1 Experimentos, espaço amostral, eventos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1 Experimentos, espaço amostral, eventos"

Transcrição

1 LC Estatística Matemática I Profa. Roseli Aparecida Leandro 1 Experimentos, espaço amostral, eventos Um dos objetivos de um estatístico é tirar conclusões sobre uma população de objetos através da condução de um experimento. Os experimentos podem ser classificados em: { Determinísticos Experimentos determínisticos: Aleatórios São aqueles que repetidos, sob as mesmas condições, conduzem ao mesmo resultado. Experimentos aleatórios: São aqueles que ao serem repetidos, sob as mesmas condições, não produzem o mesmo resultado. O estatístico está preocupado com os experimentos aleatórios. Exemplo 1.1. E 1 E 2 E 3 E 4 : Lançamento de uma moeda. : Lançamento de um dado. : Lançamento de duas moedas. : Plantar duas estacas e verificar o enraizamento

2 2 E 5 E 6 E 7 E 8 E 9 E 10 : Lançamento de dois dados. : Número de ovos de determinada lagarta. : Selecionar um morador da cidade de Piracicaba e medir sua altura. : Observar o tempo de vida de indivíduos. : Observar a produção de um talhão. : Observar o tempo de vida de lâmpadas Definição 1.1. Associado a cada experimento, E, pode-se associar um espaço amostral, Ω, o conjunto de todos os resultados possíveis. Que dependendo da natureza do experimento poderá não ser único. Exemplo 1.2. E 1 : Lançamento de uma moeda. Ω = {cara, coroa} E 2 : Lançamento de um dado. Ω = {1, 2, 3, 4, 5, 6} E 3 : Lançamento de duas moedas. Ω = {(cara, cara), (cara, coroa), (coroa, cara), (coroa, coroa)} E 4 : Plantar duas estacas e verificar o enraizamento Ω = {(e, e), (e, ē), (ē, e), (ē, ē)}, e= enraizar, ē=não enraizar

3 3 E 5 : Lançamento de dois dados. Ω = { (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) } E 6 : Número de ovos de determinada lagarta. Ω = {0, 1, 2, 3, 4,...} E 7 : Selecionar um morador da cidade de Piracicaba e medir sua altura. Ω = {x R : x 0} E 8 : Observar o tempo de vida de indivíduos. Ω = {t R : t 0} E 9 : Observar a produção de um talhão. Ω = {x R : x 0} E 10 : Observar o tempo de vida de lâmpadas Ω = {t R : t 0} Às vezes o espaço amostral de um experimento não é tão fácil de ser definido. Por exemplo no experimento 7, quais os resultados possíveis deste experimento? Números reais entre 0 e?. Supondo que não exista uma altura máxima, talvez seja razoável fazer Ω = (0, ). Mas é evidente que esse conjunto contém resultados impossíveis, tais como um milhão ou um bilhão de metros. Outros candidatos para Ω seriam, por exemplo, os intervalos limitados

4 4 (0, 3) e [1/10, 3]. Os dois intervalos contêm, aparentemente, todos os resultados possíveis do experimento. Esta propriedade já é suficiente para nossos propósitos, e podemos escolher qualquer desses intervalos (incluindo (0, )) para o espaço amostral. O importante, então, é que Ω contenha todo resultado possível. A importância do espaço de resultados provém, sobretudo, de ser o meio empregue para a definição de eventos. Há, em regra, muito mais interesse nos acontecimentos e nas famílias de acontecimentos de que nos elementos do espaço amostral. Definição 1.2. Qualquer subconjunto do espaço amostral Ω será chamado evento e será denotado por: A, B, C,.... Existe um paralelismo perfeito entre álgebra de conjuntos e álgebra de eventos (e ou acontecimentos) Se A e B são incompatíveis a intersecção não é possível. Contorna-se essa dificuldade introduzindo a noção de acontecimento impossível como resultado da intersecção de dois acontecimentos incompatíveis; a noção vem em correspondência com a de conjunto vazio na álgebra de conjuntos e por isso se representa pelo mesmo símbolo,. Assim, A e B, são incompatíveis se e só se, A B =. O acontecimento, Ω, costuma designar-se por acontecimento certo. 1.1 Eventos elementares Suponha que um experimento seja realizado sob certas condições fixas. Seja Ω o conjunto de todos os resultados possíveis, onde por resultado possível entende-se resultado elementar e indivisível do experimento. Exemplo 1.3. Considerando-se o experimento E 1 temos Ω = {cara, coroa} e os pontos amostrais ou eventos elementares associados são: {ca} e {co}. Exemplo 1.4. No experimento E 2, Ω = {1, 2, 3, 4, 5, 6} e os eventos elementares (ou pontos amostrais) associados são: {1}, {2}, {3}, {4}, {5}, {6}. Note que o evento: sair resultado par, ou seja, A = {2, 4, 6} não é um evento elementar e sim a união finita dos eventos elementares: {2}, {4}, {6}.

5 5 No experimento E 6 os eventos elementares são: {0}, {1}, {2}, {3}, {4}, {5}, {6},.... Nem sempre é fácil definir quais são os eventos elementares. Quais os eventos elementares associados aos experimentos: E 7, E 8, E 9, E 10? Devemos observar a existência de dois tipos de espaço amostral, Ω: finito ou infinito; enumerável ou não-enumerável. Todo conjunto finito é enumerável. Mas nem todo conjunto infinito é não-enumerável. No caso de espaço finito ou infinito enumerável diz-se que o espaço amostral é discreto quando o espaço amostral for infinito não-enumerável tem-se um espaço amostral contínuo. Pode-se mostrar que intervalos da forma: (a, b), [a, b), (a, b], [a, b] são não-enumeráveis já conjuntos que possuam uma associação biunívoca com os naturais são enumeráveis. Dessa forma, os espaços amostrais caracterizados pelos experimentos descritos podem ser classificados como: Experimentos Espaço amostral 1, 2, 3, 4, 5 finito enumerável discreto 6 infinito enumerável discreto 7, 8, 9, 10 infinito não-enumerável contínuo Quais são os eventos elementares em um espaço amostral cujo espaço amostral é contínuo? Por exemplo, considerando-se os espaços amostrais associados aos experimentos 7, 8, 9 e 10 quais conjuntos serão seus eventos elementares? Resposta: Os eventos elementares associados a esses espaços amostrais são os intervalos da forma: (a, b] = {x R : a < x b} (1.1) pois qualquer evento A Ω poderá ser escrito como união ou intersecção enumerável ou diferença de conjuntos como os definidos em (1.1). Por exemplo, subconjuntos (eventos) de R ( i) Ponto: {x} = n (x 1n ], x

