, uma completa especificação da função de densidade de probabilidade ou não está

Leia mais

Econometria em Finanças e Atuária

Econometria em Finanças e Atuária Ralph S. Silva http://www.im.ufrj.br/ralph/especializacao.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Maio-Junho/2013 Posição financeira Uma

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Universidade Federal de Viçosa Departamento de Estatística

Universidade Federal de Viçosa Departamento de Estatística Universidade Federal de Viçosa Departamento de Estatística Prova Seletiva para o Programa de Pós-Graduação em Estatística Aplicada e Biometria. Nível Doutorado - 22/nov/2013 Nome: Assinatura:. Número do

Leia mais

CE062c José Luiz Padilha da Silva e Cesar Augusto Taconeli 13 de setembro de 2018

CE062c José Luiz Padilha da Silva e Cesar Augusto Taconeli 13 de setembro de 2018 CE062c José Luiz Padilha da Silva e Cesar Augusto Taconeli 13 de setembro de 2018 Examplo usando gamlssnp(): dados de cérebros de animais O tamanho do cérebro (brain) e peso corporal (body) foram registrados

Leia mais

Planejamento e Pesquisa 1. Dois Grupos

Planejamento e Pesquisa 1. Dois Grupos Planejamento e Pesquisa 1 Dois Grupos Conceitos básicos Comparando dois grupos Testes t para duas amostras independentes Testes t para amostras pareadas Suposições e Diagnóstico Comparação de mais que

Leia mais

Inferência Estatistica

Inferência Estatistica Inferência Estatistica Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Modelos e Inferência Um modelo é uma simplificação da realidade (e alguns

Leia mais

MAE325 Análise de Séries Temporais. Aula 3

MAE325 Análise de Séries Temporais. Aula 3 MAE325 Análise de Séries Temporais Aula 3 1 Transformações Problema 1: em muitas situações de interesse, a distribuição da amostra é assimétrica e pode conter valores atípicos a suposição de normalidade

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição t de Student 02/14 1 / 1 A distribuição t de Student é uma das distribuições

Leia mais

Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas

Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas Modelo Normal Cristian Villegas clobos@usp.br http://www.lce.esalq.usp.br/arquivos/aulas/2014/lce0216/ 1 Introdução O modelo normal ocupa uma posição de grande destaque tanto a nível teórico como prático,

Leia mais

Modelagem de dados complexos por meio de extensões do modelo de

Modelagem de dados complexos por meio de extensões do modelo de Modelagem de dados complexos por meio de extensões do modelo de regressão clássico Luiz R. Nakamura Departamento de Informática e Estatística Universidade Federal de Santa Catarina luiz.nakamura@ufsc.br

Leia mais

ANOVA com modelos encaixados

ANOVA com modelos encaixados ANOVA com modelos encaixados Motivação 1 Testar a significância de β j ( j = 0, 1,, p na presença das demais regressoras, usando o teste t, é trabalho, pois precisa de: ^β e ^Var (^β j = ^σ 2 j c ( j+1(

Leia mais

Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017.

Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017. Estimação pontual Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Introdução Exemplo Desejamos comprar um

Leia mais

Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas

Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas Modelo Normal Cristian Villegas clobos@usp.br Outubro de 2013 Apostila de Estatística (Cristian Villegas) 1 Introdução O modelo normal ocupa uma posição de grande destaque tanto a nível teórico como prático,

Leia mais

Capítulo 3. O Modelo de Regressão Linear Simples: Especificação e Estimação

Capítulo 3. O Modelo de Regressão Linear Simples: Especificação e Estimação Capítulo 3 O Modelo de Regressão Linear Simples: Especificação e Estimação Introdução Teoria Econômica Microeconomia: Estudamos modelos de oferta e demanda (quantidades demandadas e oferecidas dependem

Leia mais

TESTES DE HIPÓTESES Notas de aula. Prof.: Idemauro Antonio Rodrigues de Lara

TESTES DE HIPÓTESES Notas de aula. Prof.: Idemauro Antonio Rodrigues de Lara 1 TESTES DE HIPÓTESES Notas de aula Prof.: Idemauro Antonio Rodrigues de Lara 2 Conteúdo 1. Fundamentos e conceitos básicos; 2. Função poder; 3. Testes mais poderosos e Lema de Neyman-Pearson; 4. Teste

Leia mais

ν ν α α π θ θ δ α α α + + α + α α + α + φ Γ φ θ θ θφ Γ δ = α ν α α ν + ν ν + ν + ν + δ + ν ν + δ + + + + + δ + + ν ν + + ν + + + ν ν ν + + ν + ν + = θ β β + Γ δ Γ δ β µ µ µµ µ µ µ µ α ν α µ

Leia mais

Inferência para CS Tópico 10 - Princípios de Estimação Pontual

Inferência para CS Tópico 10 - Princípios de Estimação Pontual Inferência para CS Tópico 10 - Princípios de Estimação Pontual Renato Martins Assunção DCC - UFMG 2013 Renato Martins Assunção (DCC - UFMG) Inferência para CS Tópico 10 - Princípios de Estimação Pontual

Leia mais

AULA 11 Teste de Hipótese

AULA 11 Teste de Hipótese 1 AULA 11 Teste de Hipótese Ernesto F. L. Amaral 20 de setembro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 7

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 7 em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 7 O Modelo Estrutural Identificação Seja z t = (z 1t,...,z mt ) R m um vetor composto das variáveis de interesse.

