PROVA DE MATEMÁTICA DA UNEB VESTIBULAR RESOLUÇÃO: Profa. Maria Antônia Gouveia.

Tamanho: px
Começar a partir da página:

Download "PROVA DE MATEMÁTICA DA UNEB VESTIBULAR 2014-01. RESOLUÇÃO: Profa. Maria Antônia Gouveia."

Transcrição

1 Questão PROVA DE MATEMÁTICA DA UNEB VESTIBULAR 04-0 Profa Maria Antônia Gouveia O Sistema Monetário Colonial do Brasil mantinha uma clássica ordem de valores baseados nas dezenas, com seus valores dobrados a cada nível acima de moeda cunhada, portanto com valores de 0, 0, 40, 80, 60, 0, 640 e 960 réis; o que em grande parte minimizava a problemática do troco No entanto, a província de Minas Gerais produziu um problema tão grave de troco, no início da segunda década do século XIX, que afetou diretamente os interesses da metrópole e exigiu medidas drásticas para evitar grandes perdas ao cofre português [] Para resolver o problema, em 88, a Casa da Moeda do Rio de Janeiro, desativada desde 74, foi reaberta para cunhar uma das moedas mais intrigantes da história da numismática mundial, o Vintém de Ouro O nome sugere uma moeda de vinte réis cunhada em ouro, no entanto é uma moeda de cobre que tem no seu anverso o valor de 7 ½ réis, batida no Rio de Janeiro para circular em Minas Gerais ( O SISTEMA 0 ) De acordo com o texto, se uma pessoa tivesse que efetuar um pagamento de 680 réis e só possuísse moedas de Vintém de Ouro, então, ao realizar esse pagamento, ele poderia receber de troco uma quantidade mínima de moedas, correspondente a uma moeda de 0) 40 réis 0) 80 réis 0) 0 e outra de 0 réis 04) 0 e outra de 40 réis 05) 0, uma de 0 e uma de 40 réis Se ela fizesse o pagamento com 9 moedas de 7,5 réis, o troco seria de (97,5 680) =,5 réis Que seriam pagos com ( ,5) réis??????????? Ela deve então fazer o pagamento com 0 moedas de 7,5 réis O troco será de (07,5 680) = 70 réis Esse troco poderá ser pago com uma moeda de 0, uma de 0 e uma de 40 réis RESPOSTA: Alternativa 05

2 Questão Em música, usam-se sete valores rítmicos para representar a duração do som, que vão da semibreve (valor máximo) à semifusa (valor mínimo) De acordo com a escala de valores, cada valor rítmico tem a metade da duração do seu antecessor, ou seja, a mínima tem a metade da duração da semibreve ; a semínima, metade da duração da mínima ; e assim por diante Nessas condições, pode-se afirmar que 8(oito) semifusas têm a mesma duração de uma 0) 0) 0) 04) 05) Como de acordo com a escala de valores, cada valor rítmico tem a metade da duração do seu antecessor: 6 O valor de uma semifusa é da semibreve 64 O valor de 8 semifusas é 8 da semibreve 64 8 Logo 8 semifusas tem o valor de uma colcheia RESPOSTA: Alternativa 04 Questões de a 5 DANOS DE ALIMENTOS ÁCIDOS O esmalte dos dentes dissolve-se prontamente em contato com substâncias cujo ph (medida da acidez) seja menor do que 5,5 Uma vez dissolvido, o esmalte não é reposto, e as partes mais moles e internas do dente logo apodrecem A acidez de vários alimentos e bebidas comuns é surpreendentemente alta; as substâncias listadas a seguir, por exemplo, podem causar danos aos seus dentes com contato prolongado (BREWER 0, p 64) COMIDA / BEBIDA PH SUCO DE LIMÃO,8,4 CAFÉ PRETO,4, VINAGRE,4,4 REFRIGERANTES DE COLA,7 SUCO DE LARANJA,8 4,0 MAÇÃ,9,5 UVA, 4,5 TOMATE,7 4,7 MAIONESE / MOLHO DE SALADA,8 4,0 CHÁ PRETO 4,0 4,

3 Questão A acidez dos alimentos é determinada pela concentração de íons de hidrogênio [H + ], em mol Em Química, o ph é definido por ph = colog[h + ] = log[h + ] Sabendo-se que uma amostra de certo alimento apresentou concentração de íons de hidrogênio igual a 0,005molL e considerando que colog = 0,, pode-se afirmar que, de acordo com a tabela ilustrativa, a amostra corresponde a 0) SUCO DE LIMÃO/LIMA 0) CAFÉ PRETO 0) MAÇÃ 04) MAIONESE/MOLHO DE SALADA 05) CHÁ PRETO Como ph = colog[h + ] 5 ph co log0,005 log0,005 log (log0 log log0 ) ( 0, ), 000 ph =, RESPOSTA: Alternativa 0 Questão 4 Considere que em um laboratório foram verificadas, por um técnico, duas amostras de alimentos que constam na tabela e verificado, por ele, que o ph dessas substâncias era, respectivamente,, e 4, Nessas condições, de posse dessa tabela, pode-se afirmar que o número de maneiras distintas que esse técnico tem para tentar identificar, de maneira correta, quais foram os dois alimentos examinados é igual a 0) 9 0) 0 0) 04) 4 05) 5 Opções para ph =, : (vinagre, suco de laranja, maçã, maionese / molho de salada) Opções para ph = 4, : (uva, tomate, chá preto) O número de maneiras distintas que esse técnico tem para tentar identificar, de maneira correta, quais foram os dois alimentos examinados é igual a 4 = RESPOSTA: Alternativa 0