6 6 ( ii) Intervalo fechado: [a, b] = {a} (a, b] (iii) Intervalo aberto à esquerda: [a, b] {b} (viii) Quaisquer outros subconjuntos de R poderão ser expressos através de um número enumerável de operações dos conjuntos mencionados nos itens (i) a (iii). 2 Probabilidades 2.1 Interpretação clássica de Probabilidades A primeira definição de probabilidade conhecida, parece ser devida a DeMoivre em 1718, e foi claramente explicitada por Laplace no princípio do século XIX. Laplace adotou o esquema de resultados eqüiprováveis, isto é, dos resultados igualmente prováveis, comuns às aplicações até então esboçadas para definir probabilidade de um acontecimento como: a relação entre o número de casos favoráveis ao acontecimento e o número total de casos possíveis, supondo todos os casos igualmente possíveis. Admite-se, historicamente que, a motivação para a definição do conceito de probabilidades foram baseadas em jogos de azar dessa forma não causa surpresa o fato de que o conceito de Laplace seja baseado nas propriedades de tais jogos: possibilidade de classificar a a priori todos os resultados possíveis num número finito de casos mutuamente exclusivos, simétricos e igualmente possíveis, como, os dois lados da moeda, as seis faces do dado, as 52 cartas do baralho etc. Apesar das críticas que lhe foram dirigidas a interpretação clássica manteve a sua força até o começo do século XX. Admitido-se o princípio dos casos igualmente possíveis, o cálculo de probabilidades resumese na contagem do número de casos favoráveis e do número de casos possíveis. Essa contagem, nem sempre fácil, encontra poderoso auxiliar na análise combinatória. Exemplo 2.1. Considerando-se A Ω um evento qualquer associado ao espaço amostral do experimento E 2. Podemos atribuir probabilidade ao evento A da seguinte maneira: P (A) = #A 6 = Número de resultados favoráveis a A Número de resultados possíveis

7 7 Esta é definição a clássica de probabilidade quando Ω é finito, e baseia-se no conceito de resultados eqüiprováveis, ou melhor, no princípio da indiferença (estamos indiferentes diante dos resultados 1, 2, 3, 4, 5, 6; logo, definimos P (i) = 1 i Ω). Então, para esse 6 experimento todo evento terá uma probabilidade Críticas a definição clássica Várias críticas são feitas ao conceito clássico de probabilidades: ( i) O que são casos eqüiprováveis? Na falta de definição admitir que é um conceito primitivo. ( ii) Como reconhecer que os casos são eqüiprováveis? A saída parece ser aceitar que algum princípio apriorístico suporta tal reconhecimento. Nesses casos é comum admitir um dois princípios a seguir: ( a) princípio da indiferença que faz apelo às propriedades de simetria ou de homogeneidade da situação experimental. Se o dado é perfeito porque seriam uma das faces preferidas em detrimento de outras? ( b) princípio da razão insuficiente: se não há razão para crer que qualquer dos casos é mais provável do que os outros pode-se admitir que todos os casos são igualmente prováveis. (iii) É bem sabido que não há moedas perfeitas, dados perfeitos, gases perfeitos, água pura etc, que perfeição além do conceito não existe. Consequentemente o conceito clássico é muitas vezes aplicado em situações idealizadas e não consegue vencer a dificuldades levantadas quando os casos não são igualmente possíveis. ( iv) Finalmente como calcular probabilidades quando o número de casos possíveis não é finito nem sequer enumerável?

8 8 Apesar de todas as críticas não resta dúvida que a interpretação clássica é aplicável sempre que a simetria dos problemas a justifique, e, de fato há numerosos caso em que tal propriedade pode ser aceita. A verdade é que se trata de um modelo probabilístico particular dentro da teoria axiomática a ser desenvolvida, de grande utilidade quando ajustado a uma realidade concreta. 2.2 Interpretação Frequentista de Probabilidades A interpretação frequentista (Venn, von Mises, Reichenbach, Salmon etc) foi adotada de forma quase unâmime pelos estatísticos durante a primeira metade do século XX e é ainda hoje considerada correta pela maioria, apesar de, ter havido uma crescente aceitação da interpretação Bayesiana na segunda metade do século XX. Sustenta que a probabilidade de um acontecimento pode ser medida observando-se a frequência relativa do mesmo acontecimento numa sucessão numerosa de provas ou experiências, idênticas e independentes. Uma das primeiras abordagens da interpretação frequentista deve-se a Venn (1866) ao formalizar a idéia de exprimir probabilidade em termos de limite de frequências relativas em longas sequências de situações independentes capazes de repetição em condições idênticas Críticas a definição frequentista ( i) Falta de suporte empírico para a complexa noção de independência. ( ii) Contraste entre o caráter essencialmente finito da experiência humana e a probabilidade definida por passagem ao limite numa sucessão indefinidamente grande. Atribuir probabilidade a um evento nada mais é do que associar uma medida ao evento considerado. Então, a pergunta, agora, passa a ser: conseguimos atribuir medida a qualquer evento A de um espaço amostral Ω? A resposta é não. Só conseguimos atribuir probabilidade a determinados subconjuntos de Ω esses subsconjuntos serão, então, chamados de eventos aleatórios. Outros autores, por exemplo, Kolmogorov (1950) e Crámer (1946) preferiram abandonar o axioma do limite, definindo probabilidade de um acontecimento aleatório como um número

