IG-UNICAMP. Fonte : PRINCIPE JR, A.R., Noções de Geometria Descritiva V. 1, 36. ed., Sao Paulo : Nobel, 1983.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "IG-UNICAMP. Fonte : PRINCIPE JR, A.R., Noções de Geometria Descritiva V. 1, 36. ed., Sao Paulo : Nobel, 1983."

Transcrição

1 Fonte : PRINCIPE JR, A.R., Noções de Geometria Descritiva V. 1, 36. ed., Sao Paulo : Nobel, 1983.

2 Tal como vimos no estudos das retas, um plano pode ocupar várias posições em relação aos planos de projeção, sendo expresso, em consequência, por nomes diferentes.

3 Planos Projetantes são planos perpendiculares a pelo menos um dos Planos de Projeção. A projeção de faces contidas em Planos Projetantes é reduzida a um segmento de reta no Plano de Projeção ao qual é perpendicular. Se for paralela ao outro Plano de Projeção, será projetada em V.G. no plano ao qual é paralela

4 Traço de um plano é a intersecção deste plano com um outro. Entretanto, empregaremos aqui o termo TRAÇO DE UM PLANO para exprimir a intersecção de um plano com os planos de projeção. traço horizontal do plano: reta ap (intersecção do plano a com o plano de projeção horizontal p). traço vertical do plano: reta ap (intersecção do plano a com o plano de projeção vertical p ).

5 Em geral um plano possui os dois traços, podendo ENTRETANTO pode possuir somente um quando um plano for paralelo à um dos planos de projeção, neste caso NAO TERÁ TRAÇO NESTE PLANO.

6 Quando dois traços são distintos e não paralelos à LT, eles concorrem num mesmo ponto da LT. T=T 2-1+ Em épura, para a determinação do plano são dados a abscissa do ponto T=T de concorrência dos traços sobre a LT e os ângulos (1) e (2). Estes ângulos são orientados no sentido trigonométrico e têm a LT como origem. Assim, no exemplo ao lado, o ângulo de ap com a LT é contado no sentido da seta 1 e é positivo, enquanto o ângulo de ap com a LT é negativo e contado no sentido da seta 2.

7 O plano Frontal é Perpendicular em relação ao PH (portanto, Projetante em relação ao PH) e paralelo ao PV. A sua projeção: Será, uma reta no PH e, Estará em V.G. no PV. Como o plano a é PROJETANTE, toda e qualquer figura que estiver contida nele, terá a projeção no PH coincidente com a1, que é uma reta. No espaço PV PLANO FRONTAL Na épura A2 B2 B2 A2 C2 A D2 a D2 C2 B C D A1=D1 a1 B1=C1 PH A1=D1 a1 B1=C1

8 PLANO HORIZONTAL No espaço PV Na épura A2=D2 a2 B2=C2 A2=D2 a2 D B2=C2 C a B A D1 C1 A1 B1 PH A1 D1 C1 B1 O plano HORIZONTAL é perpendicular em relação ao PV (portanto, é Projetante em relação ao PV) e paralelo ao PH. A sua projecção: Será uma reta no PV. Estará em V.G. no PH. Como o plano a é PROJETANTE, toda e qualquer figura que estiver contida nele,terá a projecção no PV coincidente com (a2), que é uma reta.

9 No espaço PV PLANO DE PERFIL Na épura A2=B2 A2=B2 a2 C2=D2 A D a B C a2 C2=D2 A1=D1 a1 B1=C1 PH B1=C1 A1=D1 O plano de PERFIL é Perpendicular em relação ao PV e ao PH portanto, é Projetante em relação tanto ao PV quanto ao PH e dizemos que ele é DUPLAMENTE PROJETANTE. A sua projecção: Será uma reta no PV. Será uma reta no PH. Como o plano alfa é duplamente PROJETANTE, toda e qualquer figura que estiver contida nele, terá a projeção no PV e no PH coincidente com (a), que é uma reta. a1

10 PLANO VERTICAL No espaço PV Na épura A2 B2 B2 A2 A C2 D2 D A1=D1 a a1 B C B1=C1 PH D2 A1=D1 a1 C2 B1=C1 O plano VERTICAL é Perpendicular em relação ao PH (portanto, é Projetante em relação ao PH) e oblíquo ao PV. A sua projecção: Será, uma reta no PH e, Como o plano a é PROJETANTE em relação ao PH, toda e qualquer figura que estiver contida nele, terá a projecção no PH coincidente com (a1), que é uma reta.

11 PLANO DE TOPO No espaço A2=D2 a2 C2=B2 C C1 PV D D1 a B B1 A A1 PH Na épura C2=B2 C1 B1 a2 A2=B2 D1 A1 O plano de TOPO é Perpendicular em relação ao PV (portanto, é Projetante em relação ao PV) e oblíquo ao PH. A sua projecção: Será, uma reta no PV e, Como o plano a é PROJETANTE em relação ao PV, toda e qualquer figura que estiver contida nele, terá a projecção no PV coincidente com (a2), que é uma reta.

12 PLANO DE RAMPA No espaço PV Na épura A2 B2 A2 D2 a2 B2 C2 A a B C D2 C2 C1 D B1 D1 a1 C1 PH A1 D1 B1 D1 O plano de RAMPA é Perpendicular em relação ao Plano Auxiliar (3º plano) portanto, é Projetante em relação ao Plano auxiliar e oblíquo em relação ao PV e ao PH. A sua projeção: Será um plano no PV, Será um plano no PH. Como o plano a é PROJETANTE em relação ao Plano Auxiliar, toda e qualquer figura que estiver contida nele, terá a projecção no Plano Auxiliar coincidente com a 3º projecção, que é uma reta.

13 PLANO QUALQUER No espaço PV A2 Na épura B2 B2 C2 A2 C2 a2 A a B A1 C a1 C1 B1 PH A1 C1 B1 O plano QUALQUER não é Projetante em relação a nenhum dos planos de projecção, portanto será necessário a utilização de métodos descritivos para a determinação da V.G. de qualquer figura pertencente a ele.

14 POSIÇÕES DO PLANO 1. PLANO QUALQUER É o plano oblíquo aos dois planos de projeção. Possui dois traços distintos, concorrendo sobre a linha de terra em um mesmo ponto. Sua épura geralmente se apresenta como se vê na figura abaixo. T=T 2-1+

15 POSIÇÕES DO PLANO 1. PLANO QUALQUER Entretanto, pela maneira do plano se situar no espaço, a épura pode aparecer em qualquer das posições indicadas na figura abaixo - o que importa no caso de planos quaisquer é o fatos destes possuírem OS DOIS TRAÇOS OBLÍQUOS À LINHA DE TERRA, NÃO IMPORTANDO COMO FIQUEM.

16 2. Planos Paralelos aos Planos de Projeção: PLANO HORIZONTAL É o plano PARALELO AO PLANO DE PROJEÇÃO HORIZONTAL. A épura é caracterizada por possuir apenas um traço, O VERTICAL, PARALELO À LINHA DE TERRA.

17 2. Planos Paralelos aos Planos de Projeção: PLANO FRONTAL É o plano PARALELO AO PLANO DE PROJEÇÃO VERTICAL. A épura é caracterizada por possuir apenas um traço, O HORIZONTAL, PARALELO À LINHA DE TERRA.