Leia mais

AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1

AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1 AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1 Susan Schommer Econometria I - IE/UFRJ Distribuições amostrais dos estimadores MQO Nas aulas passadas derivamos o valor esperado e variância

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 02/14 1 / 1 A distribuição F de Snedecor também conhecida como distribuição de Fisher é frequêntemente

Leia mais

Análise de Carteiras usando o R - Parte 6

Análise de Carteiras usando o R - Parte 6 Análise de Carteiras usando o R - Parte 6 Bibliografia BKM, cap. 9 Claudio Lucinda FEA/USP Testando o CAPM Testando o CAPM Vamos nesta apresentação usar os dados dos fundos para repassar os testes do CAPM.

Leia mais

Simulação com Modelos Teóricos de Probabilidade

Simulação com Modelos Teóricos de Probabilidade Simulação com Modelos Teóricos de Probabilidade p. 1/21 Algumas distribuições teóricas apresentam certas características que permitem uma descrição correta de variáveis muito comuns em processos de simulação.

Leia mais

Aula 2 Uma breve revisão sobre modelos lineares

Aula 2 Uma breve revisão sobre modelos lineares Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar

Leia mais

Metodologia de Box-Jenkins. Metodologia de Box-Jenkins. Metodologia de Box-Jenkins

Metodologia de Box-Jenkins. Metodologia de Box-Jenkins. Metodologia de Box-Jenkins Programa de Pós-graduação em Engenharia de Produção Análise de séries temporais: Modelos de Box-Jenkins Profa. Dra. Liane Werner Metodologia de Box-Jenkins Para os modelos de decomposição e os modelos

Leia mais

Inferência Bayesiana na distribuição Normal

Inferência Bayesiana na distribuição Normal Inferência Bayesiana na distribuição Normal Diego Ignacio Gallardo Mateluna Instituto de Matemática e Estatística Universidade de São Paulo Março, 2012 Distribuição Normal: Inferência da variância com

Leia mais

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES

Leia mais

2 Análise dos dados intradiários

2 Análise dos dados intradiários 2 Análise dos dados intradiários 2.1 Estatísticas descritivas dos dados intradiários Nesta seção, realizaremos uma análise descritiva dos dados intradiários, os quais são compostos por volume de transação,

Leia mais

3.2.1.1 Pinos transversais...13 3.2.1.2 Chavetas...13 3.2.1.3 Eixos ranhurados...14 3.2.1.4 Recartilha e Estrias...15 3.2.2.1 Ajuste prensado cônico...15 3.2.2.2 Anéis cônicos...17 3.2.2.3 Ajuste prensado

Leia mais

Introdução a Inferência Bayesiana

Introdução a Inferência Bayesiana Introdução a Inferência Bayesiana Helio S. Migon IM and COPPE - UFRJ migon@im.ufrj.br 2006 Conteúdo 1. Conceitos Básicos da Inferência 2. Distribuição a Priori 3. Sumariazação 4. Inferência Preditiva 1

Leia mais

Ações de bancos e risco sistêmico

Ações de bancos e risco sistêmico Ações de bancos e risco sistêmico GV INVEST 15 Este artigo descreve um método para a análise tanto da correlação dos retornos de ações de bancos como da velocidade de mudança dessa correlação ambos sendo

Leia mais

Inferência estatística

Inferência estatística Inferência estatística Susana Barbosa Mestrado em Ciências Geofísicas 2013-2014 Inferência estatística Obtenção de conclusões sobre propriedades da população a partir das propriedades de uma amostra aleatória

Leia mais

CE085 - Estatística Inferencial. derivadas. Prof. Wagner Hugo Bonat. 5 de setembro de Curso de Bacharelado em Estatatística

CE085 - Estatística Inferencial. derivadas. Prof. Wagner Hugo Bonat. 5 de setembro de Curso de Bacharelado em Estatatística CE085 - Estatística Inferencial Função de Verossimilhança e suas derivadas Prof. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação - LEG Curso de Bacharelado em Estatatística Universidade Federal

Leia mais

Lucas Santana da Cunha 12 de julho de 2017

Lucas Santana da Cunha   12 de julho de 2017 DISTRIBUIÇÃO NORMAL Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 12 de julho de 2017 Distribuição Normal Dentre todas as distribuições de probabilidades,

Leia mais

Teste F-parcial 1 / 16

Teste F-parcial 1 / 16 Teste F-parcial Ingredientes A hipótese nula, H 0, define o modelo restrito. A hipótese alternativa, H a : H 0 é falsa, define o modelo irrestrito. SQR r : soma de quadrado dos resíduos associada à estimação