9 9 associado a esse acontecimento satisfazendo um conjunto de regras ou sistema de axiomas. Na abordagem axiomática a preocupação não é com a interpretação da probabilidade mas sim que probabilidade é definida através de um conjunto de axiomas. Interpretação de probabilidade é outro assunto. A frequência de ocorrência de um evento é um exemplo de uma particular interpretação. Uma outra interpretação possível é a interpretação subjetiva, na qual ao invés de pensar probabilidade como frequência, podemos pensá-la como uma crença na chance de um evento ocorrer. Por exemplo, Chover amanhã? A esse evento é impossível dar a interpretação frequentista, pois, o evento: Chover amanhã não poderá ser realizado um número grande de vezes. A que eventos vamos atribuir probabilidades? 2.3 Axiomática de Kolmogorov De modo geral, toda teoria matemática tem como origem a observação de fatos. Mas, na verdade, somente quando um grupo de fenômenos apresenta regularidades e permanências é que pode pensar-se na construção de uma teoria matemática. Tal teoria toma-se como modelo matemático de tal grupo. No início do século XX muitos probabilistas começaram a sentir necessidade de uma axiomatização que permitisse ultrapassar a ambiguidade de muitas aplicações e a proliferação de conceitos e interpretações. A axiomatização hoje generalizada deve muito a Bernstein e à decisiva contribuição de Kolmogorov. A partir desse momento optou-se por considerar que a teoria da probabilidade teria como objeto de estudo certos fenômenos observáveis, os fenômenos aleatórios. Assim a teoria da probabilidade se ocupa de métodos de análise que são comuns ao estudo dos fenômenos aleatórios seja qual for o campo a que pertençam (da duração da vida humana à duração de componentes eletrônicos, do número de chamadas que afluem por dia a uma central telefônica ao número de acidentes de automóvel ocorridos por semana numa estrada, da variação das características biométricas de homem para homem às variações das características quantitativas de um produto fabricado em série etc). Justifica-se, então a introdução da teoria da probabilidade como teoria matemática dos fenômenos aleatórios, isto é, dos fenômenos influenciados pelo acaso.

10 10 Quando o processo está sujeito à influência de fatores casuais ou contigentes e conduz a resultados incertos fala-se em experiência aleatória ou experimento aleatório. Mais precisamente, uma experimento aleatório ou casual apresenta as seguintes características fundamentais: ( i) Pode-se repetir um grande número de vezes nas mesmas condições ou pelo menos em condições muito semelhantes. ( ii) Cada vez que se repete obtém-se um resultado individual, mas nunca há conhecimento suficiente para prever exatamente esse resultado, mesmo que se desenvolvam todos os esforços para manter sob controle. (iii) Enquanto os resultados individuais se mostram irregulares a ponto de iludir qualquer tentativa de previsão exata, tem-se verificado que os resultados obtidos ao cabo de uma longa série de repetições mostram impressionante regularidade estatística quando tomados em conjunto, isto é, estabilidade das frequências relativas. Vamos supor, contudo, que a classe dos eventos aleatórios possua certas propriedades básicas e intuitivas, que serão essenciais para o desenvolvimento posterior da teoria do cálculo de probabilidades. Indicando com A a classe de eventos aleatórios, vamos estipular as seguintes propriedades para A. A1. Ω A (definiremos P (Ω) = 1) A2. Se A A, então A C A (é evidente que definiremos P (A C ) = 1 P (A)). A3. Se A A e B B, então A B A (i.e., se atribuirmos uma probabilidade a A e outra a B, então atribuiremos uma probabilidade a A ou B.) Em outras palavras, vamos supor que A, seja uma álgebra de eventos. Definição 2.1. Seja Ω um conjunto não-vazio. Uma classe Ω de subconjuntos de Ω satisfazendo A1, A2 e A3 é chamada álgebra de subconjuntos de Ω Proposição 2.1. Seja A uma álgebra de subconjuntos de Ω. propriedades: Então valem as seguintes

11 11 A4. A e A5. n, A 1,..., A n A, temos, n i=1a i A e n i=1a i A. Esta proposição diz que uma álgebra é fechada para um número finito de aplicações das operações:,, e C. Observação: A é fechada para diferenças. Quando, Ω é finito uma álgebra é uma classe adequada para domínio da função P (.) Pois uma álgebra contém o evento impossível, o evento certo, o evento contrário ( de qualquer evento que pertença a classe), a união e intersecção de eventos (que pertençam à classe), isto é, em regra, todos os acontecimentos interessantes. Se Ω for finito então A será a álgebra de todas as partes (ou conjunto de todos os subconjuntos ) de Ω, i.e., A = P(Ω). No caso finito geral, se Ω tem n elementos, P(Ω) tem 2 n elementos e será denotado por #P(Ω) = 2 n. Exemplo 2.2. Se Ω = {1, 2, 3} então: #P(Ω) = 2 #Ω = 2 3 = 8 e P(Ω) = {, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} Quando Ω é infinito, mesmo que enumerável uma álgebra deixa de servir para a construção de uma teoria que seja mais forte. Pois quando Ω é infinito existem acontecimentos interessantes que se exprimem pela união infinita de outros acontecimentos ou de acontecimentos elementares. Se o domínio da função de conjunto, P (.), deve conter tais acontecimentos então ao invés de o representar por uma álgebra deve representar-se por uma σ-álgebra. Isto é, deve-se exigir que a classe dos eventos aleatórios também satisfaça: A3 Se A n A para n = 1, 2, 3,..., então i=1a i A Definição 2.2. Uma classe A de subconjuntos de um conjunto não-vazio Ω satisfazendo A1, A2, A3 é chamada σ-álgebra de subconjuntos de Ω Uma σ-álgebra é fechada para um número enumerável de aplicações das operações:,, e C. No caso, Ω finito tomou-se para domínio da probabilidade, P (.), a álgebra que se identifica com a classe, P(Ω) = 2 Ω, de todos os conjuntos ou partes de, Ω; no caso de Ω infinito