18 3. Planos Perpendiculares aos Planos de Projeção: PLANO VERTICAL É o plano PERPENDICULAR AO PLANO HORIZONTAL DE PROJEÇÃO E OBLÍQUO AO PLANO VERTICAL. A épura é caracterizada por possuir o TRAÇO VERTICAL PERPENDICULAR À LINHA DE TERRA e o HORIZONTAL OBLÍQUO À LINHA DE TERRA.

19 3. Planos Perpendiculares aos Planos de Projeção: PLANO DE TOPO É o plano PERPENDICULAR AO PLANO VERTICAL DE PROJEÇÃO e OBLÍQUO AO PLANO HORIZONTAL. A épura é caracterizada por possuir o TRAÇO HORIZONTAL PERPENDICULAR À LINHA DE TERRA e o VERTICAL OBLÍQUO À LINHA DE TERRA.

20 3. Planos Perpendiculares aos Planos de Projeção: PLANO DE PERFIL É o plano PERPENDICULAR AOS DOIS PLANOS DE PROJEÇÃO e OBLÍQUO AO PLANO HORIZONTAL. Sua épura é caracterizada por possuir AMBOS OS TRAÇOS EM COINCIDÊNCIA, PERPENDICULARES À LINHA DE TERRA.

21 4. PLANO PARALELO À LINHA DE TERRA NAO HÁ PLANO PARALELO À LINHA DE TERRA - SOMENTE PARALELO À INTERSECÇÃO DELES. Este plano é um plano oblíquo aos dois planos de projeção, numa posição particular. Sua épura é caracterizada por possuir AMBOS OS TRAÇOS PARALELOS À LINHA DE TERRA.

22 4. PLANO PARALELO À LINHA DE TERRA No caso desta figura, observa-se que o plano está no 1o. diedro, atravessando o 2o e 4o. diedros. Desta forma sua épura é caracterizada por conter o traço vertical acima da LT e o horizontal abaixo da LT. Mas o plano pode estar em outra posição...

23 ... atravessando os 1o., 2o. e 3o. diedros. Neste caso a épura terá os dois traços acima da LT.

24 4. PLANO PASSANDO PELA LINHA DE TERRA Neste caso, os traços do plano COINCIDEM coma a LINHA DE TERRA. Este também é o caso do PLANO BISSETOR. Não sendo conhecida a inclinação do plano, este só ficará determinado se conhecermos outros elementos, como um ponto ou uma reta deste plano. VEREMOS ISTO ADIANTE

25 RETAS DO PLANO PERTINÊNCIA DE RETA E PLANO REGRA: Uma reta pertence ao plano quando possui os seus traços sobre os traços correspondentes do plano. (r) EXCEÇÃO: um plano que passe pela LT. (V)=V (s) (A) Um plano pode ou não conter determinadas retas. Ao lado, o plano horizontal (a) de traço ap pode não conter a reta vertical (r) pois só há um único ponto comum à reta e ao plano - que é o ponto (A) onde a reta fura o plano. Entretanto, este mesmo plano de traço ap pode conter a reta de topo (s), a qual tem seu traço (V) sobre o traço vertical do plano.

26 RETAS DO PLANO PERTINÊNCIA DE RETA E PLANO A) RETAS DE PLANO QUALQUER Um plano qualquer sendo oblíquo aos dois planos de projeção, poderá conter as retas que também sejam oblíquas a eles ou, pelo menos, a um deles. Assim, este plano qualquer poderá conter as seguintes retas: RETA QUALQUER RETA HORIZONTAL RETA FRONTAL RETA DE PERFIL

27 a) Reta Qualquer H=(H) H=(H) (r) pertence ao plano de traços ap e ap pois os seus traços (V) e (H) estão sobre os traços correspondentes àqueles do plano. (r) NÃO PERTENCE ao plano de traços ap e ap pois o seu traço (H) NÃO ESTÁ sobre o traço horizontal ap do plano.

28 b) Reta Horizontal: uma reta horizontal não tem traço horizontal. Um ponto comum à projeção horizontal da reta e ao traço horizontal do plano será UM PONTO IMPRÓPRIO, isto é, estará no infinito. Conclui-se que a projeção horizontal da reta deverá ser paralela ao traço de mesmo nome do plano. O traço vertical da reta, por sua vez, deverá estar sobre o traço vertical do plano. V =(V) V

29 c) Reta Frontal: uma reta frontal não tem traço vertical. Um ponto comum à projeção vertical da reta e ao traço vertical do plano será UM PONTO IMPRÓPRIO, isto é, a projeção vertical da reta será paralela ao traço vertical do plano. O traço horizontal da reta, por sua vez, deverá estar sobre o traço horizontal do plano. H H

30 d) Reta de Perfil: tratando-se de uma reta de perfil, a épura não indica uma simples vista, nem mesmo se ela pertence ou não a um plano qualquer. Neste caso, opera-se o rebatimento do plano de perfil que contém a reta e determina-se seus traços, os quais, se estiverem sobre os planos de mesmo nome, indicarão que a reta pertence ao plano - caso da figura ao lado. V =(V) A B A B H=(H) (A 1 ) (B 1 ) (H 1 )

31 RETAS DO PLANO PERTINÊNCIA DE RETA E PLANO B) RETAS DE PLANO HORIZONTAL Como o plano horizontal é paralelo ao plano horizontal de projeção, este só poderá conter as retas que também sejam paralelas ao plano (p), as quais são: RETA HORIZONTAL RETA FRONTOHORIZONTAL RETA DE TOPO

32 k) Reta Horizontal: neste caso a épura se caracteriza pela coincidência da projeção vertical da reta com o traço ap do plano. O traço vertical da reta - ÚNICO QUE POSSUI - está sobre o traço ap do plano. ap V =(V) V RETAS DE PLANO HORIZONTAL

33 l) Reta Frontohorizontal: não possuindo traços, a reta frontohorizontal de um plano horizontal é caracterizada pela épura abaixo, onde a sua projeção vertical r coincide com o traço de mesmo nome no plano ap. ap RETAS DE PLANO HORIZONTAL

34 m) Reta de Topo: sendo a reta de topo caracterizada por possuir a projeção vertical reduzida a um ponto e a projeção horizontal perpendicular à LT, sua épura exibe a projeção vertical puntual r sobre ap, coincidente com seu traço vertical. ap r =V =(V) V RETAS DE PLANO HORIZONTAL

35 RETAS DO PLANO PERTINÊNCIA DE RETA E PLANO C) RETAS DO PLANO FRONTAL Como o plano frontal é paralelo ao plano vertical de projeção (p ), este só poderá conter as retas que forem paralelas ao mesmo plano (p ), que são: RETA FRONTAL RETA FRONTOHORIZONTAL RETA VERTICAL

36 x) Reta Frontal: a projeção horizontal da reta (r) coincide com o único traço do plano, que é o traço horizontal ap, Neste traço também está contido o único traço da reta, que é o horizontal (H). r H H=(H) ap RETAS DO PLANO FRONTAL

37 y) Reta Frontohorizontal: caso simples! - a reta frontohorizontal (r) pertencerá ao plano de traço ap. r ap RETAS DO PLANO FRONTAL