4 Questão 5 Considerando-se que os valores do ph na tabela variem unicamente com um incremento de 0,, pode-se afirmar que o valor modal do ph, nessa tabela, é igual a 0), 0),4 0),6 04),8 05) 4,0 COMIDA / BEBIDA PH SUCO DE LIMÃO,8,9;,0;,;,;,,4 CAFÉ PRETO,4,5;,6;,7;,8;,9;,0;,, VINAGRE,4,5;,6;,7;,9;,0;,;,;,,4 REFRIGERANTES DE COLA,7 SUCO DE LARANJA,8,9;,0;,;,;,; ;,9 4,0 MAÇÃ,9,0;,;,;,;,4,5 UVA,,4;,5;,6; 4,0;; 4,4 4,5 TOMATE,7,8;,9; 4,0;;4,6 4,7 MAIONESE / MOLHO DE SALADA,8,9 4,0 CHÁ PRETO 4,0 4, 4, Aparecem 4 vezes o,9; 4 vezes o,0; 4 vezes o,; 4 vezes o,; 4 vezes o, e 5 vezes o 4,0 O valor modal do ph, nessa tabela, é igual a 4,0 RESPOSTA: Alternativa 05 Questão 6 A altura de alguns jogadores de futebol De acordo com o gráfico, a diferença entre a altura mediana e a média das alturas desses seis jogadores, em cm, é aproximadamente igual a 0) 0,9 0),0 0),09 04),7 05),5 Dispondo essas 6 alturas em ordem crescente:,7m;,78m;,8m;,8m;,8m;,85m; a altura mediana será a média entre a a e a 4 a,8,8 alturas:,85m,7,78,8,8,8,85 0,8 A média das 6 alturas é,80m 6 6 Diferença pedida:,85,80 = 0,07m =,7cm RESPOSTA: Alternativa 04 4

5 Questão 7 De acordo com o texto, se Cebolinha lançar a sua moeda dez vezes, a probabilidade de a face voltada para cima sair cara, em pelo menos oito dos lançamentos, é igual a ) 0) 0) 04) 05) Se Cebolinha lançar a sua moeda dez vezes, como para cada lançamento existem duas possibilidades(cara ou coroa), o total de possibilidades de sorteio é 0 Representando por C a face coroa e por K a face cara, o número de vezes em que em pelo menos oito dos lançamentos saia cara para cima é: K K K K K K K K C C 0! !! K K K K K K K K K C 0! 0 9!! K K K K K K K K K K TOTAL = 56 A probabilidade de a face voltada para cima sair cara, em pelo menos oito dos lançamentos, é :8 7 igual a: 0 04:8 8 RESPOSTA: Alternativa 0 Questão 8 Gasolina vendida nos postos terá mais etanol a partir de hoje A partir de hoje (0/05/0), a gasolina vendida nos postos do país volta a ser comercializada com 5% de etanol anidro, e não mais 0%, como estava em vigor desde 0 A medida foi adotada como um incentivo aos produtores de cana-de-açúcar e antecipada pelo governo para ajudar a reduzir o impacto do aumento do preço da gasolina, registrado em janeiro deste ano (GASOLINA 0) Considere-se que o tanque de um carro com motor flex, com capacidade para 55 litros, estava com 0 litros de etanol quando foi abastecido, ao máximo, com gasolina no dia 0 de abril de 0 Se o mesmo procedimento tivesse sido feito no dia 0 de maio de 0, ao final do abastecimento haveria, nesse dia, no tanque desse carro, o total de litros de etanol a mais em relação ao dia 0 de abril de 0, igual a 0),05 0),5 0),5 04),5 05),45 5