Leia mais

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Francisco A. Rodrigues Departamento de Matemática Aplicada e Estatística - SME Objetivo Dada M classes ω 1, ω 2,..., ω M e um

Leia mais

x, x < 1 f(x) = 0, x 1 (a) Diga o que entende por amostra aleatória. Determine a função densidade de probabilidade

x, x < 1 f(x) = 0, x 1 (a) Diga o que entende por amostra aleatória. Determine a função densidade de probabilidade Probabilidades e Estatística 2004/05 Colectânea de Exercícios LEIC, LERCI, LEE Capítulo 6 Estimação Pontual Exercício 6.1. Considere a população X com função densidade de probabilidade { x, x < 1 f(x)

Leia mais

Teste F-parcial 1 / 16

Teste F-parcial 1 / 16 Teste F-parcial A hipótese nula, H 0, define o modelo restrito. Ingredientes SQR r : soma de quadrado dos resíduos sob H 0. R 2 r: coeficiente de determinação sob H 0. g: número de restrições a serem testadas

Leia mais

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Testes de Hipóteses Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais

Leia mais

4. Experimentos em Blocos aleatorizados, quadrados latinos e experimentos relacionados

4. Experimentos em Blocos aleatorizados, quadrados latinos e experimentos relacionados 4. Experimentos em Blocos aleatorizados, quadrados latinos e experimentos relacionados 4.2 Quadrados Latinos (QL) Suponha que um experimentador esteja estudando o efeito de 5 formulações diferentes de

Leia mais

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 12

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 12 em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 12 Regressão com Variáveis Não-Estacionárias Considere três processos estocásticos definidos pelas seguintes

Leia mais

Lucas Santana da Cunha de junho de 2018 Londrina

Lucas Santana da Cunha de junho de 2018 Londrina Distribuição Normal Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 25 de junho de 2018 Londrina 1 / 17 Distribuição Normal Dentre todas as distribuições de probabilidades,

Leia mais

Intervalos Estatísticos para uma única Amostra - parte I

Intervalos Estatísticos para uma única Amostra - parte I Intervalos Estatísticos para uma única Amostra - parte I Intervalo de confiança para média 14 de Janeiro Objetivos Ao final deste capítulo você deve ser capaz de: Construir intervalos de confiança para

Leia mais

Estimação e Modelagem de Volatilidade - Eduardo Ribeiro 1

Estimação e Modelagem de Volatilidade - Eduardo Ribeiro 1 Discutiremos agora diferentes métodos de estimação de volatilidade de ativos. Volatilidade pode ser entendido como o risco de um ativo (retorno incerto). Volatilidade é chave para precificar opções e calcular

Leia mais

P.62, Exerc. 1.3: Trocar as posições de tipo AB e tipo O.

P.62, Exerc. 1.3: Trocar as posições de tipo AB e tipo O. ERRATA Segue-se uma lista de correcção de erros de digitação que não inclui os que violam regras de pontuação. Os nossos agradecimentos a todos aqueles que nos comunicaram os erros que foram detectando

Leia mais

ANÁLISE DE SÉRIES TEMPORAIS

ANÁLISE DE SÉRIES TEMPORAIS ANÁLISE DE SÉRIES TEMPORAIS Ralph S. Silva http://www.im.ufrj.br/ralph/seriestemporais.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Definição

Leia mais

Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Geração de Números Aleatórios Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 61 Simulando de Distribuições Discretas Assume-se que um

Leia mais

Exercícios Selecionados de Econometria para Concursos Públicos

Exercícios Selecionados de Econometria para Concursos Públicos 1 Exercícios Selecionados de Econometria para Concursos Públicos 1. Regressão Linear Simples... 2 2. Séries Temporais... 17 GABARITO... 20 2 1. Regressão Linear Simples 01 - (ESAF/Auditor Fiscal da Previdência

Leia mais

Modelos de Regressão

Modelos de Regressão Renato Martins Assunção DCC - UFMG 2015 Renato Martins Assunção (DCC - UFMG) 2015 1 / 19 Exemplo de preço de apto Y = y 1 y 2 y 1499 y 1500 b 0 1 1 1 1 + b 1 área 1 área 2 área 1499 área 1500 + b 2 idade

Leia mais

3 2σ 2] = σ 2 C = 1 6

3 2σ 2] = σ 2 C = 1 6 GET008 - Estatística II Lista de Exercícios Inferência para uma população Profa. Ana Maria Farias. Seja X, X,, X 6 uma amostra aleatória simples de tamanho 6 de uma população Nµ; σ. Determine o valor da

Leia mais

Aula 4. Aula de hoje. Aula passada

Aula 4. Aula de hoje. Aula passada Aula 4 Aula passada Função de distribuição Bernoulli Sequência de v.a. Binomial, Geométrica, Zeta Valor esperado Variância Distribuição conjunta Independência de v.a. Aula de hoje Valor esperado condicional

Leia mais