38 z) Reta Vertical: caso simples! - a reta vertical (r) pertencerá a um plano frontal de traço ap. r ap RETAS DO PLANO FRONTAL

39 RETAS DO PLANO PERTINÊNCIA DE RETA E PLANO D) RETAS DE UM PLANO PARALELO À LINHA DE TERRA Sendo o plano paralelo à LT e oblíquo aos dois planos de projeção, só poderá conter retas paralelas à LT e oblíquas àqueles planos, que são: RETA QUALQUER RETA FRONTOHORIZONTAL RETA DE PERFIL

40 a) Reta Qualquer: se os traços da reta estiverem sobre os traços de mesmo nome do plano, a reta pertencerá ao plano. Abaixo temos uma reta (r) qualquer pertencendo a um plano de traços ap e ap paralelos à LT. ap r r ap RETAS DE UM PLANO PARALELO À LINHA DE TERRA

41 RETAS DO PLANO PERTINÊNCIA DE RETA E PLANO E) RETAS DE UM PLANO VERTICAL Sendo o plano vertical perpendicular ao plano horizontal de projeção e oblíquo ao plano vertical, só poderá conter retas que sejam perpendiculares ao plano (p) e oblíquas ao plano (p ), que são: RETA QUALQUER RETA HORIZONTAL RETA VERTICAL

42 ap a) Reta Qualquer: a reta qualquer (A)(B) da figura abaixo pertence ao plano vertical de traços ap e ap pois obedece à regra geral de (i) possuir traços sobre os traços correspondentes do plano e, (ii) sua projeção horizontal coincide com o traço de mesmo nome do plano. V =(V) A V B H A B H=(H) ap RETAS DE UM PLANO VERTICAL

43 b) Reta Horizontal: a reta horizontal (A)(B) da figura abaixo pertence ao plano vertical pois seu único traço (traço vertical) está sobre o traço vertical do plano (ap ) e sua projeção horizontal coincide com o traço ap do plano. ap V =(V) A B V A B ap RETAS DE UM PLANO VERTICAL

44 c) Reta Vertical: a reta vertical (r) da figura abaixo pertence ao plano vertical pois seu traço horizontal (que coincide com a projeção puntual) está sobre o traço horizontal ap do plano e a sua projeção vertical é paralela ao traço vertical do plano. ap V =(V) V r A r=(h)=h ap RETAS DE UM PLANO VERTICAL

45 RETAS DO PLANO PERTINÊNCIA DE RETA E PLANO F) RETAS DE UM PLANO DE TOPO Sendo o plano de topo perpendicular ao vertical de projeção (p ) e oblíquo ao horizontal (p), só poderá conter retas que sejam oblíquas ao plano (p) e perpendiculares ao plano (p ), que são: RETA QUALQUER RETA FRONTAL RETA DE TOPO

46 a) Reta Qualquer: a reta qualquer (r) da figura abaixo pertence ao plano (a) de topo por possuir seus traços sobre os traços correspondentes do plano. A sua projeção vertical r coincide também com o traço ap do plano. r r ap RETAS DE UM PLANO DE TOPO

47 b) Reta Frontal: Facil!! A reta frontal (s) pertence ao plano de topo pois sua projeção vertical s está sobre o traço vertical ap do plano e sua projeção horizontal s pertence ao traço horizontal ap do plano. s s ap RETAS DE UM PLANO DE TOPO

48 c) Reta de Topo: Facil!! A reta frontal (s) pertence ao plano de topo pois sua projeção puntual s está sobre o traço vertical ap do plano e sua projeção horizontal s é paralela ao traço horizontal ap do plano. ap s RETAS DE UM PLANO DE TOPO

49 Pertinência de ponto e plano: um ponto pertence ao plano quando pertence à uma reta do plano. T=T V =(V) V A r Dados o plano qualquer de traços ap e ap e o ponto (A), deteminar se o ponto pertence à reta (r). Para a verificação, procede-se da seguinte forma: pela projeção vertical A faz-se passar uma reta. A r Verifica-se que a projeção horizontal A do ponto não está sobre a projeção de mesmo nome da reta. Então, o ponto (A) não pertence à reta (r). A reta (r) pertence ao plano MAS o ponto (A) não pertence à reta (r), e portanto não pertencerá ao plano.

50 Se for perpendicular ao plano horizontal (p), para que um ponto a ele pertença, é suficiente que possua sua projeção horizontal sobre o traço horizontal do plano. Seja o ponto (A) pertencendo a um plano (a) frontal e a projeção horizontal do ponto sobre o traço do plano ap do plano. Na épura, estando a projeção A sobre ap, não importa onde esteja a projeção vertical (em A, A, A ) - o ponto (A) pertence ao plano. (A) A A A A A

51 Se for perpendicular ao plano vertical (p ), para que um ponto a ele pertença, é suficiente que possua sua projeção vertical sobre o traço vertical do plano. Seja o ponto (B) pertencendo a um plano (a) de topo e sua projeção vertical B sobre o traço ap do plano. Na épura, estando a projeção B sobre ap, não importa onde esteja a projeção horizontal (em B, B1, B2) - o ponto (B) pertence ao plano. B B (B) B B 1 B 2

52 RETAS DE MÁXIMO DECLIVE E MÁXIMA INCLINAÇÃO Uma reta é considerada de máximo declive, quando formar o maior ângulo possível com o plano horizontal de projeção. Uma reta é considerada de máxima inclinação, quando formar o maior ângulo possível com o plano vertical de projeção. A reta (s) é de máximo declive, pois forma o maior ângulo possível com o plano horizontal de projeção (no caso, 90 ). Já a reta (r) é de máxima inclinação, pois forma o maior ângulo possível com o plano vertical de projeção (no caso, um ângulo maior do que 0 e menor do que 90.

53 RETAS DE MÁXIMO DECLIVE E MÁXIMA INCLINAÇÃO Uma reta é considerada de máximo declive, quando formar o maior ângulo possível com o plano horizontal de projeção. Uma reta é considerada de máxima inclinação, quando formar o maior ângulo possível com o plano vertical de projeção. A reta (s) é de máximo declive, pois forma o maior ângulo possível com o plano horizontal de projeção (no caso, 90 ). Já a reta (r) é de máxima inclinação, pois forma o maior ângulo possível com o plano vertical de projeção (no caso, um ângulo maior do que 0 e menor do que 90.

54 RETAS DE MÁXIMO DECLIVE E MÁXIMA INCLINAÇÃO Retas de máximo declive e de máxima inclinação dos diferentes tipos de plano.

55 Exercícios

FAMEBLU Arquitetura e Urbanismo

FAMEBLU Arquitetura e Urbanismo FAMEBLU Arquitetura e Urbanismo Disciplina GEOMETRIA DESCRITIVA APLICADA A ARQUITETURA 1 Aula 8: Revisão Geral Exercícios Professor: Eng. Daniel Funchal, Esp. Revisão PLANOS Um plano pode ser determinado

Leia mais

Um plano fica definido por duas retas paralelas ou concorrentes.