6 Dia 0/04/0: 0 de etanol + 45 de gasolina a quantidade de etanol no tanque era de (0 + 0,045 = = 9) Dia 0/05/0: 0 de etanol + 45 de gasolina a quantidade de etanol no tanque era de (0 + 0,545 = 0 +,5=,5) Então, no dia 0 de maio de 0, ao final do abastecimento haveria, nesse dia, no tanque desse carro, o total de litros de etanol a mais em relação ao dia 0 de abril de 0, igual a, 5 9 =,5 RESPOSTA: Alternativa 0 Questão 9 Com a crescente utilização dos telefones celulares como terminais multimídia de acesso à internet, o interesse se volta para o fluxo, isto é, a quantidade de informações que podem transitar por unidade de tempo na rede telefônica, medida geralmente em quilobits por segundo (kb/s) É preciso saber distinguir o fluxo teórico, número máximo anunciado pelos promotores das novas tecnologias, do fluxo médio observado na prática e que pode ser sensivelmente inferior, por diferentes razões, notadamente pelo atravancamento das redes ou pela pouca compatibilidade dos terminais GSM: 9kb/s GPRS: 4kb/s teóricos, 40kb/s na prática EDGE: 84kb/s teóricos, estimativa de 70kb/s na prática UMTS: 000 kb/s teóricos, algumas centenas de kb/s estimadas na prática De acordo com o texto, pode-se afirmar que, na prática, a velocidade de transmissão de dados na tecnologia EDGE alcança apenas um percentual da velocidade teórica aproximadamente igual a 0) 7,8% 0) 8,% 0) 8,6% 04) 9,0% 05) 9,4% fluxo médio na prática fluxo teórico 70 0, ,% 84 RESPOSTA: Alternativa 0 Questão 0 Considere reduzir o consumo de cafeína algumas pesquisas sugerem que quem bebe quatro xícaras de café por dia tem três vezes mais chances de sofrer fratura nos quadris na velhice Para combater esse efeito, alguns especialistas sugerem obter 40mg extras de cálcio para cada 78ml de café consumido (BREWER, 0) De acordo com o texto, se uma pessoa consome regularmente café, apenas no trabalho, durante os cinco dias úteis da semana, em copinhos de 44,5ml, tiver que ingerir 00mg extras de cálcio por semana, então essa pessoa costuma ingerir por dia, em média, um total de copinhos de café igual a 0) 4 0) 5 0) 6 04) 7 05) 8 6

7 Considere-se como x o número de copinhos consumidos por essa pessoa durante a semana, e então, o seu consumo é de 5 x 44,5ml,5ml por semana Como a quantidade de café consumido e a quantidade extra de cálcio a ser ingerida são grandezas diretamente proporcionais: 40mg 78ml 00mg,5xml RESPOSTA: Alternativa 0 Questão 00,5x 8900x 5400 x 6 Sua bexiga é um saco muscular elástico que pode segurar até 500 ml de fluido A incontinência urinária, no entanto, tende a ficar mais comum à medida que envelhecemos, apesar de poder afetar pessoas de qualquer idade; ela também é mais comum em mulheres que em homens (principalmente por causa do parto, mas também em virtude da anatomia do assoalho pélvico) (BREWER 0, p 76) Considerando-se que a bexiga, completamente cheia, fosse uma esfera e que =, pode-se afirmar que o círculo máximo dessa esfera seria delimitado por uma circunferência de comprimento, em cm, igual a 0) 0 0) 5 0) 0 04) 5 05) 40 Como a capacidade da bexiga é de 500 ml, o seu volume é de 500cm O volume da esfera é dado pela relação 4 R V, logo o volume da bexiga é 4 R 4 R 500cm 500cm 4R 500cm R 5cm R 5cm O círculo máximo dessa esfera seria delimitado por uma circunferência de comprimento, em cm, igual a R 5cm 0cm RESPOSTA: Alternativa 0 Questão Os pequenos vasos sanguíneos que transportam o sangue até os músculos do coração tem /0 do diâmetro do fio de cabelo humano, mas são as artérias maiores que levam o sangue para o coração que são bloqueadas pelo acúmulo de gordura chamado ateroma (BREWER 0 p 59) Considerando que um fio de cabelo tem uma espessura com diâmetro médio de 0,05 milímetros e que um micrômetro corresponde à milésima parte do milímetro, pode-se afirmar que o raio da espessura dos pequenos vasos sanguíneos citados no texto, em micrômetros, é igual a 0),7 0) 0,85 0) 0,7 04) 0,085 05) 0,07 7

8 0,05mm O raio médio da espessura de um fio de cabelo é 0,055mm Como um micrômetro corresponde à milésima parte do milímetro, 0,055mm corresponde a 0, ,5 micômetros Como os pequenos vasos sanguíneos que transportam o sangue até os músculos do coração tem /0 do diâmetro do fio de cabelo humano, o raio desses vasos mede, em micômetro, 5,5 0, 85 0 RESPOSTA: Alternativa 0 Questão A tirolesa é uma técnica utilizada para o transporte de carga de um ponto a outro Nessa técnica, a carga é presa a uma roldana que desliza por um cabo, cujas extremidades geralmente estão em alturas diferentes A tirolesa também é utilizada como prática esportiva, sendo considerado um esporte radical Em certo ecoparque, aproveitando a geografia do local, a estrutura para a prática da tirolesa foi montada de maneira que as alturas das extremidades do cabo por onde os participantes deslizam estão a cerca de 5m e 8m, cada uma, em relação ao nível do solo, e o ângulo de descida formado com a vertical é de 80 Nessas condições, considerando-se o cabo esticado e que tg 0 = 0,76, pode-se afirmar que a distância horizontal percorrida, em metros, ao final do percurso, é aproximadamente igual a 0) 50 0) 5 0) 54 04) 56 05) 58 De acordo com as informações da questão tem-se a figura: Aplicando a razão tangente em relação ao ângulo de 0 : tg0 0,76 x x 50 x x 0,76 RESPOSTA: Alternativa 0 Questão 4 Evite o excesso de álcool, pois ele aumenta os efeitos do estrogênio Algumas pesquisas sugerem que beber apenas uma unidade de álcool por dia aumenta o risco de câncer de mama em %, aumentando para 4% com duas unidades e 8% com três unidades diárias (BREWER 0, p 75) Se as diferenças entre os percentuais que indicam o risco de câncer de mama informados no texto crescessem formando uma progressão aritmética, à medida que o número de unidades de álcool ingeridas por dia aumentassem, então uma pessoa que ingerisse cinco unidades de álcool, diariamente, teria um risco de desenvolver câncer de mama de 0) 6% 0) 65% 0) 67% 04) 69% 05) 7% 8