12 12 enumerável também não há qualquer inconveniente em tomar para esse domínio P(Ω) = 2 Ω que aliás, agora, é uma σ-álgebra. Quando, Ω, é não-enumerável a situação é mais complicada. A classe, P(Ω) = 2 Ω, embora seja uma σ-álgebra, é demasiadamente rica e pode não ser possível atribuir uma probabilidade, de forma compatível com os axiomas, a todo e qualquer, A P(Ω) = 2 Ω. É por isso que comumente a teoria de probabilidade se desenvolve em relação a uma σ- álgebra mais restritiva, A, composta apenas por conjuntos de Ω probabilizáveis e só estes são designados por acontecimentos (eventos aleatórios). Em particular, nos casos de maior interesse prático em que, Ω = R k, k = 1, 2,..., n a análise restringe-se a uma álgebra de Borel em R k, σ-álgebra que contém os conjuntos (acontecimentos, eventos aleatórios) contemplados em quase todas as aplicações, a saber, em R, intervalos abertos, semi-abertos ou fechados, finitos ou infinitos), uniões (finitas ou infinitas enumeráveis) e intersecções (finitas ou infinitas enumeráveis) de intervalos, etc Se Ω for contínuo quem será A? Por exemplo, consideremos o experimento E: Selecionar um ponto no intervalo [0,1]. Temos que: Ω = [0, 1]. (Barry James, página 7). Definição 2.3. Um espaço de probabilidade é um trio (Ω, A, P ) em que: (a) Ω é um conjunto não-vazio. (b) A é uma σ-álgebra de subconjuntos de Ω, e (c) P é uma probabilidade em A Definição 2.4. Dado um espaço amostral Ω e uma σ-álgebra (σ de Borel), A, a função de probabilidade é uma função P com domínio A que satisfaz: 1. P (A) 0, para todo A A. 2. P (Ω) = 1 3. Se A 1, A 2,... A são disjuntos dos a dois, então P ( i=1a i ) = P (A i ) i=1

13 13 As três propriedades apresentadas na definição 2.4 são usualmente referidas como Axiomas de Probabilidade (ou axiomas de Kolmogorov). Qualquer função que satisfaça os axiomas de Probabilidade é chamada função de probabilidade. O axioma não menciona qual é a função particular P, ele meramente requer que P satisfaça os axiomas. Para qualquer espaço amostral muitas e diferentes funções P podem ser definidas. Não vamos nos preocupar, doravante, com o problema de como definir probabilidade para cada experimento. Simplesmente, vamos admitir que existem as probabilidades em uma certa σ-álgebra A de eventos, chamados eventos aleatórios; vamos supor que a todo A A seja associado um número real P (A), chamado probabilidade de A, de modo que os axiomas a seguir sejam satisfeitos: Axioma 1. P (A) 0. Axioma 2. P (Ω) = 1. Axioma 3. (Aditividade finita) Se A 1,..., A n A são disjuntos (2 a 2), então P ( n k=1 A k) = n k=1 P (A k). (Os eventos são disjuntos, ou disjuntos 2 a 2, se são mutuamente exclusivos, i.e., A i A j = se i j.) Axioma 3 (σ-aditividade) Se A 1, A 2,... A são disjuntos (i.e., mutuamente exclusivos), então P ( k=1a k ) = P (A k ) k=1 Proposição 2.2. O axioma 3 implica o Axioma 3, i.e., se P é σ-aditiva, então é finitamente aditiva. Prove!

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes Equações básicas Uma análise de qualquer problema em Mecânica dos Fluidos, necessariamente se inicia, quer diretamente ou indiretamente, com a definição das leis básicas que governam o movimento do fluido.

Leia mais

GIL, Antonio Carlos. Como elaborar projetos de pesquisa. São Paulo, Editora Atlas, 2002....

GIL, Antonio Carlos. Como elaborar projetos de pesquisa. São Paulo, Editora Atlas, 2002.... GIL, Antonio Carlos. Como elaborar projetos de pesquisa. São Paulo, Editora Atlas, 2002.... 1 Como encaminhar uma Pesquisa? A pesquisa é um projeto racional e sistemático com objetivo de proporcionar respostas

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

M =C J, fórmula do montante

M =C J, fórmula do montante 1 Ciências Contábeis 8ª. Fase Profa. Dra. Cristiane Fernandes Matemática Financeira 1º Sem/2009 Unidade I Fundamentos A Matemática Financeira visa estudar o valor do dinheiro no tempo, nas aplicações e

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

Fundamentos de Teste de Software

Fundamentos de Teste de Software Núcleo de Excelência em Testes de Sistemas Fundamentos de Teste de Software Módulo 1- Visão Geral de Testes de Software Aula 2 Estrutura para o Teste de Software SUMÁRIO 1. Introdução... 3 2. Vertentes

Leia mais

Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios

Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios O Método Intuitivo de elaboração de circuitos: As técnicas de elaboração de circuitos eletropneumáticos fazem parte

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

Análise Qualitativa no Gerenciamento de Riscos de Projetos

Análise Qualitativa no Gerenciamento de Riscos de Projetos Análise Qualitativa no Gerenciamento de Riscos de Projetos Olá Gerente de Projeto. Nos artigos anteriores descrevemos um breve histórico sobre a história e contextualização dos riscos, tanto na vida real

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avaliação de Empresas RISCO E RETORNO Aula 2 Retorno Total É a variação total da riqueza proporcionada por um ativo ao seu detentor. Fonte: Notas de Aula do Prof. Claudio Cunha Retorno Total Exemplo 1

Leia mais

Caique Tavares. Probabilidade Parte 1

Caique Tavares. Probabilidade Parte 1 Caique Tavares Probabilidade Parte 1 Probabilidade: A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais

Leia mais

Matemática Discreta - 08

Matemática Discreta - 08 Universidade Federal do Vale do São Francisco urso de Engenharia da omputação Matemática Discreta - 08 Prof. Jorge avalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 26 A FREQUÊNCIIA RELATIIVA PARA ESTIIMAR A PROBABIILIIDADE Por: Maria Eugénia Graça Martins Departamento de Estatística e Investigação Operacional da FCUL

Leia mais

WWW.RENOVAVEIS.TECNOPT.COM

WWW.RENOVAVEIS.TECNOPT.COM Energia produzida Para a industria eólica é muito importante a discrição da variação da velocidade do vento. Os projetistas de turbinas necessitam da informação para otimizar o desenho de seus geradores,

Leia mais

Os dados quantitativos também podem ser de natureza discreta ou contínua.