Um plano fica definido por duas retas paralelas ou concorrentes. 1 3 - ESTUDO DOS PLANOS Um plano fica definido por duas retas paralelas ou concorrentes. 3.1. Traços do plano São as retas de interseção de um plano com os planos de projeção. απ' - traço vertical de (α)

Leia mais

Prof. Rafael Saraiva Campos CEFET/RJ UnED Nova Iguaçu 2011

Prof. Rafael Saraiva Campos CEFET/RJ UnED Nova Iguaçu 2011 Introdução à Geometria Descritiva Aula 01 Prof. Rafael Saraiva Campos CEFET/RJ UnED Nova Iguaçu 2011 Resumo O que é Geometria Descritiva? Projeção Ortogonal de um Ponto Método da Dupla Projeção de Monge

Leia mais

Curso de Engenharia Naval

Curso de Engenharia Naval Curso de Engenharia Naval Enviar via email, no formato CAD [formato DXF ou AutoCAD DWG (versão menos recente que a 2013) ], as duas épuras seguintes com a legenda indicando o autor do exercício. A margem

Leia mais

Geometria Descritiva. Alfabeto do Plano:

Geometria Descritiva. Alfabeto do Plano: Geometria Descritiva Alfabeto do Plano: Posição de um plano em relação aos: Planos projectantes - Paralelo - perpendicular a um só plano - perpendicular aos dois planos Planos não projectantes: Retas contidas

Leia mais

COLÉGIO PEDRO II U. E. ENGENHO NOVO II

COLÉGIO PEDRO II U. E. ENGENHO NOVO II COLÉGIO PEDRO II U. E. ENGENO NOVO II Terceira projeção da reta de perfil Determinação dos traços Pertinência de ponto à reta de perfil - 2º no do Ensino Médio Prof a. Soraya Coord. Prof. JORGE MRCELO

Leia mais

Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG. Sistemas Projetivos. Representação de Retas no Sistema Mongeano NOTAS DE AULA

Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG. Sistemas Projetivos. Representação de Retas no Sistema Mongeano NOTAS DE AULA Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG Sistemas Projetivos Representação de Retas no Sistema Mongeano NOTAS DE AULA Prof. Julio Cesar B. Torres (juliotorres@ufrj.br) REPRESENTAÇÃO

Leia mais

FAMEBLU Arquitetura e Urbanismo

FAMEBLU Arquitetura e Urbanismo FAMEBLU Arquitetura e Urbanismo Disciplina GEOMETRIA DESCRITIVA APLICADA A ARQUITETURA 1 Aula 11: Posições Relativas de Duas Retas Professor: Eng. Daniel Funchal, Esp. Duas retas podem ser coplanares ou

Leia mais

2ª série Ensino Médio. Aluno(a): N o Turma: Disciplina: DESENHO Coordenação: Prof. Jorge Marcelo Prof.ª: Soraya Izar

2ª série Ensino Médio. Aluno(a): N o Turma: Disciplina: DESENHO Coordenação: Prof. Jorge Marcelo Prof.ª: Soraya Izar COLÉGIO PEDRO II U E EN II 2ª série Ensino Médio Estudo do Ponto Março/ 2011 Aluno(a): N o Turma: Disciplina: DESENHO Coordenação: Prof. Jorge Marcelo Prof.ª: Soraya Izar Apostila extra 2 ESTUDO DO PONTO

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ensino Secundário Ano Letivo 2016/2017

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ensino Secundário Ano Letivo 2016/2017 Apresentação da disciplina: Objetivos, funcionamento e avaliação. 1. Módulo inicial 2. Introdução à Geometria Descritiva Domínios: Socio Afetivo e Cognitivo. Avaliação e sumativa. Lista de material e sua

Leia mais

APOSTILA GEOMETRIA DESCRITIVA

APOSTILA GEOMETRIA DESCRITIVA APOSTILA GEOMETRIA DESCRITIVA 1 GEOMETRIA MÉTRICA E ESPACIAL 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 SISTEMAS DE PROJEÇÃO Conforme o que foi exposto anteriormente, o estudo da Geometria Descritiva está

Leia mais

Capítulo 1 - O Ponto. Capítulo 2 - A Reta

Capítulo 1 - O Ponto. Capítulo 2 - A Reta Capítulo 1 - O Ponto Lista de Exercícios de GD0159 O Ponto, A Reta, O Plano e Métodos Descritivos Professor: Anderson Mayrink da Cunha 1. Represente os pontos (A),..., (F ) em épura, onde (A)[1; 2; 3],

Leia mais

PLANIFICAÇÃO ANUAL. 3º Período Até 16 de junho 2.ª ª ª ª ª º Período 2º Período

PLANIFICAÇÃO ANUAL. 3º Período Até 16 de junho 2.ª ª ª ª ª º Período 2º Período ESCOLA SECUNDÁRIA INFAN TA D. MAR IA GEOMETRIA DESCRITIVA 10º ANO PLANIFICAÇÃO ANUAL Ano letivo 2016/17 Dias da semana 1º Período 2º Período 3º Período Até 16 de junho 2.ª 13 12 7 3.ª 12 13 7 4.ª 12 12

Leia mais

3.5 Posições relativas

3.5 Posições relativas 3.5 Posições relativas Geometria Descritiva 2006/2007 Paralelismo Paralelismo de duas rectas É condição necessária e suficiente para que duas rectas, não de perfil, sejam paralelas que as suas projecções

Leia mais

Estas notas de aulas são destinadas a todos aqueles que desejam ter. estudo mais profundo.

Estas notas de aulas são destinadas a todos aqueles que desejam ter. estudo mais profundo. Geometria Descritiva Prof. Sérgio Viana Estas notas de aulas são destinadas a todos aqueles que desejam ter um conhecimento básico de Geometria Descritiva, para um posterior estudo mais profundo. GEOMETRIA

Leia mais

PHA ( ) PHP ( ) Iº DIEDRO: PVI ( ) IIIº DIEDRO:

PHA ( ) PHP ( ) Iº DIEDRO: PVI ( ) IIIº DIEDRO: GEOMETRIA DESCRITIVA UNIDADE 01 GEOMETRIA DESCRITIVA PLANO DE PROJEÇÃO PHA ( ) PHP ( ) Iº DIEDRO: PVS ( ) IIº DIEDRO: PVI ( ) IIIº DIEDRO: LT ( ) IVº DIEDRO: 1 GEOMETRIA DESCRITIVA UNIDADE 01 Linha Terra

Leia mais

Geometria Descritiva Básica (Versão preliminar)

Geometria Descritiva Básica (Versão preliminar) Geometria Descritiva Básica (Versão preliminar) Prof. Carlos Kleber 5 de novembro de 2008 1 Introdução O universo é essencialmente tridimensonal. Mas nossa percepção é bidimensional: vemos o que está à

Leia mais

Curso Científico-Humanístico de Artes Visuais - Ensino Secundário

Curso Científico-Humanístico de Artes Visuais - Ensino Secundário ESCOLA SECUNDÁRIA DE AMORA - ANO LECTIVO 2014/2015 DEPARTMENTO DE EXPRESSÕES GRUPO 600 Planificação Anual Geometria Descritiva A 10º Ano Curso Científico-Humanístico de Artes Visuais - Ensino Secundário