9 D = 4% % = %; D = 8% 4% = 4%; As diferenças formariam a PA : (%, 4%, 5%,6%, 7%,) na qual o primeiro termo é % e a razão % Risco com 4 doses: 8% + 5% = 5%; Risco com 5 doses: 5% + 6% = 69%; RESPOSTA: Alternativa 04 Questão 5 A pele é o maior órgão de seu corpo, com uma superfície de até metros quadrados Ela tem duas camadas principais: a epiderme, externa, e a derme, interna (BREWER 0, p 7) De acordo com o texto, a superfície máxima coberta pela pele humana é equivalente a de um cubo cuja diagonal, em m, é igual a 0) 0) 0) 04) 05) A área total de um cubo é S = 6a, onde a é a medida da aresta do cubo 6a a a a A diagonal de um cubo é dado pela relação d a 6a a a a RESPOSTA: Alternativa 04 d 9

Princípio Fundamental da Contagem

Princípio Fundamental da Contagem Princípio Fundamental da Contagem TEXTO PARA A PRÓXIMA QUESTÃO: Uma loja identifica seus produtos com um código que utiliza 16 barras, finas ou grossas. Nesse sistema de codificação, a barra fina representa

Leia mais

MATEMÁTICA - PARTE 1. Questão 02. Questão 01. Questão 03. Biologia. Questão 04. Simulado on line CDF

MATEMÁTICA - PARTE 1. Questão 02. Questão 01. Questão 03. Biologia. Questão 04. Simulado on line CDF Questão 02 (Pucrj 2015) Em uma urna existem bolinhas de cores diferentes, das quais sete têm massa de gramas cada e as outras três têm massa de gramas cada. Serão retiradas bolinhas, sem reposição. A probabilidade

Leia mais

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA MATEMÁTICA 49 A distância que um automóvel percorre após ser freado é proporcional ao quadrado de sua velocidade naquele instante Um automóvel, a 3 km/, é freado e pára depois de percorrer mais 8 metros

Leia mais

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática ENEM 014 - Caderno Cinza Resolução da Prova de Matemática 136. Alternativa (C) Basta contar os nós que ocupam em cada casa. 3 nós na casa dos milhares. 0 nós na casa das centenas. 6 nós na casa das dezenas

Leia mais

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTIA DA UNIAMP VESTIULAR 011 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 1 Recentemente, um órgão governamental de pesquisa divulgou que, entre 006 e 009, cerca de 5, milhões de brasileiros

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 0 DA UNICAMP-FASE. POR PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO Em uma determinada região do planeta, a temperatura média anual subiu de 3,35 ºC em 995 para

Leia mais

Estatística. x = 1, o ano 2011, e assim por diante, e y representa o índice de perdas expresso em porcentagem. Determine as duas funções.

Estatística. x = 1, o ano 2011, e assim por diante, e y representa o índice de perdas expresso em porcentagem. Determine as duas funções. Estatística 1. (Uem 2012) Em uma área de preservação ambiental, pesquisadores estudaram uma população de macacos-prego. A área em questão é de 84 ha (1 ha = 10000 m 2 ). Considerando o tamanho inicial

Leia mais

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real.

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real. 6/0/008 Fatec/Tatuí Calculo II - Taxas Relacionadas 1 Taxas Relacionadas Um problema envolvendo taxas de variação de variáveis relacionadas é chamado de problema de taxas relacionadas. Os passos a seguir

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13 Cilindro 1. (Ueg 01) Uma coluna de sustentação de determinada ponte é um cilindro circular reto. Sabendo-se que na maquete que representa essa ponte, construída na escala 1:100, a base da coluna possui

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

360 0,36f + 0,64f = 556. 0,28f = 196. f = 700 g = 300

360 0,36f + 0,64f = 556. 0,28f = 196. f = 700 g = 300 01) Uma empresa possui 1000 carros, sendo uma parte com motor a gasolina e o restante com motor flex (que funciona com álcool e com gasolina). Numa determinada época, neste conjunto de 1000 carros, 36%