Os dados quantitativos também podem ser de natureza discreta ou contínua. Natureza dos Dados Às informações obtidas acerca das características de um conjunto dá-se o nome de dado estatístico. Os dados estatísticos podem ser de dois tipos: qualitativos ou quantitativos. Dado

Leia mais

Aula de Exercícios - Teorema de Bayes

Aula de Exercícios - Teorema de Bayes Aula de Exercícios - Teorema de Bayes Organização: Rafael Tovar Digitação: Guilherme Ludwig Primeiro Exemplo - Estagiários Três pessoas serão selecionadas aleatóriamente de um grupo de dez estagiários

Leia mais

Função. Adição e subtração de arcos Duplicação de arcos

Função. Adição e subtração de arcos Duplicação de arcos Função Trigonométrica II Adição e subtração de arcos Duplicação de arcos Resumo das Principais Relações I sen cos II tg sen cos III cotg tg IV sec cos V csc sen VI sec tg VII csc cotg cos sen Arcos e subtração

Leia mais

Prof. Daniela Barreiro Claro

Prof. Daniela Barreiro Claro O volume de dados está crescendo sem parar Gigabytes, Petabytes, etc. Dificuldade na descoberta do conhecimento Dados disponíveis x Análise dos Dados Dados disponíveis Analisar e compreender os dados 2

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

Estatística AMOSTRAGEM

Estatística AMOSTRAGEM Estatística AMOSTRAGEM Estatística: É a ciência que se preocupa com a coleta, a organização, descrição (apresentação), análise e interpretação de dados experimentais e tem como objetivo fundamental o estudo

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto

Leia mais

Unidade 1: O Computador

Unidade 1: O Computador Unidade : O Computador.3 Arquitetura básica de um computador O computador é uma máquina que processa informações. É formado por um conjunto de componentes físicos (dispositivos mecânicos, magnéticos, elétricos

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

PODER JUDICIÁRIO JUSTIÇA DO TRABALHO CONSELHO SUPERIOR DA JUSTIÇA DO TRABALHO

PODER JUDICIÁRIO JUSTIÇA DO TRABALHO CONSELHO SUPERIOR DA JUSTIÇA DO TRABALHO CONSELHO SUPERIOR DA RELATÓRIO DE DIAGNÓSTICO DA QUALIDADE NO USO DO SISTEMA PROCESSO JUDICIAL ELETRÔNICO DA Fase 1 (magistrados e servidores da Justiça do Trabalho) Secretaria de Tecnologia da Informação

Leia mais

UTILIZAÇÃO DE SENSORES CAPACITIVOS PARA MEDIR UMIDADE DO SOLO.

UTILIZAÇÃO DE SENSORES CAPACITIVOS PARA MEDIR UMIDADE DO SOLO. UTILIZAÇÃO DE SENSORES CAPACITIVOS PARA MEDIR UMIDADE DO SOLO. Silveira, Priscila Silva; Valner Brusamarello. Universidade Federal do Rio Grande do Sul UFRGS Av. Osvaldo Aranha, 103 - CEP: 90035-190 Porto

Leia mais

I. Conjunto Elemento Pertinência

I. Conjunto Elemento Pertinência TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que

Leia mais

Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.)

Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.) Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.) De acordo com o PMBok 5ª ed., o escopo é a soma dos produtos, serviços e resultados a serem fornecidos na forma de projeto. Sendo ele referindo-se a: Escopo

Leia mais

O Cálculo λ sem Tipos

O Cálculo λ sem Tipos Capítulo 2 O Cálculo λ sem Tipos 21 Síntaxe e Redução Por volta de 1930 o cálculo lambda sem tipos foi introduzido como uma fundação para a lógica e a matemática Embora este objectivo não tenha sido cumprido

Leia mais

ENQUADRAMENTO DO VOLUNTARIADO NA UNIVERSIDADE DE AVEIRO

ENQUADRAMENTO DO VOLUNTARIADO NA UNIVERSIDADE DE AVEIRO ENQUADRAMENTO DO VOLUNTARIADO NA UNIVERSIDADE DE AVEIRO Considerando: O relevo formativo, social, cultural e cívico do voluntariado e o papel importante que a Universidade de Aveiro (UA) pode desempenhar

Leia mais

2 Conceitos Básicos. onde essa matriz expressa a aproximação linear local do campo. Definição 2.2 O campo vetorial v gera um fluxo φ : U R 2 R

2 Conceitos Básicos. onde essa matriz expressa a aproximação linear local do campo. Definição 2.2 O campo vetorial v gera um fluxo φ : U R 2 R 2 Conceitos Básicos Neste capítulo são apresentados alguns conceitos importantes e necessários para o desenvolvimento do trabalho. São apresentadas as definições de campo vetorial, fluxo e linhas de fluxo.