Leia mais

PLANIFICAÇÃO DA DISCIPLINA. Geometria Descritiva A 10º Ano Artes Visuais Curso Científico - Humanísticos do Ensino Secundário

PLANIFICAÇÃO DA DISCIPLINA. Geometria Descritiva A 10º Ano Artes Visuais Curso Científico - Humanísticos do Ensino Secundário PLANIFICAÇÃO DA DISCIPLINA Escola Secundária Campos de Melo Geometria Descritiva A 10º Ano Artes Visuais Curso Científico - Humanísticos do Ensino Secundário Professor: Ana Fidalgo Ano letivo 2011/2012

Leia mais

Expressão Gráfica II EXPRESSÃOGRÁFICA. Departamento de. Unidade I - GEOMETRIA DESCRITIVA

Expressão Gráfica II EXPRESSÃOGRÁFICA. Departamento de. Unidade I - GEOMETRIA DESCRITIVA Expressão Gráfica II Unidade I - GEOMETRIA DESCRITIVA Departamento de EXPRESSÃOGRÁFICA Material elaborado por: Profª MSc.Andrea Faria Andrade Curitiba, PR / 2011 I Introdução A Geometria Descritiva (também

Leia mais

MATÉRIAS SOBRE QUE INCIDIRÁ CADA UMA DAS PROVAS DE CONHECIMENTOS ESPECÍFICOS

MATÉRIAS SOBRE QUE INCIDIRÁ CADA UMA DAS PROVAS DE CONHECIMENTOS ESPECÍFICOS MATÉRIAS SOBRE QUE INCIDIRÁ CADA UMA DAS PROVAS DE CONHECIMENTOS ESPECÍFICOS Prova de: GEOMETRIA DESCRITIVA Conteúdos: 1.1 Ponto 1.2 Recta 1.3 Posição relativa de duas rectas: - complanares - paralelas

Leia mais

AULA SISTEMA DE PROJEÇÃO

AULA SISTEMA DE PROJEÇÃO 1 É a parte da matemática aplicada que tem por finalidade representar sobre um plano as figuras do espaço de modo que seja possível resolver por geometria os problemas de três dimensões SISTEMAS PROJETIVOS

Leia mais

FAMEBLU Arquitetura e Urbanismo

FAMEBLU Arquitetura e Urbanismo FAMEBLU Arquitetura e Urbanismo Disciplina GEOMETRIA DESCRITIVA APLICADA A ARQUITETURA 1 Aula 2: Conceitos Básicos Sistemas de Projeção Método da Dupla Projeção de Monge Professor: Eng. Daniel Funchal,

Leia mais

GEOMETRIA DESCRITIVA. Professor: Luiz Gonzaga Martins, M.Eng. Acadêmica: Suelen Cristina da Silva

GEOMETRIA DESCRITIVA. Professor: Luiz Gonzaga Martins, M.Eng. Acadêmica: Suelen Cristina da Silva GEOMETRIA DESCRITIVA Professor: Luiz Gonzaga Martins, M.Eng. Acadêmica: SUMÁRIO DICAS PARA OS ALUNOS...2 1. BREVE HISTÓRIA...5 2. PROJEÇÃO...6 3. MÉTODO BIPROJETIVO...7 4. A ÉPURA...10 5. COMO REPRESENTAR

Leia mais

Geometria Descritiva

Geometria Descritiva Geometria Descritiva Revisão: Interseção entre um plano projetante e um plano não projetante INTERSEÇÃO entre DOIS PLANOS NÃO PROJETANTES Interseção entre um plano projetante e um plano não projetante

Leia mais

Intersecção de duas rectas

Intersecção de duas rectas 3.6. Intersecções Geometria Descritiva 2006/2007 Intersecção de duas rectas É condição necessária e suficiente para que duas rectas sejam concorrentes que as suas projecções homónimas se intersectem sobre

Leia mais

3. Representação diédrica de pontos, rectas e planos

3. Representação diédrica de pontos, rectas e planos 3. Representação diédrica de pontos, rectas e planos Geometria Descritiva 2006/2007 Geometria de Monge Utilizam-se simultaneamente dois sistemas de projecção paralela ortogonal. Os planos de projecção

Leia mais

Notas de Aula de Geometria Descritiva - GGM - IME - UFF

Notas de Aula de Geometria Descritiva - GGM - IME - UFF Aula 01: O Ponto O objetivo da Geometria Descritiva é representar no plano as figuras do espaço, possibilitando o estudo de suas propriedades e a resolução de problemas espaciais através da Geometria Plana.

Leia mais

13 PARALELISMO SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

13 PARALELISMO SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS NOTA: Se bem que os dados métricos dos enunciados estejam em centímetros, as soluções apresentadas a partir da página seguinte não consideraram o centímetro como unidade.

Leia mais

Geometria Descritiva. Desenho de Sólidos. Departamento de EXPRESSÃO GRÁFICA

Geometria Descritiva. Desenho de Sólidos. Departamento de EXPRESSÃO GRÁFICA Geometria Descritiva Desenho de Sólidos Departamento de EXPRESSÃO GRÁFICA Material elaborado para Disciplina CD014 - Geometria Descritiva do curso de Agronomia pelo Prof Dr. Rossano Silva em março de 2014

Leia mais

1. SISTEMA DE PROJEÇÕES

1. SISTEMA DE PROJEÇÕES Expressão Gráfica I 1 Desde a pré-história o homem já defrontou-se com o problema de representar em um só plano. O desenho assumiu a função simbólica, mística (os povos primitivos representavam em cavernas

Leia mais

REPRESENTAÇÃO GRÁFICA DE SOMBRAS

REPRESENTAÇÃO GRÁFICA DE SOMBRAS Universidade Ibirapuera Arquitetura e Urbanismo CONFORTO AMBIENTAL: INSOLAÇÃO E ILUMINAÇÃO REPRESENTAÇÃO GRÁFICA DE SOMBRAS Aplicação da Geometria Descritiva e da Carta Solar para determinação do Sombreamento

Leia mais

Prova Prática de Geometria Descritiva A

Prova Prática de Geometria Descritiva A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Prática de Geometria Descritiva A 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 708/1.ª Fase 3 Páginas Duração da Prova: 150 minutos.

Leia mais

Projeções de entidades geométricas elementares condicionadas por relações de pertença (incidência) 8

Projeções de entidades geométricas elementares condicionadas por relações de pertença (incidência) 8 Índice Item Representação diédrica Projeções de entidades geométricas elementares condicionadas por relações de pertença (incidência) 8 Reta e plano 8 Ponto pertencente a uma reta 8 Traços de uma reta

Leia mais

SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS NOTA: Se bem que os dados métricos dos enunciados estejam em centímetros, as soluções apresentadas a partir da página seguinte não consideraram o centímetro como unidade.

Leia mais

Plano. da - 2. Rodrigo Roberto plano. Geométricamente planos são definidos por: (B) (C) (A) a)três pontos distinos não colineares.