Leia mais

Nome do(a) Aluno(a): Turma: RECOMENDAÇÕES IMPORTANTES

Nome do(a) Aluno(a): Turma: RECOMENDAÇÕES IMPORTANTES 5º ANO ESPECIALIZADO E CURSO PREPARATÓRIO 4º SIMULADO/2014-2ª ETAPA MATEMÁTICA Nome do(a) Aluno(a): Turma: RECOMENDAÇÕES IMPORTANTES 01) Verifique o total de folhas (09) deste Simulado. Ele contém 20 (vinte)

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2008 / 2009 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2008 / 2009 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2008 / 2009 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Chefe da Subcomissão de Matemática Chefe da CEI Dir Ens CPOR / CMBH PÁGINA 2 RESPONDA

Leia mais

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema:

Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema: 1. Considere que, em uma empresa, 50% dos empregados possuam nível médio de escolaridade e 5%, nível superior. Guardadas essas proporções, se 80 empregados dessa empresa possuem nível médio de escolaridade,

Leia mais

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA FUVEST VESTIBULAR 006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA 1. A partir de 64 cubos brancos, todos iguais, forma-se um novo cubo. A seguir, este novo

Leia mais

LISTA DE MATEMÁTICA II

LISTA DE MATEMÁTICA II Ensino Médio Unidade São Judas Tadeu Professora: Oscar Aluno (a): Série: 3ª Data: / / 2015. LISTA DE MATEMÁTICA II 1) (Fuvest-SP) Um lateral L faz um lançamento para um atacante A, situado 32 m à sua frente

Leia mais

CONCURSO DE ADMISSÃO 2013/2014 6º ANO/ENS. FUND. MATEMÁTICA PÁG. 1

CONCURSO DE ADMISSÃO 2013/2014 6º ANO/ENS. FUND. MATEMÁTICA PÁG. 1 CONCURSO DE ADMISSÃO 203/204 6º ANO/ENS FUND MATEMÁTICA PÁG PROVA DE MATEMÁTICA Marque no cartão-resposta anexo a única opção correta correspondente a cada questão A direção de um escritório decidiu promover,

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVAS DE MATEMÁTICA DA UFMG VESTIBULAR 01 a ETAPA Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA A - a Etapa o DIA QUESTÃO 01 Janaína comprou um eletrodoméstico financiado, com taxa de 10% ao mês,

Leia mais

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA),

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA), 0 - (UERN) A AVALIAÇÃO UNIDADE I -05 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Em uma sorveteria, há x sabores de sorvete e y sabores de cobertura.

Leia mais

RESOLUÇÃO PROVA TJ PR

RESOLUÇÃO PROVA TJ PR PROVA TJ PR Questão 6 Três amigas estavam de férias em três cidades diferentes. Com base nas informações abaixo, descubra o nome do lugar e o número do quarto de hotel em que Ana, Claudia e Vanessa estavam

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA Razão, Proporção,Regra de, Porcentagem e Juros PROF. CARLINHOS NOME: N O : 1 RAZÃO, PROPORÇÃO E GRANDEZAS Razão é o quociente entre dois números não nulos

Leia mais

COMPLEMENTO MATEMÁTICO

COMPLEMENTO MATEMÁTICO COMPLEMENTO MATEMÁTICO Caro aluno, A seguir serão trabalhados os conceitos de razão e proporção que são conteúdos matemáticos que devem auxiliar o entendimento e compreensão dos conteúdos de Química. Os

Leia mais

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental TEMA II GRANDEZAS E MEDIDAS A comparação de grandezas de mesma natureza que dá origem à idéia de

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D Questão Considere a seqüência abaixo, conhecida como seqüência de Fibonacci Ela é definida de tal forma que cada termo, a partir do terceiro, é obtido pela soma dos dois imediatamente teriores a i :,,,

Leia mais

Progressão Aritmética

Progressão Aritmética Progressão Aritmética 1. (G1 - cftrj 14) Disponha os números 1,,, 4,, 6, 7, 8 e 9 nas casas do tabuleiro abaixo de modo que: o número 9 ocupe a casa central, os números da primeira linha sejam todos ímpares

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

m dela vale R$ 500,00,

m dela vale R$ 500,00, CLICK PROFESSOR Professor: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Calcule: Se um carro mede cerca de 4 m, quantos carros, aproximadamente, há em uma rodovia com 3 pistas e que tem 6 km

Leia mais

Canguru sem fronteiras 2007

Canguru sem fronteiras 2007 Duração: 1h15mn Destinatários: alunos dos 10 e 11 anos de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão

Leia mais

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A

Leia mais

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 M A T E M Á T I C A PROPORÇÕES Nome: Data Prof: Manoel Amaurício P O R C E N T A G E M p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 Após um aumento de p% sobre C passamos a ter 100 p C.

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 03 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA 7. Uma padaria faz uma torta salgada de formato retangular de 63cm de largura

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

( ) O lado do sexto quadrado construído medirá

( ) O lado do sexto quadrado construído medirá Matemática Questões 01 a 25 01. O nível β, de um som que tem intensidade I, é dado pela fórmula β= 10.log I, em que I0 I 0 = 10 12. Se a intensidade I for multiplicada por 100, em quantos decibéis aumenta

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

ENEM 2012 MATEMÁTICA PROVA AMARELA

ENEM 2012 MATEMÁTICA PROVA AMARELA ENEM 01 MATEMÁTICA PROVA AMARELA Questão 16 (Alternativa A) Cada resposta possível para o jogo deve conter um objeto, um personagem e um cômodo. Para cada um desses itens, temos 5, 6 e 9 possibilidades,

Leia mais

CURSO FREE PMES PREPARATÓRIO JC

CURSO FREE PMES PREPARATÓRIO JC CURSO FREE PMES PREPARATÓRIO JC Geometria CÍRCULO Área A = π. r 2 π = 3,14 Perímetro P = 2. π. r RETANGULO Área A = b. h Perímetro P = 2b + 2h QUADRADO Área A = l. loua = l 2 Perímetro TRIÂNGULO P = 4l

Leia mais

Poliedros, Prismas e Cilindros

Poliedros, Prismas e Cilindros 1. (G1 - ifsp 2013) A figura mostra uma peça feita em 1587 por Stefano Buonsignori, e está exposta no Museu Galileo, em Florença, na Itália. Esse instrumento tem a forma de um dodecaedro regular e, em

Leia mais

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse

Leia mais

Pág. 1. COMISSÃO PERMANENTE DE SELEÇÃO - COPESE PRÓ-REITORIA DE GRADUAÇÃO - PROGRAD CONCURSO VESTIBULAR 2009 2ª Fase PROVA DE QUÍMICA

Pág. 1. COMISSÃO PERMANENTE DE SELEÇÃO - COPESE PRÓ-REITORIA DE GRADUAÇÃO - PROGRAD CONCURSO VESTIBULAR 2009 2ª Fase PROVA DE QUÍMICA Questão 1: As bebidas alcoólicas contêm etanol e podem ser obtidas pela destilação do álcool (ex. whiskey e vodka) ou pela fermentação de uma variedade de produtos como frutas e outros vegetais (ex. vinho

Leia mais

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 1. A tecla da divisão da calculadora de Arnaldo parou de funcionar, mas nem por isso ele deixou de efetuar as divisões, pois a tecla de multiplicação funciona normalmente.

Leia mais

Matemática, Raciocínio Lógico e suas Tecnologias

Matemática, Raciocínio Lógico e suas Tecnologias Matemática, Raciocínio Lógico e suas Tecnologias 21. (UFAL 2008) Uma copiadora pratica os preços expressos na tabela a seguir: Número de cópias Preço unitário (em reais) 1 a 10 0,20 11 a 50 0,15 51 a 200

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

Universidade Federal de Alagoas Eixo da Tecnologia Campus do Sertão Programa de Educação Tutorial

Universidade Federal de Alagoas Eixo da Tecnologia Campus do Sertão Programa de Educação Tutorial Grandezas, Unidades de Medidas e Escala 1) (Enem) Um mecânico de uma equipe de corrida necessita que as seguintes medidas realizadas em um carro sejam obtidas em metros: a) distância a entre os eixos dianteiro

Leia mais

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas:

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: ÁLGEBRA Nivelamento CAPÍTULO VI REGRA DE TRÊS REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: 1) Num acampamento, há 48 pessoas e alimento suficiente para um mês.

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

b) Qual deve ser a aceleração centrípeta, para que com esta velocidade, ele faça uma trajetória circular com raio igual a 2m?

b) Qual deve ser a aceleração centrípeta, para que com esta velocidade, ele faça uma trajetória circular com raio igual a 2m? 1 - Dadas as medidas da bicicleta abaixo: a) Sabendo que um ciclista pedala com velocidade constante de tal forma que o pedal dá duas voltas em um segundo. Qual a velocidade linear, em km/h da bicicleta?

Leia mais

1. Matemática Básica: o razão, proporção, regra da sociedade; o conversão de moedas câmbio.

1. Matemática Básica: o razão, proporção, regra da sociedade; o conversão de moedas câmbio. 1. Matemática Básica: o razão, proporção, regra da sociedade; o conversão de moedas câmbio. Regra de três simples Regra de três simples é um processo prático para resolver problemas que envolvam quatro

Leia mais

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia..0. Sabendo que os anos bissextos são os múltiplos de 4 e que o primeiro dia de 007 foi segunda-feira, o próximo ano a começar também em uma

Leia mais

Progressão Geométrica- 1º ano

Progressão Geométrica- 1º ano Progressão Geométrica- 1º ano 1. Uma seqüência de números reais a, a 2, a 3,... satisfaz à lei de formação A n+1 = 6a n, se n é ímpar A n+1 = (1/3) a n, se n é par. Sabendo-se que a = 2, a) escreva os

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

Lista de Revisão do Enem 3ª Semana

Lista de Revisão do Enem 3ª Semana Porcentagem Estatística Lista de Revisão do Enem 3ª Semana 01. (Enem 2014) Um cliente fez um orçamento com uma cozinheira para comprar 10 centos de quibe e 15 centos de coxinha e o valor total foi de R$

Leia mais

Canguru Matemático sem Fronteiras 2014

Canguru Matemático sem Fronteiras 2014 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 9. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

Prova Resolvida. múltiplos de 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98

Prova Resolvida. múltiplos de 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98 Prova Resolvida Matemática p/ TJ-PR - Uma caixa contém certa quantidade de lâmpadas. Ao retirá-las de 3 em 3 ou de 5 em 5, sobram lâmpadas na caixa. Entretanto, se as lâmpadas forem removidas de 7 em 7,

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F.

Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F. Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F. Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios.

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC DO VESTIBULR 0 D UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. Em de outubro de 0, Feli Baumgartner uebrou o recorde de velocidade em ueda livre. O salto foi monitorado oficialmente

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. UFMG 2007 RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0 Francisco resolveu comprar um pacote de viagem que custava R$ 4 200,00, já incluídos R$ 20,00

Leia mais

Sumário. Volta às aulas. Vamos recordar?... 7 1. Grandezas e medidas: tempo e dinheiro... 59. Números... 10. Regiões planas e seus contornos...

Sumário. Volta às aulas. Vamos recordar?... 7 1. Grandezas e medidas: tempo e dinheiro... 59. Números... 10. Regiões planas e seus contornos... Sumário Volta às aulas. Vamos recordar?... Números... 0 Um pouco da história dos números... Como os números são usados?... 2 Números e estatística... 4 Números e possibilidades... 5 Números e probabilidade...

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO 2º BIMESTRE

ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO 2º BIMESTRE Disciplina: Matemática Curso: Ensino Médio Professor: Aguinaldo Série: 1ªSérie Aluno (a): ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO 2º BIMESTRE Número: 1 - Conteúdo: Notação científica Área de polígonos

Leia mais

Resoluções das Atividades

Resoluções das Atividades LIVRO MATEMÁTICA 5 Resoluções das Atividades Sumário Módulo Fração Módulo Potências Módulo Sistema métrico decimal Módulo Fração Pré-Vestibular LIVRO MATEMÁTICA 5 0 C Analisemos a situação descrita e vejamos

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as

Leia mais

www.exatas.clic3.net

www.exatas.clic3.net www.exatas.clic.net 8)5*6±0$7(0È7,&$± (67$59$6(5 87,/,=$'66 6(*8,7(66Ì0%/6(6,*,),&$'6 i: unidade imaginária número complexo : a +bi; a, b números reais log x: logaritmo de x na base 0 cos x: cosseno de

Leia mais

Colégio Paula Frassinetti Atividade de Física 3º ano do Ensino Médio - / /2012 Prof. Luciano Soares Pedroso

Colégio Paula Frassinetti Atividade de Física 3º ano do Ensino Médio - / /2012 Prof. Luciano Soares Pedroso 1. (Ufrj) Uma criança segura uma bandeira do Brasil como ilustrado na figura 1. A criança está diante de dois espelhos planos verticais A e B que fazem entre si um ângulo de 60. A figura 2 indica seis

Leia mais

Aluno (a): 1) O intervalo A de números reais é representado geometricamente da seguinte maneira:

Aluno (a): 1) O intervalo A de números reais é representado geometricamente da seguinte maneira: Educa teu filho no caminho que deve andar, e quando grande não se desviará dele Prov.22.6 Bateria de Exercícios Data: 24/03/2016 Turma: 1º Ano Área II Aluno (a): Prezado aluno caso prefira responder na

Leia mais

1º Noruega 6,15 41º Tailândia 1,89. 2º Suíça 5,98 42º Malásia 1,88. 3º Dinamarca 5,53 43º China 1,83. 4º Islândia 4,99 Sri Lanka 1,83

1º Noruega 6,15 41º Tailândia 1,89. 2º Suíça 5,98 42º Malásia 1,88. 3º Dinamarca 5,53 43º China 1,83. 4º Islândia 4,99 Sri Lanka 1,83 1 Uma pesquisa feita em 46 países e publicada pela revista The Economist mostra que, se transformamos a moeda de cada país para dólar e calculamos o preço do BigMac (o conhecido sanduíche do McDonald s),

Leia mais

Dia das Crianças. 3º ano Fundamento I. Justificativa

Dia das Crianças. 3º ano Fundamento I. Justificativa Dia das Crianças 3º ano Fundamento I Justificativa O mês de outubro começa com uma expectativa entre as crianças: a comemoração do seu dia. A data não pode ser esquecida. Assim, sugerimos que a escola

Leia mais

Física. Resolução das atividades complementares. F1 Introdução à Física

Física. Resolução das atividades complementares. F1 Introdução à Física Resolução das atividades complementares Física F Introdução à Física p. 09? 0 m Efetue as transformações a seguir e dê a resposta em notação científica: a) m em cm? 0 cm c) cm em m b) m 3 em cm 3? 0 6

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

REGRAS OFICIAIS. 1.3. De cada lado deste quadrado será demarcada, à 7 metros da rede e paralela a esta, uma linha denominada linha da área de saque.

REGRAS OFICIAIS. 1.3. De cada lado deste quadrado será demarcada, à 7 metros da rede e paralela a esta, uma linha denominada linha da área de saque. REGRAS OFICIAIS 1. A QUADRA 1.1. A área de jogo trata-se de um retângulo de 10 metros de largura por 20 metros de comprimento. 1.2. Este retângulo será dividido na sua metade por uma rede, formando em

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades FUVEST 2 a Fase 10/janeiro/2011 conhecimentos gerais 01. a) Quantos são os números inteiros positivos de quatro algarismos, escolhidos sem repetição, entre 1, 3,

Leia mais

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso UFRN 203 Matemática Álgebra 3º ano Prof. Afonso 3 2. (Ufrn 203) Considere a função polinomial f ( x) = x 3x x + 3. a) Calcule os valores de f ( ), f ( ) e f ( 3 ). b) Fatore a função dada. c) Determine

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão III 1. Um atleta salta por cima do obstáculo na figura e seu centro de gravidade atinge a altura de 2,2 m. Atrás

Leia mais

MÓDULO DE RECUPERAÇÃO

MÓDULO DE RECUPERAÇÃO DISCIPLINA Física II 2º ANO ENSINO MÉDIO MÓDULO DE RECUPERAÇÃO ALUNO(A) Nº TURMA TURNO Manhã 1º SEMESTRE DATA / / 01- A figura representa um feixe de raios paralelos incidentes numa superfície S e os correspondentes

Leia mais

AULÃO ENEM 2014 MATEMÁTICA OSWALDO

AULÃO ENEM 2014 MATEMÁTICA OSWALDO AULÃO ENEM 2014 MATEMÁTICA OSWALDO 1) Se o litro da gasolina aumentou 10% e um proprietário de carro o abastecia com 55 litros de gasolina, após o aumento, com a mesma quantia de dinheiro, ele abastecerá

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

1) Na figura abaixo, a reta r tem equação x+3y-6=0 e a reta s passa pela origem e tem coeficiente angular 3

1) Na figura abaixo, a reta r tem equação x+3y-6=0 e a reta s passa pela origem e tem coeficiente angular 3 ) Na figura abaixo, a reta r tem equação x+y-6=0 e a reta s passa pela origem e tem coeficiente angular. A área do triângulo OAB, em unidades de área, é igual a: a) b) c) d)4 (correta) e)5 O(0,0) 0 6 0

Leia mais

Fundamentos da Matemática

Fundamentos da Matemática Fundamentos da Matemática Aula 10 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 38 RELAÇÕES ENTRE GRANDEZAS E UNIDADES DE MEDIDAS

MATEMÁTICA - 3 o ANO MÓDULO 38 RELAÇÕES ENTRE GRANDEZAS E UNIDADES DE MEDIDAS MATEMÁTICA - 3 o ANO MÓDULO 38 RELAÇÕES ENTRE GRANDEZAS E UNIDADES DE MEDIDAS 1m 1m 1m 2 1m 1m 3 1m 1m km 3 hm 3 dam 3 m 3 dm 3 cm 3 mm 3, km 3 hm 3 dam 3 m 3 dm 3 cm 3 mm 3 7 3 298 501 km 3 hm 3 dam 3

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM NOVEMBRO/009 Prova E matemática x + y y x 1. O valor da expressão + 6 : x + y para x 4 e y 0,15 é: a) 0 b) 1 c) d) e) 4 Temos x + y y x + 6 : x + y. Uma costureira pagou

Leia mais

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. a Lista de Exercícios (L0) Queridos alunos, chegamos à nossa última lista de exercícios! Nesta lista vocês trabalharão com razão, proporção e regra de três. Façam

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma

Leia mais

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia Q0 João entrou na lanchonete BOG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0 Na mesa ao lado, algumas pessoas pediram 8

Leia mais

16 Comprimento e área do círculo

16 Comprimento e área do círculo A UA UL LA Comprimento e área do círculo Introdução Nesta aula vamos aprender um pouco mais sobre o círculo, que começou a ser estudado há aproximadamente 4000 anos. Os círculos fazem parte do seu dia-a-dia.

Leia mais

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Caderno de Provas MATEMÁTICA Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Use apenas caneta esferográfica azul ou preta. Escreva o seu nome completo e o número do seu

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

AS LEIS DO TÊNIS DE MESA Capítulo 2

AS LEIS DO TÊNIS DE MESA Capítulo 2 AS LEIS DO TÊNIS DE MESA Capítulo 2 2.1 A MESA 2.1.1 A parte superior da mesa, chamada superfície de jogo, deve ser retangular, com 2,74 m de comprimento por 1,525 m de largura, e situar-se em um plano

Leia mais

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5.

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5. 41. Num supermercado, são vendidas duas marcas de sabão em pó, Limpinho, a mais barata, e Cheiroso, 30% mais cara do que a primeira. Dona Nina tem em sua carteira uma quantia que é suficiente para comprar

Leia mais