Leia mais

SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA

SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA Leitura e Análise de Texto O π e a agulha de Buffon O estudo da probabilidade, aparentemente, não tem uma ligação direta com a Geometria. A probabilidade

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

Registro de Retenções Tributárias e Pagamentos

Registro de Retenções Tributárias e Pagamentos SISTEMA DE GESTÃO DE PRESTAÇÃO DE CONTAS (SiGPC) CONTAS ONLINE Registro de Retenções Tributárias e Pagamentos Atualização: 20/12/2012 A necessidade de registrar despesas em que há retenção tributária é

Leia mais

Critério de Desenvolvimento da Embalagem de Transporte. Magda Cercan Junho/2013 São Paulo

Critério de Desenvolvimento da Embalagem de Transporte. Magda Cercan Junho/2013 São Paulo Critério de Desenvolvimento da Embalagem de Transporte Magda Cercan Junho/2013 São Paulo Magda Cercan Garcia Tecnôloga Mecânica em Processos de Produção e Projetos de Máquinas pela Faculdade de Tecnologia

Leia mais

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

Curso de Engenharia de Produção. Organização do Trabalho na Produção

Curso de Engenharia de Produção. Organização do Trabalho na Produção Curso de Engenharia de Produção Organização do Trabalho na Produção Estrutura Organizacional Organização da Empresa: É a ordenação e agrupamento de atividades e recursos, visando ao alcance dos objetivos

Leia mais

Gestão da Qualidade. Aula 5. Prof. Pablo

Gestão da Qualidade. Aula 5. Prof. Pablo Gestão da Qualidade Aula 5 Prof. Pablo Proposito da Aula 1. Gestão da Qualidade Total; 2. Planejamento; Gestão da Qualidade Total Gestão da Qualidade Total Como vimos na última aula a Gestão da Qualidade

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

2.0 O PROJETO DE LAJES PROTENDIDAS - SÍNTESE

2.0 O PROJETO DE LAJES PROTENDIDAS - SÍNTESE LAJES PLANAS PROTENDIDAS: DETERMINAÇÃO DA FORÇA DE PROTENSÃO E PRÉ-DIMENSIONAMENTO DOS CABOS UM PROCESSO PRÁTICO 1.0 - INTRODUÇÃO Nos projetos de lajes protendidas, as armaduras a serem determinadas resultam

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS PRISMAS Os prismas são sólidos geométricos muito utilizados na construção civil e indústria. PRISMAS base Os poliedros representados a seguir são denominados prismas. face lateral base Nesses prismas,

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo

Leia mais

GUIA SOBRE A APLICAÇÃO DOS ASPECTOS LINGUÍSTICOS DA CARTILHA DE ADESÃO À AGENCE UNIVERSITAIRE DE LA FRANCOPHONIE

GUIA SOBRE A APLICAÇÃO DOS ASPECTOS LINGUÍSTICOS DA CARTILHA DE ADESÃO À AGENCE UNIVERSITAIRE DE LA FRANCOPHONIE GUIA SOBRE A APLICAÇÃO DOS ASPECTOS LINGUÍSTICOS DA CARTILHA DE ADESÃO À AGENCE UNIVERSITAIRE DE LA FRANCOPHONIE Adotado pelo conselho associativo da Agence universitaire de la Francophonie 13 de setembro

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto USP Departamento de Economia

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto USP Departamento de Economia Pobreza e Desigualdade 1) Que é pobreza? Inicio dos anos 1970: percepção de que as desigualdades sociais e a pobreza não estavam sendo equacionadas como resultado do crescimento econômico. Países ricos:

Leia mais

1- INTRODUÇÃO 2. CONCEITOS BÁSICOS

1- INTRODUÇÃO 2. CONCEITOS BÁSICOS 1 1- INTRODUÇÃO O termo probabilidade é usado de modo muito amplo na conversação diária para sugerir um certo grau de incerteza sobre o que ocorreu no passado, o que ocorrerá no futuro ou o que está ocorrendo

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B)

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B) ISEG - ESTATÍSTICA I - EN, Economia/Finanças - de Junho de 00 Tópicos de correcção ª Parte. Sejam os acontecimentos A, B, C tais que P ( A B) > 0. Justifique a igualdade: ( A B) C) = B A). A). C ( A B)).

Leia mais

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística AMEI Escolar Matemática 9º Ano Probabilidades e Estatística A linguagem das probabilidades As experiências podem ser consideradas: - aleatórias ou casuais: quando é impossível calcular o resultado à partida;

Leia mais

Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra

Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra Walter Francisco HurtaresOrrala 1 Sílvio de Souza Lima 2 Resumo A determinação automatizada de diagramas

Leia mais

Modelagem De Sistemas

Modelagem De Sistemas Modelagem De Sistemas UNIP Tatuapé - SP Aplicações em Linguagem de Programação Prof.Marcelo Nogueira Uma empresa de software de sucesso é aquela que consistentemente produz software de qualidade que vai

Leia mais

Conceitos Básicos de Probabilidade

Conceitos Básicos de Probabilidade Conceitos Básicos de Probabilidade Como identificar o espaço amostral de um experimento. Como distinguir as probabilidades Como identificar e usar as propriedades da probabilidade Motivação Uma empresa

Leia mais

Exercício. Exercício

Exercício. Exercício Exercício Exercício Aula Prática Utilizar o banco de dados ACCESS para passar o MER dos cenários apresentados anteriormente para tabelas. 1 Exercício oções básicas: ACCESS 2003 2 1 Exercício ISERIDO UMA

Leia mais

Pesquisador em Informações Geográficas e Estatísticas A I GEOMORFOLOGIA LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO.

Pesquisador em Informações Geográficas e Estatísticas A I GEOMORFOLOGIA LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO. 6 EDITAL N o 04/2013 LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO. 01 - O candidato recebeu do fiscal o seguinte material: a) este CADERNO DE QUESTÕES, com os enunciados das 8 (oito) questões discursivas, sem

Leia mais

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

Identidade e trabalho do coordenador pedagógico no cotidiano escolar

Identidade e trabalho do coordenador pedagógico no cotidiano escolar 9 Considerações finais A partir da análise dos dados coletados nessa pesquisa algumas considerações finais se fazem pertinentes em relação às questões iniciais levantadas nesta pesquisa. 9.1 Identidade

Leia mais

DIMENSÕES DE PESQUISA EM ENGENHARIA DE SOFTWARE

DIMENSÕES DE PESQUISA EM ENGENHARIA DE SOFTWARE ESPECIAL Engenharia de Software DIMENSÕES DE PESQUISA EM ENGENHARIA DE SOFTWARE por Paulo Borba DECISÕES IMPORTANTES A SEREM TOMADAS NOS PROJETOS E NA CARREIRA DE UM PESQUISADOR EM ENGENHARIA DE SOFTWARE.