Plano. da - 2. Rodrigo Roberto plano. Geométricamente planos são definidos por: (B) (C) (A) a)três pontos distinos não colineares. lano Geométricamente planos são definidos por: a)rês pontos distinos não colineares. da - plano () b) Uma reta e um ponto exterior a ela. () () c) uas retas concorrentes. () d) uas retas paralelas. e)

Leia mais

PARALELISMOS. Sumário:

PARALELISMOS. Sumário: 9 PARALELISMOS Neste capítulo estudam-se as rectas e os planos nas suas relações de paralelismo, nas diferentes possibilidades: rectas com rectas, planos com planos e rectas com planos. Mostra-se também

Leia mais

Introdução Sínteses históricas do Desenho

Introdução Sínteses históricas do Desenho Introdução Sínteses históricas do Desenho O desenho pode ser entendido como uma das primeiras formas de comunicação e de expressão do homem. Os primeiros desenhos foram registrados na pré-história, usando-se

Leia mais

a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares.

a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares. 01 a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares. c) Verdadeira. Três pontos distintos e não colineares sempre determinam um plano.

Leia mais

ÂNGULOS. Sumário: Manual de Geometria Descritiva - António Galrinho Ângulos - 1

ÂNGULOS. Sumário: Manual de Geometria Descritiva - António Galrinho Ângulos - 1 12 ÂNGULOS Neste capítulo apresenta-se uma das partes dos Problemas Métricos (a outra é Distâncias). Estudam-se aqui os ângulos entre retas, entre planos e entre retas e planos. Veremos que para se determinar

Leia mais

1º Período (39 aulas)

1º Período (39 aulas) ESCOLA SECUNDÁRIA DR. SOLANO DE ABREU ABRANTES SECUNDÁRIO DISCIPLINA: Geometria Descritiva A TURMAS: A e G ANO: 0º ANO LETIVO 20/202 COMPETÊNCIAS CONTEÚDOS PROGRAMÁTICOS ATIVIDADES ESTRATÉGIAS AULAS PREVISTAS

Leia mais

Revisões de Geometria Descritiva

Revisões de Geometria Descritiva Revisões de Geometria Descritiva Projeção de Pontos Projeção de 2 Pontos numa reta proj. Hor., Frontal e simétricos Representação da reta Pontos Notáveis Percurso da reta, Visibilidades e Invisibilidade

Leia mais

Aula 24 mtm B GEOMETRIA ESPACIAL

Aula 24 mtm B GEOMETRIA ESPACIAL Aula 24 mtm B GEOMETRIA ESPACIAL Entes Geométricos Ponto A T Reta r s Plano Espaço y α z x Entes Geométricos Postulados ou Axiomas Teorema a 2 = b 2 + c 2 S i =180 Determinação de uma reta Posições relativas

Leia mais

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro Poliedros 1 Os poliedros são sólidos cujo volume é definido pela interseção de quatro ou mais planos (poli + edro). A superfície poliédrica divide o espaço em duas regiões: uma região finita, que é a parte

Leia mais

PERPENDICULARIDADES. Sumário:

PERPENDICULARIDADES. Sumário: 9 PERPENDICULARIDADES Neste capítulo estudam-se as retas e os planos nas suas relações de paralelismo e de perpendicularidade, nas diferentes possibilidades: retas com retas, planos com planos e retas

Leia mais

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria Geometria Descritiva Prof. Luiz Antonio do Nascimento ladnascimento@gmail.com www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer

Leia mais

O MÉTODO DAS DUPLAS PROJEÇÕES ORTOGONAIS

O MÉTODO DAS DUPLAS PROJEÇÕES ORTOGONAIS Expressão Gráfica II Geometria Descritiva Engenharia Civil - 2014 13 MÉTD DAS DUPLAS PRJEÇÕES RTGNAIS PARTE I REPRESENTAÇÃ D PNT 1. Planos fundamentais de referência (PFR) Consideremos π e π dois planos

Leia mais

07/10/2013. AULA 03 Sistemas de projeção. Sobre a Geometria Descritiva (GD):

07/10/2013. AULA 03 Sistemas de projeção. Sobre a Geometria Descritiva (GD): 1 2 Sobre a Geometria Descritiva (GD): Enquanto a Perspectiva mostra os objetos como parecem ser à nossa vista, em três dimensões, a Geometria Descritiva possibilita a representação dos objetos como eles

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO

EXAME NACIONAL DO ENSINO SECUNDÁRIO EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) PROVA 408/4 Págs. Duração da prova: 150 minutos 2007 1.ª FASE PROVA PRÁTICA DE DESENHO E GEOMETRIA

Leia mais

RETA. Sumário: Manual de Geometria Descritiva - António Galrinho Reta - 1

RETA. Sumário: Manual de Geometria Descritiva - António Galrinho Reta - 1 2 RETA O alfabeto da reta é o conjunto das posições genéricas que uma reta pode ter em relação aos planos de projeção. Neste capítulo apresentam-se essas posições, assim como posições particulares que

Leia mais

Desenho Técnico DETC1. Aula 10. Docentes: Adriana M. Pereira Bruna B. Rocha

Desenho Técnico DETC1. Aula 10. Docentes: Adriana M. Pereira Bruna B. Rocha DETC1 Aula 10 Docentes: Adriana M. Pereira Bruna B. Rocha Este prisma é limitado externamente por seis faces retangulares. As linhas estreitas que partem perpendicularmente dos vértices do modelo até os

Leia mais

APOSTILA DE GEOMETRIA DESCRITIVA

APOSTILA DE GEOMETRIA DESCRITIVA Dennis Coelho Cruz Luís Gustavo Henriques do Amaral Barreiras, BA Março de 2012 SUMÁRIO APRESENTAÇÃO... 3 UNIDADE 1 INTRODUÇÃO... 4 1.1 HISTÓRICO... 4 1.2 CONCEITOS BÁSICOS... 4 1.3 SISTEMAS DE PROJEÇÃO...

Leia mais

AULA - 05 GEOMETRIA DO TELHADO

AULA - 05 GEOMETRIA DO TELHADO Código da Disciplina CCE0047 AULA - 05 GEOMETRIA DO TELHADO e-mail: prof.clelia.fic@gmail.com Um telhado é constituído de duas ou mais faces inclinadas que são conhecidas por "águas". Linhas (retas) principais

Leia mais

PERPENDICULARIDADES. Sumário:

PERPENDICULARIDADES. Sumário: 10 PERPENDICULARIDADES Neste capítulo estudam-se as rectas e os planos nas suas relações de perpendicularidade, nas diferentes possibilidades: rectas com rectas, planos com planos e rectas com planos.

Leia mais

Intersecção de Rectas e Planos - Definição de Rectas e Planos no Espaço

Intersecção de Rectas e Planos - Definição de Rectas e Planos no Espaço Modulo nº 1 Intersecção de Rectas e Planos - Definição de Rectas e Planos no Espaço Esta Publicação é propriedade do GICEA, Gabinete de Gestão de iniciativas comunitárias. Este produto é protegido pelas

Leia mais

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1 EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1. SEJA O CUBO DADO NA FIGURA ABAIXO CUJOS VÉRTICES AB PERTENCEM À LT. PERGUNTA-SE: A) QUE TIPO DE RETAS PASSA PELAS ARESTAS EF, EC, EG. B) QUE TIPO DE RETAS PASSA

Leia mais

SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS)

SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS) SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS) 56. Exame de 1998 Prova Modelo (código 109) Represente, no sistema de dupla projecção ortogonal, dois segmentos de recta concorrentes, [AE] e [AI]. Os

Leia mais

REGRAS GERAIS DE GEOMETRIA DESCRITIVAII 2010

REGRAS GERAIS DE GEOMETRIA DESCRITIVAII 2010 1 Isabel coelho 20. SECÇÕES PLANAS 20.1 Secções planas em poliedros 20.1.2 Secções planas produzidas por planos paralelos aos planos das bases A figura da secção será paralela à figura da base. Identificar

Leia mais

❷ Uma recta e um ponto exterior à recta definem um e um só plano.