Leia mais

Condução. t x. Grupo de Ensino de Física da Universidade Federal de Santa Maria

Condução. t x. Grupo de Ensino de Física da Universidade Federal de Santa Maria Condução A transferência de energia de um ponto a outro, por efeito de uma diferença de temperatura, pode se dar por condução, convecção e radiação. Condução é o processo de transferência de energia através

Leia mais

Preparo de aula - Professor. Andrew Graham

Preparo de aula - Professor. Andrew Graham Preparo de aula - Professor Andrew Graham Sumário Cap. 03 Como ensinar com estudos de caso Cap. 04 Preparo para ensino através de casos Cap. 05 Escrever ou pesquisar um caso 03 Como ensinar com estudos

Leia mais

Métricas de Software

Métricas de Software Métricas de Software Plácido Antônio de Souza Neto 1 1 Gerência Educacional de Tecnologia da Informação Centro Federal de Educação Tecnologia do Rio Grande do Norte 2006.1 - Planejamento e Gerência de

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

Programa Gulbenkian de Língua e Cultura Portuguesas REGULAMENTO DO CONCURSO DE APOIO A CONGRESSOS NOS DOMÍNIOS DA LÍNGUA E DA CULTURA PORTUGUESAS

Programa Gulbenkian de Língua e Cultura Portuguesas REGULAMENTO DO CONCURSO DE APOIO A CONGRESSOS NOS DOMÍNIOS DA LÍNGUA E DA CULTURA PORTUGUESAS REGULAMENTO DO CONCURSO DE APOIO A CONGRESSOS NOS DOMÍNIOS DA LÍNGUA E DA CULTURA PORTUGUESAS 2014 Enquadramento A Fundação Calouste Gulbenkian (Fundação), através de concurso, vai conceder apoio à organização

Leia mais

MODELAGENS. Modelagem Estratégica

MODELAGENS. Modelagem Estratégica Material adicional: MODELAGENS livro Modelagem de Negócio... Modelagem Estratégica A modelagem estratégica destina-se à compreensão do cenário empresarial desde o entendimento da razão de ser da organização

Leia mais

I ENCONTRO DE PRÁTICAS PEDAGÓGICAS NOS CURSOS DE LICENCIATURA LICENCIATURA EM PEDAGOGIA: EM BUSCA DA IDENTIDADE PROFISSIONAL DO PEDAGOGO

I ENCONTRO DE PRÁTICAS PEDAGÓGICAS NOS CURSOS DE LICENCIATURA LICENCIATURA EM PEDAGOGIA: EM BUSCA DA IDENTIDADE PROFISSIONAL DO PEDAGOGO LICENCIATURA EM PEDAGOGIA: EM BUSCA DA IDENTIDADE PROFISSIONAL DO PEDAGOGO Palavras-chave: Identidade do Pedagogo. Formação de Professores. Licenciatura em Pedagogia. LDB 9394/96. Introdução Este trabalho

Leia mais

Emparelhamentos Bilineares Sobre Curvas

Emparelhamentos Bilineares Sobre Curvas Emparelhamentos Bilineares Sobre Curvas Eĺıpticas Leandro Aparecido Sangalli sangalli@dca.fee.unicamp.br Universidade Estadual de Campinas - UNICAMP FEEC - Faculdade de Engenharia Elétrica e de Computação

Leia mais

Diagnóstico da Convergência às Normas Internacionais IAS 8 Accounting Policies, Changes in Accounting Estimates and Errors

Diagnóstico da Convergência às Normas Internacionais IAS 8 Accounting Policies, Changes in Accounting Estimates and Errors Diagnóstico da Convergência às Normas Internacionais IAS 8 Accounting Policies, Changes in Accounting Estimates and Errors Situação: PARCIALMENTE DIVERGENTE 1. Introdução deve ser aplicado: O IAS 8 Accounting

Leia mais

AV2 - MA 12-2011 UMA SOLUÇÃO

AV2 - MA 12-2011 UMA SOLUÇÃO Questão 1. Considere os caminhos no plano iniciados no ponto (0, 0) com deslocamentos paralelos aos eixos coordenados, sempre de uma unidade e no sentido positivo dos eixos x e y (não se descarta a possibilidade

Leia mais

Coordenadoria de Matemática. Apostila de Probabilidade

Coordenadoria de Matemática. Apostila de Probabilidade Coordenadoria de Matemática Apostila de Probabilidade Vitória ES 1. INTRODUÇÃO CAPÍTULO 03 Quando investigamos algum fenômeno, verificamos a necessidade de descrevê-lo por um modelo matemático que permite

Leia mais

Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento

Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova de Agente / PF Neste artigo, farei a análise das questões

Leia mais

Adotada Total / Parcial. Fundamento da não adoção. Recomendação. Não adotada. 1. Princípios Gerais

Adotada Total / Parcial. Fundamento da não adoção. Recomendação. Não adotada. 1. Princípios Gerais / 1. Princípios Gerais As instituições devem adotar uma política de remuneração consistente com uma gestão e controlo de riscos eficaz que evite uma excessiva exposição ao risco, que evite potenciais conflitos

Leia mais

Contratar um plano de saúde é uma decisão que vai além da pesquisa de preços. Antes de

Contratar um plano de saúde é uma decisão que vai além da pesquisa de preços. Antes de Planos de saúde: Sete perguntas para fazer antes de contratar Antes de aderir a um plano de saúde, o consumidor precisa se informar sobre todas as condições do contrato, para não correr o risco de ser

Leia mais

Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran

Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran Camila Gomes de Souza Andrade 1 Denise Nunes Viola 2 Alexandro Teles de Oliveira 2 Florisneide

Leia mais

CIBERESPAÇO E O ENSINO: ANÁLISE DAS REDES SOCIAIS NO ENSINO FUNDAMENTAL II NA ESCOLA ESTADUAL PROFESSOR VIANA

CIBERESPAÇO E O ENSINO: ANÁLISE DAS REDES SOCIAIS NO ENSINO FUNDAMENTAL II NA ESCOLA ESTADUAL PROFESSOR VIANA 203 CIBERESPAÇO E O ENSINO: ANÁLISE DAS REDES SOCIAIS NO ENSINO FUNDAMENTAL II NA ESCOLA ESTADUAL PROFESSOR VIANA INTRODUÇÃO ¹ Elias Barbosa de Lima filho ² Dr. Flamarion Dutra Alves ¹ eliasbarbosalima141@gmail.com

Leia mais

Matemática - Módulo 1

Matemática - Módulo 1 1. Considerações iniciais Matemática - Módulo 1 TEORIA DOS CONJUNTOS O capítulo que se inicia trata de um assunto que, via-de-regra, é abordado em um plano secundário dentro dos temas que norteiam o ensino

Leia mais

Bem-estar, desigualdade e pobreza

Bem-estar, desigualdade e pobreza 97 Rafael Guerreiro Osório Desigualdade e Pobreza Bem-estar, desigualdade e pobreza em 12 países da América Latina Argentina, Bolívia, Brasil, Chile, Colômbia, Equador, El Salvador, México, Paraguai, Peru,

Leia mais

Resolução da Lista de Exercício 6

Resolução da Lista de Exercício 6 Teoria da Organização e Contratos - TOC / MFEE Professor: Jefferson Bertolai Fundação Getulio Vargas / EPGE Monitor: William Michon Jr 10 de novembro de 01 Exercícios referentes à aula 7 e 8. Resolução

Leia mais

ANÁLISE COMBINATÓRIA - ASPECTOS HISTÓRICOS E ATIVIDADES INVESTIGATIVAS

ANÁLISE COMBINATÓRIA - ASPECTOS HISTÓRICOS E ATIVIDADES INVESTIGATIVAS ANÁLISE COMBINATÓRIA - ASPECTOS HISTÓRICOS E ATIVIDADES INVESTIGATIVAS Aluna: Cristiane Maria Roque Vazquez Programa de Pós-Graduação no Ensino de Ciências Exatas PPGECE UFSCar (2010) Orientador: Prof.

Leia mais

Função Seno. Gráfico da Função Seno

Função Seno. Gráfico da Função Seno Função Seno Dado um número real, podemos associar a ele o valor do seno de um arco que possui medida de radianos. Desta forma, podemos definir uma função cujo domínio é o conjunto dos números reais que,

Leia mais

8 Crie um pequeno sistema para controle automatizado de estoque, com os seguintes registros:

8 Crie um pequeno sistema para controle automatizado de estoque, com os seguintes registros: TRABALHO: REGISTROS 8 Crie um pequeno sistema para controle automatizado de estoque, com os seguintes registros: CLIENTES NOTAS ITENS_NOTAS PRODUTOS Cod_cliente Num_NF Num_NF Cod_produto Endereco Cod_cliente

Leia mais

EDITAL DE SELEÇÃO PARA MESTRADO 2016 PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO (UNIFEI)

EDITAL DE SELEÇÃO PARA MESTRADO 2016 PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO (UNIFEI) 1 EDITAL DE SELEÇÃO PARA MESTRADO 2016 PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO (UNIFEI) O Coordenador do Programa de Pós-Graduação em Engenharia de Produção (PPGEP) da Universidade Federal

Leia mais

Introdução aos Processos Estocásticos - Independência

Introdução aos Processos Estocásticos - Independência Introdução aos Processos Estocásticos - Independência Eduardo M. A. M. Mendes DELT - UFMG Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal de Minas Gerais emmendes@cpdee.ufmg.br Eduardo

Leia mais

Koinonia, descobrindo a alegria de pertencer.

Koinonia, descobrindo a alegria de pertencer. ESTUDO 07 TENHAM IGUAL CUIDADO UNS PELOS OUTROS Sinônimos: Cooperem, com igual cuidado, em favor uns dos outros. Sejam solícitos uns para com os outros. Todas as partes tenham o mesmo interesse umas pelas

Leia mais

Lista de Exercícios 5: Soluções Teoria dos Conjuntos

Lista de Exercícios 5: Soluções Teoria dos Conjuntos UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 5: Soluções Teoria dos Conjuntos Ciências Exatas & Engenharias 2 o Semestre de 206. Escreva uma negação para a seguinte afirmação: conjuntos A,

Leia mais

Título do Case: Categoria: Temática: Resumo: Introdução:

Título do Case: Categoria: Temática: Resumo: Introdução: Título do Case: Diagnóstico Empresarial - Vendendo e Satisfazendo Mais Categoria: Prática Interna. Temática: Mercado Resumo: Na busca por uma ferramenta capaz de auxiliar na venda de mais consultorias

Leia mais

Contextualização Pesquisa Operacional - Unidade de Conteúdo II

Contextualização Pesquisa Operacional - Unidade de Conteúdo II Contextualização Pesquisa Operacional - Unidade de Conteúdo II O tópico contextualização visa vincular o conhecimento acerca do tema abordado, à sua origem e à sua aplicação. Você encontrará aqui as ideias

Leia mais

2 O primeiro ano de atribuição do PRÉMIO foi o ano de 2007 (dois mil e sete).

2 O primeiro ano de atribuição do PRÉMIO foi o ano de 2007 (dois mil e sete). REGULAMENTO DO PRÉMIO PROF. E. LIMBERT SOCIEDADE PORTUGUESA DE ENDOCRINOLOGIA DIABETES E METABOLISMO / GENZYME A SANOFI COMPANY EM PATOLOGIA DA TIRÓIDE ARTIGO 1º 1 A SOCIEDADE PORTUGUESA DE ENDOCRINOLOGIA,

Leia mais