❷ Uma recta e um ponto exterior à recta definem um e um só plano. Uma resolução da Ficha de Trabalho (10.º Ano) POSIÇÕES RELATIVAS, PERSPECTIVAS, CORTES. 1. FORMAS DE DEFINIR UM PLANO: ❶ Três pontos não colineares definem um e um só plano. ❷ Uma recta e um ponto exterior

Leia mais

exercícios de perspectiva linear

exercícios de perspectiva linear G E O M E T R I A D E S C R I T I V A E C O N C E P T U A L I exercícios de perspectiva linear MESTRADOS INTEGRADOS EM ARQUITECTURA e LICENCIATURA EM DESIGN - FA/UTL - 2010/2011 Prof.Aux. António Lima

Leia mais

AULA - 06 GEOMETRIA DO TELHADO

AULA - 06 GEOMETRIA DO TELHADO GEOMETRIA DESCRITIVA Código da Disciplina CCE0887 AULA - 06 GEOMETRIA DO TELHADO e-mail: prof.clelia.fic@gmail.com GEOMETRIA DESCRITIVA GEOMETRIA DESCRITIVA Um telhado é constituído de duas ou mais faces

Leia mais

LISTA DE EXERCÍCIOS COMPLEMENTAR 1ª PROVA

LISTA DE EXERCÍCIOS COMPLEMENTAR 1ª PROVA MINISTÉRI DA EDUCAÇÃ UNIVERSIDADE FEDERAL D PARANÁ SETR DE CIÊNCIAS EXATAS DEPARTAMENT DE EXPRESSÃ GRÁFICA Professora Elen Andrea Janzen Lor Representação de Retas LISTA DE EXERCÍCIS CMPLEMENTAR 1ª PRVA

Leia mais

Desenho Técnico. Desenho Mecânico. Eng. Agr. Prof. Dr. Cristiano Zerbato

Desenho Técnico. Desenho Mecânico. Eng. Agr. Prof. Dr. Cristiano Zerbato Desenho Técnico Desenho Mecânico Eng. Agr. Prof. Dr. Cristiano Zerbato Introdução O desenho, para transmitir o comprimento, largura e altura, precisa recorrer a um modo especial de representação gráfica:

Leia mais

Geometria Espacial de Posição

Geometria Espacial de Posição Geometria Espacial de Posição Prof.: Paulo Cesar Costa www.pcdamatematica.com Noções primitivas POSTULADOS Postulados da existência Numa reta e fora dela existem infinitos pontos. Num plano e fora dele

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

PARALELISMOS E PERPENDICULARIDADES

PARALELISMOS E PERPENDICULARIDADES 7 PARALELISMOS E PERPENDICULARIDADES Neste capítulo estudam-se as rectas e os planos nas suas relações de paralelismo e de perpendicularidade, nas diferentes possibilidades: rectas com rectas, planos com

Leia mais

UNIVERSIDADE VALE DO RIO DOCE

UNIVERSIDADE VALE DO RIO DOCE UNIVERSIDADE VALE DO RIO DOCE DISCIPLINA: GEOMETRIA DESCRITIVA FAENGE FACULDADE DE ENGENHARIA CURSOS - ENGENHARIA CIVIL - ENGENHARIA CIVIL E AMBIENTAL 1 SUMÁRIO - Apresentação Pag 3 - Noções de Projeções

Leia mais

SOMBRA: EXERCÍCIOS RESOLVIDOS

SOMBRA: EXERCÍCIOS RESOLVIDOS Universidade Ibirapuera Arquitetura e Urbanismo CONFORTO AMBIENTAL: INSOLAÇÃO E ILUMINAÇÃO SOMBRA: EXERCÍCIOS RESOLVIDOS Aplicação da Geometria Descritiva e da Carta Solar para determinação do Sombreamento

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

MATEMÁTICA MÓDULO 13 FUNDAMENTOS 1. INTRODUÇÃO 1.1. POSTULADOS PRINCIPAIS 1.2. DETERMINAÇÃO DO PLANO. Conceitos primitivos: ponto, reta e plano.

MATEMÁTICA MÓDULO 13 FUNDAMENTOS 1. INTRODUÇÃO 1.1. POSTULADOS PRINCIPAIS 1.2. DETERMINAÇÃO DO PLANO. Conceitos primitivos: ponto, reta e plano. FUNDAMENTOS 1. INTRODUÇÃO Conceitos primitivos: ponto, reta e plano. 1.1. POSTULADOS PRINCIPAIS Dois pontos distintos determinam uma única reta que passa por eles. Três pontos não colineares determinam

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Geometria Descritiva A 10º Ano Ano Letivo 2016/17 SÍNTESE CURRICULAR

Geometria Descritiva A 10º Ano Ano Letivo 2016/17 SÍNTESE CURRICULAR Geometria Descritiva A 10º Ano Ano Letivo 2016/17 Introdução SÍNTESE CURRICULAR A disciplina de Geometria Descritiva A é uma disciplina bianual que integra o tronco comum da componente de formação específica

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

UARCA-E.U.A.C. Escola Universitária de Artes de Coimbra

UARCA-E.U.A.C. Escola Universitária de Artes de Coimbra GDI - Geometria Descritiva I Exercícios práticos para preparação da frequência de semestre. Objectivos: Estes exercício-tipo, pretendem por um lado apresentar uma minuta, uma definição de exercício-tipo

Leia mais

GDC I AULA TEÓRICA 07

GDC I AULA TEÓRICA 07 GDC I AULA TEÓRICA 07 Perspectiva linear de quadro plano: - Determinação de pontos de fuga de direcções de figuras planas contidas em orientações (dadas) ortogonais e oblíquas ao quadro. - O rebatimento

Leia mais

Escola Secundária de Alberto Sampaio - Braga Junho de Proposta de correcção do exame nacional de Geometria Descritiva A (prova 708) 1ª fase

Escola Secundária de Alberto Sampaio - Braga Junho de Proposta de correcção do exame nacional de Geometria Descritiva A (prova 708) 1ª fase Exercício 1-1ª hipótese de resolução (escala 1:1) Jorge Marques e Estefânio Lemos 1 10 Exercício 1-2ª hipótese de resolução (escala 1:1) Jorge Marques e Estefânio Lemos 2 10 Exercício 1-3ª hipótese de

Leia mais

Prova Prática de Geometria Descritiva A

Prova Prática de Geometria Descritiva A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Prática de Geometria Descritiva A 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 708/1.ª Fase Critérios de Classificação 8 Páginas

Leia mais

AGRUPAMENTO DE CLARA DE RESENDE COD COD

AGRUPAMENTO DE CLARA DE RESENDE COD COD CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO ( Aprovados em Conselho Pedagógico de 16 outubro de 2012 ) No caso específico da disciplina de Geometria Descritiva do 11º ano de escolaridade, a avaliação incidirá ainda

Leia mais

Desenho Auxiliado por Computador

Desenho Auxiliado por Computador UNIVERSIDADE FEDERAL DE JUIZ DE FORA ENE073 Seminários em Eletrotécnica Desenho Auxiliado por Computador (CAD - Computer Aided Design) Prof. Flávio Vanderson Gomes E-mail: flavio.gomes@ufjf.edu.br Aula

Leia mais

INTERSECÇÕES. Sumário:

INTERSECÇÕES. Sumário: 5 INTERSECÇÕES O estudo das Intersecções é de grande importância para o aprofundamento dos capítulos anteriores. Além disso, os assuntos aqui tratados surgem também aplicados aos capítulos que se seguem

Leia mais

7. INTERSECÇÕES ENTRE PLANOS E ENTRE RECTA E PLANO geometria descritiva 2010

7. INTERSECÇÕES ENTRE PLANOS E ENTRE RECTA E PLANO geometria descritiva 2010 7.2.2 a) Intersecção de dois planos projectantes 2 Plano de nível + plano vertical 2 Plano de nível + plano de topo 3 Plano de nível + plano de perfil 4 7.2.2b) Intersecção de um plano projectante e um

Leia mais

Profº Luiz Amiton Pepplow, M. Eng. DAELT - UTFPR

Profº Luiz Amiton Pepplow, M. Eng. DAELT - UTFPR Fonte:http://www.bibvirt.futuro.usp.br/textos/didaticos_e_tematicos/telecurso_2000_cursos_profissio nalizantes/telecurso_2000_leitura_e_interpretacao_de_desenho_tecnico_mecanico Telecurso 2000 - Leitura

Leia mais

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil Plano Cartesiano e Retas Vitor Bruno Engenharia Civil Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é o

Leia mais

Geometria Espacial Curso de Licenciatura em Matemática parte II. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR

Geometria Espacial Curso de Licenciatura em Matemática parte II. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR Geometria Espacial Curso de Licenciatura em Matemática parte II Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 1. Paralelismo de Retas L20 Postulado das Paralelas ( de Euclides )

Leia mais

Geometria Descritiva Mudança de Planos Introdução

Geometria Descritiva Mudança de Planos Introdução Mudança de Planos Introdução As projecções de uma figura só representam as suas verdadeiras grandezas se essa figura está contida num plano paralelo aos planos projectantes. Caso contrário as projecções

Leia mais

Prova Prática de Geometria Descritiva A

Prova Prática de Geometria Descritiva A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Prática de Geometria Descritiva A 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 708/Época Especial Critérios de Classificação 8

Leia mais

Apostila de Geometria Descritiva. Anderson Mayrink da Cunha GGM - IME - UFF

Apostila de Geometria Descritiva. Anderson Mayrink da Cunha GGM - IME - UFF Apostila de Geometria Descritiva Anderson Mayrink da Cunha GGM - IME - UFF Novembro de 2013 Sumário Sumário i 1 Poliedros e sua Representação 1 1.1 Tipos de Poliedros.............................. 1 1.1.1

Leia mais

MATEMÁTICA MÓDULO 13 FUNDAMENTOS. Professor Matheus Secco

MATEMÁTICA MÓDULO 13 FUNDAMENTOS. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 13 FUNDAMENTOS 1. FUNDAMENTOS Conceitos primitivos: ponto, reta e plano. Dois pontos distintos determinam uma única reta que pasa por eles.reta. Três pontos não

Leia mais

PONTO E SEGMENTO DE RETA

PONTO E SEGMENTO DE RETA 1 PONTO E SEGMENTO DE RETA Neste capítulo aborda-se essencialmente o Ponto, elemento geométrico mais simples. Resultado da união de dois pontos, aborda-se também o Segmento de Reta. Com esses elementos

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS De acordo com o comando a que cada um dos itens de 51 a 120 se refira, marque, na folha de respostas, para cada item: o campo designado com o código C, caso julgue o item CERTO; ou o campo designado com

Leia mais

GEOMETRIA DE POSIÇÃO

GEOMETRIA DE POSIÇÃO GEOMETRIA DE POSIÇÃO 1- Conceitos primitivos 1.1- Ponto Não possui dimensão. Representado por letras maiúsculas. A B C 1.2 - Reta É unidimensional, possuindo comprimento infinito. Não possui largura ou

Leia mais

Item 1 (Paralelismo) Item 2 (Distâncias)

Item 1 (Paralelismo) Item 2 (Distâncias) Item 1 (Paralelismo) 1. Representam-se os dados do enunciado; 2. Este relatório apresenta dois processos distintos para a resolução do primeiro exercício do Exame: o Processo A (que consiste em visualizar

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO

EXAME NACIONAL DO ENSINO SECUNDÁRIO EXAME NACIONAL DO ENSINO SECUNDÁRIO 10.º/11.º ou 11.º/12.º Anos de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 708/6 Págs. Duração da prova: 150 minutos 2007 1.ª FASE PROVA PRÁTICA DE

Leia mais

Geometria Descritiva Sistema Mongeano

Geometria Descritiva Sistema Mongeano Geometria Descritiva Prof. Luiz Antonio do Nascimento Método da Dupla Projeção A Geometria Descritiva utiliza um sistema de projeções elaborado por Garpard Monge, conhecido como, Ortogonal ou Diédrico.

Leia mais

Projeção ortográfica da figura plana

Projeção ortográfica da figura plana A U L A Projeção ortográfica da figura plana Introdução As formas de um objeto representado em perspectiva isométrica apresentam certa deformação, isto é, não são mostradas em verdadeira grandeza, apesar

Leia mais

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique. Universidade Federal de Uberlândia Faculdade de Matemática Disciplina: Geometria euclidiana espacial (GMA010) Assunto: Paralelisno e Perpendicularismo; Distância e Ângulos no Espaço. Prof. Sato 1 a Lista

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE BELAS ARTES SISTEMA GEOMÉTRICO DE REPRESENTAÇÃO I PROF. CRISTINA GRAFANASSI TRANJAN

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE BELAS ARTES SISTEMA GEOMÉTRICO DE REPRESENTAÇÃO I PROF. CRISTINA GRAFANASSI TRANJAN UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE BELAS ARTES SISTEMA GEOMÉTRICO DE REPRESENTAÇÃO I PROF. CRISTINA GRAFANASSI TRANJAN MÉTODOS DESCRITIVOS Há determinados problemas em Geometria Descritiva

Leia mais

DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar

DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar PARTE 2 PONTO, RETA, PLANO Def. : Uma reta é paralela a um plano se, e somente se, eles não têm ponto comum Uma reta

Leia mais

4.6 Sombras de sólidos geométricos

4.6 Sombras de sólidos geométricos 4.6 Sombras de sólidos geométricos Geometria Descritiva 2006/2007 Sombras de sólidos geométricos Os corpos opacos produzem sombras quando expostos a uma fonte luminosa Fonte luminosa A posição da fonte

Leia mais

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais