Notas de Análise Real. Jonas Renan Moreira Gomes

Tamanho: px
Começar a partir da página:

Download "Notas de Análise Real. Jonas Renan Moreira Gomes"

Transcrição

1 Notas de Análise Real Jonas Renan Moreira Gomes 6 de novembro de 2008

2 ii

3 Sumário 1 Séries de Fourier Produto Hermitiano Definições Norma induzida pelo Produto Hermitiano Ortogonalização Espaço PCx Série de Fourier para uma função P C2π Convergência da série de Fourier Polinômio Trigonométrico Somas Parciais da Série de Fourier Teoremas de Convergência iii

4 iv SUMÁRIO

5 Notação Se z é um número complexo z C, denotaremos o conjugado de z por z F A, B representará o conjunto de todas as funções com domínio A e contradomínio B v

6 vi SUMÁRIO

7 Capítulo 1 Séries de Fourier 1.1 Produto Hermitiano Definições Seja E um espaço vetorial sobre C. Produto Hermitiano é uma função com domínio E E e contradomínio C que satisfaz: {v, w} E, α C 1. v, w = w, v 2. v, u + w = v, u > + v, w 3. αv, w = α v, w = v, αw 4. v, v R e v, v 0 Diremos que dois vetores são ortogonais se o seu produto hermitiano for zero. Em símbolos: v w v, w = 0 Seja E 0 o conjunto dos vetores de E que são ortogonais a todos os vetores de E: E 0 = {v E w E v, w = 0}. É mais ou menos evidente que E0 um subespaço vetorial se v, w E 0 então h E, v + w, h = h, v + w = h, v + h, v = 0, além disso 0 v E 0, o que pode ser visto com facilidade porque 0 v = 0 0 v. E 0 será chamado de espaço nulo do produto hermitiano. Para que v E 0, basta que v seja ortogonal a ele mesmo, o que provaremos a seguir: Lema 1. w E 0 w w 1

8 2 CAPÍTULO 1. SÉRIES DE FOURIER Demonstração. Obviamente w E 0 w w porque w é ortogonal a todos vetores de E. Suponha que w, w = 0, v E e t R então: 0 v + wt, v + wt v + wt, v + v + wt, wt = v, v + wt + wt, v + wt = v, v + t v, w + t w, v + t 2 w, w = v, v + 2tRe v, w. Suponha por absurdo que Re < v, w > 0. Se tomarmos t > 2Re v,w temos absurdo. Assim Re v, w = 0 e o resultado saí da reaplicação dessa demonstração para vi Norma induzida pelo Produto Hermitiano O produto hermitiano induz uma norma em E. Esimbolizada por v será: v = v, v Essa norma satisfaz as seguintes propriedades: v = 0 v E 0 v + u 2 = v 2 + u 2 v, w v w αv = α v v + w v + w v,v A norma de um vetor v De fato o que chamamos de norma aqui não é uma norma como é entendido no sentido usual porque podemos ter v = 0 e v 0 v, porém, se tomarmos o espaço quociente pela relação de equivalência vrw u E 0 tal que v = u+w, teremos uma norma genuína nesse espaço quociente. Isso, entretanto, não será necessário para o propósito de desenvolver a teoria das Séries de Fourier Ortogonalização Dado um vetor w / E 0 e v E, podemos, como de forma usual, encontrar a projeção de v em w. Ou seja, encontrar o c C tal que v cw w no geral, c é conhecido como o cosseno do ângulo entre u e v, mas mais adiante daremos outro nome para c. 0 = v cw, w = v, w c w, w c = v, w w, w c será chamado de Coeficiente de Fourier de v em relação a w. No que se segue, tentaremos criar uma teoria que possibilite aproximar vetores arbitrários de E por famílias ortogonais de vetores de E. Provaremos agora um lema que será utilizado nas demonstrações posteriores

9 1.1. PRODUTO HERMITIANO 3 Lema 2. Seja {v 1,...v n } um conjunto de vetores ortogonais com norma não nula v i, v j = 0 i j. Se c i é o coeficiente de Fourier de v em relação a v i, então v c k v k, v i = 0, 1 i n Demonstração. Fixado i {1,...n}, v c k v k, v i = v, v i c i v i, v i = 0 Definição 1. Seja V = {v 1,...v n } um conjunto de vetores com norma não nula V é uma família ortogonal se os vetores forem dois a dois ortogonas V é ortonormal se V for ortonormal e a norma de cada vetor for 1 V é total em F E se para todo v F valer i, v i, v = 0 v E 0 Teorema 1. Seja V = {v 1,...v n } um conjunto de vetores ortogonais e F E tal que F = n [v 1]. Se F é denso em E i.e.: o fecho de F é E, então V é total. Demonstração. Se w está no fecho de F, existe uma seqüência {w n } F tal que lim n w n = w Espaço PCx Seja p R +, definiremos P Cp como o conjunto de todas as funções com domínio R, contradomínio C tal que fx+p = fx} e f { p,p} tem um número finito de descontinuidades as quais não são continuidades essenciais i.e.: os limites laterais existem para todos os pontos. Vemos que, para cada p R +, PCp é um espaço vetorial sobre C usando a soma e a multiplicação por escalar usuais de uma função, pois: Se {f, g} P Cp então f + g P Cp Se f P Cp z C então zf P Cp Em PCp estaremos interessados nas seguintes normas: p f = sup{ fx : x [ p, p]} e f 2 = fx 2 dx p As duas normas estão bem definidas porque se f P Cp então f é Riemann integrável logo, também o é limitada. Vemos que:

10 4 CAPÍTULO 1. SÉRIES DE FOURIER p f 2 = fx 2 dx f 2 2p = f 2p p Isso é, a convergência na norma implica convergência na norma 2, embora o contrário não seja verdadeiro. 1.2 Série de Fourier para uma função P C2π Definição 2 Coeficientes de Fourier. Se f P C2π, os coeficientes de Fourier de f são os números a 0, a 1... e b 0, b 1,... definidos por: a n = 1 π ftcosntdt, b n = 1 π ftsenntdt Definição 3. A Série de Fourier de uma função f será definida como: Escreveremos a 0 + a n cos nx + b n sen nx n=1 f 1 2 a n=1 a n cos nx + b n sen nx Para simbolizar o fato de que o lado direito é a série de Fourier de f. Exemplo 1. Seja f P C2π tal que fx = 1 se < x < 0 e fx = 1 se 0 x π. Os coeficientes a n e b n de f são a n = 1 ftcosntdt = 1 0 ftcosntdt + ftcosntdt = π π f tcosn tdt + ftcosntdt = 0 π π 0 b n = 2 ftsen ntdt = 2 sen ntdt = 2 π cos nx π π π n Se n for ímpar: Se n for par: Assim, a série de Fourier de f é: 0 b n = 4 π 0 b n = 0 1 n 4 + sen 2n 1x π 2n 1 n=1 O teste da integral nos revela que essa série não converge se x = 0 ou x = π. 0

11 1.3. CONVERGÊNCIA DA SÉRIE DE FOURIER 5 Figura 1.1: Somas Parciais da Série de Fourier para a função do Exemplo 1 Exemplo 2. Seja f P C2π tal que fx = x, se < x π. Integração elementar revela que a série de Fourier de f é: π cos 2n 1x π 2n 1 2 n=1 O teste M de Weierstrass nos garante que essa série converge uniformemente em R. 1.3 Convergência da série de Fourier Polinômio Trigonométrico Definição 4. Chamaremos de Polinômio Trigonométrico de grau n qualquer função T n x da forma abaixo: T n x = 1 2 α 0 + α k cos kx + β k sen kx Lema 3. Se f P C2π e T n é um polinômio trigonométrico de grau n, então f T n 2 2 = f 2 a 2 n 0 2 π 2 + a 2 k + b 2 k

12 6 +π a 0 α CAPÍTULO 1. SÉRIES DE FOURIER a k α k 2 + b k β k 2 onde a k e b k denotam os coeficientes de Fourier de f. Demonstração. f T n 2 2 = fx T n x 2 dx = fx 2 2T n xfx + T n x 2 dx = f = π α α 0 = π α e Assim T n x 2 dx = 1 2 α α k cos kx + β k sen kx dx n π α k cos kxdx + β k sen kxdx + αk 2 n T n xfxdx = α 0 2 cos kx 2 + β 2 k = π fxdx+ a 0 α T n xfxdx+ T n x 2 dx n 2 α k cos kx + β k sen kx dx sen kx 2 α n 0 = π 2 + αk 2 + βk 2 α k fxcos kxdx + β k fxsen kxdx a k α k + b k β k f T n 2 2 = f 2 a 0 α π 2 n α 0 +π a k α k + b k β k α 2 k + β 2 k Somando e subtraindo π a n a2 k + b2 k obtemos a fórmula desejada. O lema provado nos mostra que, fixados f e n, o polinômio trigonométrico de grau n que mais se aproxima de f na norma 2 é aquele onde os n α k e β k são escolhidos como os coeficientes de Fourier de f. Chamaremos esse polinômio de S n f. Inequação 1. Desigualdade de Bessel Se f P C2π, então n a 0 lim n 2 + a 2 k + b 2 k < 1 π f 2 2

13 1.3. CONVERGÊNCIA DA SÉRIE DE FOURIER 7 Demonstração. Do lema 3, segue que, para cada n N: a n a 2 k + b 2 k < 1 π f 2 2 Mas a série a esquerda é positiva, logo, pelo teorema da convergência monótona, o resultado está provado. Lema 4. Lema de Lebesgue-Riemann Se f P C2π então Demonstração. lim n ftsen n tdt = 0 Assim sen n t = sen ntcos t 2 + sen t cos nt 2 ftsen ntcos t 2 + ftsen t cos nt 2 Mas ftsen t 2 e ftcos t 2, são funções que, com a apropriada extensão, pertencem a P C2π. Assim, as integrais simbolizam os coeficientes de Fourier dessas funções e, pela Desigualdade de Bessel 1, vemos que os coeficientes de uma série de Fourier tendem a 0, quando n tende a infinito. Assim cada integral tende a 0 e o resultado está obtido Somas Parciais da Série de Fourier Para conseguirmos tratar os polinômios trigonométricos com mais facilidade, introduziremos o conceito de Núcleo de Dirichlet Definição 5. Núcleo de Dirichlet Lema 5. D n t = D n t = 1 n 2 + cos kt { sen t sen t 2, se 0 < t < π n + 1 2, se t = 0 Demonstração. Se z = e ikt e t 0, então D n t = 1 2 n k= n eikt, mas k= n e ikt = e int eit2n+1 1 e it 1 = ein+1t e int e it 1 = eitn+1/2 e itn+1/2 e it1/2 e it1/2

14 8 CAPÍTULO 1. SÉRIES DE FOURIER = senn + 1/2t sen t/2 Assim D n t = senn+1/2t 2sen t/2 Se t = 0, então D n t = n 1 = n Lema 6. Somas Parciais da Série de Fourier Se f P C2π, então as somas parciais S n f de sua série de Fourier são dadas por Demonstração. S n fx = 1 2 a 0 + = 1 2π 1 π ft + S n fx = 1 π = 1 π fx + td n tdt ftcosktdtcos nx + 1 π ftsenktdtsen kx 1 π ftcosktcos kx + senktsen kxdt π ft 1 n 2 + cos kx tdt Se t= x+s, usando o fato de que a função é periódica: Assim S n fx + s = 1 π S n fx = 1 π ft 1 n 2 + cos ksdt fx + td n tdt Teoremas de Convergência Teorema 2. Teorema da Convergência por Partes Seja f P C2π. Suponha que f tem derivada a direita e a esquerda no ponto c. Então, a série de Fourier de f converge para 1 2 lim x c + fc + lim x c fc no ponto c. Demonstração. Da idêntidade do Núcleo de Dirichlet Então 0 fx lim x c + 2π + fx π 1 n 2 + cos kt = cos kt dt = senn + 1/2t 2sen t/2 0 fx lim x c + π senn + 1/2t 2sen t/2

15 1.3. CONVERGÊNCIA DA SÉRIE DE FOURIER 9 Da mesma forma Assim, fx π fx lim = lim x c + 2 x c + π 0 fx 0 lim = x c 2 S n fc 1 2 lim x c + fx+ lim x c fx = 1 π Mas + 1 π 0 fx lim x c π fx + t limx c fx 2sen t/2 0 senn + 1/2t 2sen t/2 senn + 1/2t 2sen t/2 fx + t limx c + fx 2sen t/2 senn + 1/2t dt fx + t lim lim x c + fx fx + t lim = lim x c + fx t 0 + 2sen t/2 t 0 + t Ambos os limites existem separadamente e, logo = lim x c + f c t 2sen t/2 Assim podemos fazer uma extensão contínua no 0 de gx = fx+t lim x c + fx 2sen t/2, de forma que ela seja contínua por partes com g0 = lim x c + f c e gx = 0, se < x < 0. Um argumento similar ao utilizado no lema 4 nos mostra que as integrais tendem a 0 quando n. Logo lim S nfc = 1 n 2 lim fx + lim fx x c + x c senn + 1/2t dt

16 10 CAPÍTULO 1. SÉRIES DE FOURIER

17 Referências Bibliográficas [1] Lang, S.: Undergraduate Analysis, Undergraduate Texts in Mathematics, Springer [2] Rudin, W: Principles of Mathematical Analysis, McGraw-Hill Science/Engineering/Math;

18 12 REFERÊNCIAS BIBLIOGRÁFICAS

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 )

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 ) MAT456 - Cálculo Diferencial e Integral IV para Engenharia Escola Politecnica - a. Prova - 8// Turma A a Questão (,) a) Seja cos (t ) f(t) = t se t se t = Determine a expansão em série de potências para

Leia mais

Capítulo 4 Séries de Fourier

Capítulo 4 Séries de Fourier Capítulo 4 Séries de Fourier Dizemos que representamos uma função real ela se expressa na série em série de Fourier quando os coeficientes são chamados de coeficientes de Fourier. Claro, a série de Fourier

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções ortogonais e problemas de Sturm-Liouville Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Série de Fourier Soma de funções ortogonais entre si Perguntas: -existem outras bases ortogonais que podem

Leia mais

Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2)

Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2) Séries de Fourier Os fenómenos periódicos aparecem nas mais variadas situações: ondas de som, movimento da erra, batimento cardíaco,... Frequentemente uma função periódica pode ser representada por meio

Leia mais

ESPAÇOS VETORIAIS EUCLIDIANOS

ESPAÇOS VETORIAIS EUCLIDIANOS ESPAÇOS VETORIAIS EUCLIDIANOS Produto interno em espaços vetoriais Estamos interessados em formalizar os conceitos de comprimento de um vetor e ângulos entre dois vetores. Esses conceitos permitirão uma

Leia mais

Tópicos de Séries de Fourier e de Teoria de Aproximação. Dimitar K. Dimitrov

Tópicos de Séries de Fourier e de Teoria de Aproximação. Dimitar K. Dimitrov Tópicos de Séries de Fourier e de Teoria de Aproximação Dimitar K. Dimitrov Contents Preface 1 1 Aproximação em Espaços Lineares 3 1.1 Melhor Aproximação em Espaços Lineares Normados..... 3 1. Aproximação

Leia mais

Nome: Erick Bordallo Tavares. Turma: 14:00 às 16:00hs. Professor: Altair

Nome: Erick Bordallo Tavares. Turma: 14:00 às 16:00hs. Professor: Altair Nome: Erick Bordallo Tavares Turma: 14:00 às 16:00hs Professor: Altair 1. SÉRIES DE FOURIER 1.1. FUNÇÕES PERIÓDICAS Exemplo: Uma função f(x) é dita periódica com um período T se f(x+t) = f(x) para qualquer

Leia mais

3 Espaços com Produto Interno

3 Espaços com Produto Interno 3 Espaços com Produto Interno 3.1 Produtos Internos em Espaços Vetoriais Seja V um espaço vetorial. Um produto interno em V é uma função, : V V R que satisfaz P1) = v, u para todos u, v V ; P2) u, v +

Leia mais

COMPLEMENTOS DE MATEMÁTICA MÓDULO 1. Equações Diferenciais com Derivadas Parciais

COMPLEMENTOS DE MATEMÁTICA MÓDULO 1. Equações Diferenciais com Derivadas Parciais Complementos de Matemática 1 COMPLEMENTOS DE MATEMÁTICA MÓDULO 1 Séries de Fourier Equações Diferenciais com Derivadas Parciais Complementos de Matemática 2 Jean Baptiste Joseph Fourier (1768-1830) viveu

Leia mais

Notas Sobre Sequências e Séries Alexandre Fernandes

Notas Sobre Sequências e Séries Alexandre Fernandes Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ

Leia mais

PROVA EXTRAMUROS-MESTRADO (i) O tempo destinado a esta prova é de 5 horas.

PROVA EXTRAMUROS-MESTRADO (i) O tempo destinado a esta prova é de 5 horas. PROVA EXTRAMUROS-MESTRADO - 2016 NOME: IDENTIDADE (OU PASSAPORTE): ASSINATURA: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) A parte I (duas questões dissertativas) corresponde a 25%

Leia mais

Números Complexos. Professores Jorge Aragona e Oswaldo R. B. de Oliveira

Números Complexos. Professores Jorge Aragona e Oswaldo R. B. de Oliveira úmeros Complexos Professores Jorge Aragona e Oswaldo R. B. de Oliveira Capítulo ÚMEROS COMPLEXOS 2 Capítulo 2 POLIÔMIOS 3 Capítulo 3 SEQUÊCIAS E TOPOLOGIA 4 Capítulo 4 O TEOREMA FUDAMETAL DA ÁLGEBRA E

Leia mais

Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática

Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática Capítulo 2 Ortogonalidade e Processo de Gram-Schmidt Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves de Melo Disciplina: Álgebra Linear II Unidade II Aula

Leia mais

SÉRIES DE FOURIER. Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues. Ferreira Alves, Rafael Caveari Gomes

SÉRIES DE FOURIER. Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues. Ferreira Alves, Rafael Caveari Gomes SÉRIES DE FOURIER Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues Ferreira Alves, Rafael Caveari Gomes UFF - Universidade Federal Fluminense Neste artigo mostramos com diversos

Leia mais

Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos

Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos Mínimos quadrados Esmeralda Sousa Dias É frequente ser necessário determinar uma curva bem ajustada a um conjunto de dados obtidos experimentalmente. Por exemplo, suponha que como resultado de uma certa

Leia mais

Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março { 1 se 0 x < h f(x) = 0 se h x < 2π, Sf(x) =

Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março { 1 se 0 x < h f(x) = 0 se h x < 2π, Sf(x) = Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março 29 Exercício Seja f : R R uma função periódica tal que { se x < h f(x) = se h x

Leia mais

Séries de Fourier. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 4A

Séries de Fourier. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 4A Séries de Fourier Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke As séries de Fourier são a ferramente básica para se representar as funções periódicas, as quais desempenham um importante

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Análise Matemática II - 1 o Semestre 2001/2002 2 o Exame - 25 de Janeiro de 2001-9 h Todos os cursos excepto Eng. Civil,

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEE, LEIC-T, LEGI e LERC - o semestre - / de Junho de - 9 horas I ( val.). (5, val.) Determine o valor dos integrais: x + (i) x ln x dx (ii) (9 x )( + x ) dx (i) Primitivando

Leia mais

SUMÁRIO CAPÍTULO 1 CAPÍTULO 2

SUMÁRIO CAPÍTULO 1 CAPÍTULO 2 SUMÁRIO CAPÍTULO 1 NÚMEROS COMPLEXOS 1 Somas e produtos 1 Propriedades algébricas básicas 3 Mais propriedades algébricas 5 Vetores e módulo 8 Desigualdade triangular 11 Complexos conjugados 14 Forma exponencial

Leia mais

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Planificação Anual da Disciplina de Matemática 11.º ano Ano Letivo de 2016/2017 Manual adotado: Máximo 11 Matemática A 11.º ano Maria Augusta Ferreira

Leia mais

Notas de Aulas 3(Segunda Avaliação)-Produto Interno II Prof. Carlos Alberto S Soares

Notas de Aulas 3(Segunda Avaliação)-Produto Interno II Prof. Carlos Alberto S Soares Notas de Aulas 3(Segunda Avaliação)-Produto Interno II Prof. Carlos Alberto S Soares Neste capítulo, estaremos generalizando a noção de projeção ortogonal já desenvolvida em cursos anteriores. Definição

Leia mais

MAT 5798 Medida e Integração IME 2017

MAT 5798 Medida e Integração IME 2017 MAT 5798 Medida e Integração IME 2017 http://www.ime.usp.br/ glaucio/mat5798 Lista 11 - Integral de Bochner Fixemos um espaço de medida completo (X, M, µ) até o final desta lista. As duas primeiras questões

Leia mais

Prova de seleção ao Mestrado e/ou Programa de Verão. Programas: ICMC-USP, UFAL, UFRJ

Prova de seleção ao Mestrado e/ou Programa de Verão. Programas: ICMC-USP, UFAL, UFRJ Prova de seleção ao Mestrado e/ou Programa de Verão Programas: ICMC-USP, UFAL, UFRJ Nome: Identidade (Passaporte): Assinatura: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) 25 porcento

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LMAC/MEBIOM/MEFT o Teste (VA) - 8 de Janeiro de 8-8: às : Apresente todos os cálculos que efectuar. Não é necessário simplificar os resultados. As cotações indicadas somam

Leia mais

LISTA DE EXERCÍCIOS 1 - MATEMÁTICA 3 (CCM0213)

LISTA DE EXERCÍCIOS 1 - MATEMÁTICA 3 (CCM0213) LISTA DE EXERCÍCIOS - MATEMÁTICA 3 (CCM3) PROF: PEDRO T. P. LOPES WWW.IME.USP.BR/ PPLOPES/MATEMATICA3 Os exercícios a seguir foram selecionados do livro do Apostol e do Domingues Callioli Costa. Exercício.

Leia mais

Capítulo 7: Espaços com Produto Interno

Capítulo 7: Espaços com Produto Interno 7 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 7: Espaços com Produto Interno Sumário 1 Produto Interno.................... 178 2 Ângulos entre Vetores e

Leia mais

Topologia. Fernando Silva. (Licenciatura em Matemática, 2007/2008) 13-agosto-2018

Topologia. Fernando Silva. (Licenciatura em Matemática, 2007/2008) 13-agosto-2018 Topologia (Licenciatura em Matemática, 2007/2008) Fernando Silva 13-agosto-2018 A última revisão deste texto está disponível em http://webpages.fc.ul.pt/~fasilva/top/ Este texto é uma revisão do texto

Leia mais

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak Solução dos Exercícios Capítulo 0 Exercício 0.: Seja f k : [0, ] R a função definida por Mostre que f k (x) = lim j (cos k!πx)2j. { f k (x) = se x {/k!, 2/k!,..., }, 0 senão e que f k converge pontualmente

Leia mais

Lista 8 de Análise Funcional - Doutorado 2018

Lista 8 de Análise Funcional - Doutorado 2018 Lista 8 de Análise Funcional - Doutorado 2018 Professor Marcos Leandro 17 de Junho de 2018 1. Sejam M um subespaço de um espaço de Hilbert H e f M. Mostre que f admite uma única extensão para H preservando

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

1. Não temos um espaço vetorial, pois a seguinte propriedade (a + b) v = a v + b v não vale. De fato:

1. Não temos um espaço vetorial, pois a seguinte propriedade (a + b) v = a v + b v não vale. De fato: Sumário No que se segue, C, R, Q, Z, N denotam respectivamente, o conjunto dos números complexos, reais, racionais, inteiros e naturais. Denotaremos por I (ou id) End(V ) a função identidade do espaço

Leia mais

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,

Leia mais

Séries de Fourier. Matemática Aplicada. Artur M. C. Brito da Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2014/2015 1

Séries de Fourier. Matemática Aplicada. Artur M. C. Brito da Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2014/2015 1 Séries de Fourier Matemática Aplicada Artur M. C. Brito da Cruz Escola Superior de Tecnologia Instituto Politécnico de Setúbal 14/15 1 1 versão 16 de Dezembro de 17 Conteúdo 1 Séries de Fourier...............................

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

Uma condição necessária e suciente para integrabilidade de uma função real

Uma condição necessária e suciente para integrabilidade de uma função real Uma condição necessária e suciente para integrabilidade de uma função real Jonas Renan Moreira Gomes 1 e Fernanda S. P. Cardona (orientadora) 1 Instituto de Matemática e Estatística da Universidade de

Leia mais

Uma condição necessária e suciente para integrabilidade de uma função real

Uma condição necessária e suciente para integrabilidade de uma função real Uma condição necessária e suciente para integrabilidade de uma função real Jonas Renan Moreira Gomes 1 e Fernanda S. P. Cardona (orientadora) 1 Instituto de Matemática e Estatística da Universidade de

Leia mais

CAPÍTULO 9. Exercícios se. 01 e. Seja f( x) Temos. 1 n n n n n n. n n. A série de Fourier da função dada é: cos. nx 4

CAPÍTULO 9. Exercícios se. 01 e. Seja f( x) Temos. 1 n n n n n n. n n. A série de Fourier da função dada é: cos. nx 4 CAPÍTULO 9 Exercícios 9.. Ï0, x e. Seja f( x) Ìx, se x0 Ó, se 0x Temos È 0 f x dx x dx dx ( ) Í ( ) Î 0 È 0 ù an f x dx x dx dx ( ) cos Í Î ( ) cos cos ú 0 û n n n an È cos sen ù Ê cos ˆ ÎÍ n ûú Ë È 0

Leia mais

Conjunto Ortogonal de Vetores

Conjunto Ortogonal de Vetores Processo de Ortogonalização de Gram-Schmidt Seja V um espaço vetorial de dimensão finita, com produto interno,. Seja B = {v 1, v 2,..., v n } uma base qualquer de V. Sejam Processo de Ortogonalização de

Leia mais

A incompletude do espaço das funções integráveis segundo Riemann

A incompletude do espaço das funções integráveis segundo Riemann A incompletude do espaço das funções integráveis segundo Riemann José Carlos Santos Boletim da Sociedade Portuguesa de Matemática, Maio de 26 Introdução Considere-se o seguinte teorema clássico de Topologia,

Leia mais

MAT Cálculo Avançado - Notas de Aula

MAT Cálculo Avançado - Notas de Aula bola fechada de centro a e raio r: B r [a] = {p X d(p, a) r} MAT5711 - Cálculo Avançado - Notas de Aula 2 de março de 2010 1 ESPAÇOS MÉTRICOS Definição 11 Um espaço métrico é um par (X, d), onde X é um

Leia mais

35 a Aula AMIV LEAN, LEC Apontamentos

35 a Aula AMIV LEAN, LEC Apontamentos 35 a Aula 4.1.1 AMIV LEAN, LEC Apontamentos (icardo.coutinho@math.ist.utl.pt) 35.1 Série de Fourier na forma de exponenciais complexas Seja f definida em [, ], parasimplificar notação, integrável neste

Leia mais

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino 1 3 4 3 1 0 4 0 1 = Q 4 1 6 Qt Q t Q = 1 1 1 PULINUS Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino Departamento de Matemática

Leia mais

Lista de Exercícios da Primeira Semana Análise Real

Lista de Exercícios da Primeira Semana Análise Real Lista de Exercícios da Primeira Semana Análise Real Nesta lista, a n, b n, c n serão sempre sequências de números reais.. Mostre que todo conjunto ordenado com a propriedade do supremo possui a propriedade

Leia mais

MAT ÁLGEBRA LINEAR PARA ENGENHARIA II 1 a Lista de Exercícios - 2 o semestre de 2006

MAT ÁLGEBRA LINEAR PARA ENGENHARIA II 1 a Lista de Exercícios - 2 o semestre de 2006 MAT 2458 - ÁLGEBRA LINEAR PARA ENGENHARIA II 1 a Lista de Exercícios - 2 o semestre de 2006 1. Sejam u = (x 1, x 2 ) e v = (y 1, y 2 ) vetores de R 2. Para que valores de t R a funcão u, v = x 1 y 1 +

Leia mais

ÁLGEBRA LINEAR I - MAT Em cada item diga se a afirmação é verdadeira ou falsa. Justifiquei sua resposta.

ÁLGEBRA LINEAR I - MAT Em cada item diga se a afirmação é verdadeira ou falsa. Justifiquei sua resposta. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 2 a Lista de

Leia mais

1 Álgebra linear matricial

1 Álgebra linear matricial MTM510019 Métodos Computacionais de Otimização 2018.2 1 Álgebra linear matricial Revisão Um vetor x R n será representado por um vetor coluna x 1 x 2 x =., x n enquanto o transposto de x corresponde a

Leia mais

BOA PROVA! Respostas da Parte II

BOA PROVA! Respostas da Parte II Nome: Identidade (Passaporte: Assinatura: Instruções (i O tempo destinado a esta prova é de 5 horas. (ii 5 porcento da pontuação total é da parte I (Perguntas dissertativas. BOA PROVA! Respostas da Parte

Leia mais

Lista de exercícios para entregar

Lista de exercícios para entregar Lista de exercícios para entregar Nos problemas abaixo apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para

Leia mais

ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS

ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 11 1 Produto Interno 2 Módulo de um Vetor 3 Ângulo Entre Dois Vetores - Vetores

Leia mais

Análise de Sinais no Tempo Contínuo: A Série de Fourier

Análise de Sinais no Tempo Contínuo: A Série de Fourier Análise de Sinais no Tempo Contínuo: A Série de Fourier Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco

Leia mais

1, se t Q 0, se t R\Q

1, se t Q 0, se t R\Q 3.1 Mostre que a função valor absoluto f (x) = x é contínua em qualquer ponto x R. 3.2 Mostre que a função de Dirichlet ϕ : R R dada por: 1, se t Q ϕ (t) = 0, se t R\Q é descontínua em qualquer ponto t

Leia mais

Convergência em espaços normados

Convergência em espaços normados Chapter 1 Convergência em espaços normados Neste capítulo vamos abordar diferentes tipos de convergência em espaços normados. Já sabemos da análise matemática e não só, de diferentes tipos de convergência

Leia mais

Convergência de séries de Fourier

Convergência de séries de Fourier Recorde-se que: Convergência de séries de Fourier Sendo f uma função definida num intervalo a,b, excepto, eventualmente, num número finito de pontos, diz-se que f é seccionalmente contínua em a, b se:

Leia mais

Í ndice. Capítulo 1: Os Números Reais. Generalidades. Supremo e ínfimo de um conjunto. Exercícios. Sugestões e soluções. Desigualdade do triângulo

Í ndice. Capítulo 1: Os Números Reais. Generalidades. Supremo e ínfimo de um conjunto. Exercícios. Sugestões e soluções. Desigualdade do triângulo Í ndice Capítulo 1: Os Números Reais Generalidades Supremo e ínfimo de um conjunto e soluções Desigualdade do triângulo O princípio de indução e a desigualdade de Bernoulli. e soluções. Q é um conjunto

Leia mais

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica MT0146 - CÁLCULO PR ECONOMI SEMESTRE DE 016 LIST DE PROBLEMS Geometria nalítica 1) Sejam π 1 e π os planos de equações, respectivamente, x + y + z = e x y + z = 1. Seja r a reta formada pela interseção

Leia mais

PLANIFICAÇÃO A MÉDIO/LONGO PRAZO

PLANIFICAÇÃO A MÉDIO/LONGO PRAZO 018/019 DISCIPLINA: Matemática A ANO: 11º CURSO GERAL DE CIÊNCIAS E TECNOLOGIAS Total de aulas previstas: 15 Mês Unidades Temáticas Conteúdos Conteúdos programáticos Descritores N.º Aulas Avaliação Primeiro

Leia mais

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios MAT 2458 - Álgebra Linear para Engenharia II - Poli 2 ō semestre de 2014 1 ā Lista de Exercícios 1. Verifique se V = {(x, y) x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação

Leia mais

Departamento de Matemática da Universidade de Aveiro

Departamento de Matemática da Universidade de Aveiro Departamento de Matemática da Universidade de Aveiro ANÁLISE MATEMÁTICA II 7/8 Folha 4 - soluções: Séries de Fourier; notação complexa. Vamos mostrar que se f e g são funções periódicas de período T, fg

Leia mais

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016 1 a Lista de Exercícios de MAT3458 Escola Politécnica o semestre de 16 1 Para que valores de t R a função definida por (x 1, x ), (y 1, y ) = x 1 y 1 + tx y é um produto interno em R? Para cada par de

Leia mais

Cálculo avançado. 1 TOPOLOGIA DO R n LISTA DE EXERCÍCIOS

Cálculo avançado. 1 TOPOLOGIA DO R n LISTA DE EXERCÍCIOS LISTA DE EXERCÍCIOS Cálculo avançado 1 TOPOLOGIA DO R n 1. Considere o produto interno usual, no R n. ostre que para toda aplicação linear f : R n R existe um único vetor y R n tal que f (x) = x, y para

Leia mais

Faremos aqui uma introdução aos espaços de Banach e as diferentes topologías que se podem definir nelas.

Faremos aqui uma introdução aos espaços de Banach e as diferentes topologías que se podem definir nelas. Capítulo 2 Espaços de Banach Faremos aqui uma introdução aos espaços de Banach e as diferentes topologías que se podem definir nelas. 2.1 Espaços métricos O conceito de espaço métrico é um dos conceitos

Leia mais

Capı tulo 5: Integrac a o Nume rica

Capı tulo 5: Integrac a o Nume rica Capı tulo 5: Integrac a o Nume rica Capı tulo 5: Integrac a o Nume rica Sumário Quadratura de Fórmula para dois pontos Fórmula geral Mudança de intervalo Polinômios de Legendre Fórmula de Interpretação

Leia mais

SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por

SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por SÉRIES DE FOURIER 1. Um série trigonométric e su sequênci ds soms prciis (S N ) N são dds por (1) c n e inx, n Z, c n C, x R ; S N = n= c n e inx. Tl série converge em x R se (S N (x)) N converge e, o

Leia mais

( x)(x 2 ) n = 1 x 2 = x

( x)(x 2 ) n = 1 x 2 = x Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x

Leia mais

5.3 Séries (trigonométricas) de Fourier

5.3 Séries (trigonométricas) de Fourier Derivando termo a termo, obtemos (cosx) = ( 1) n x n 1 (n 1)! = ( 1) n+1 x n+1 (n+1)! n=0 = senx, x R. Analogamente também se obteria (senx) = n=0 ( 1) n xn (n)! = cosx, x R. Recorrendo às séries confirmamos

Leia mais

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda Daniel De modo intuitivo, uma função f : A B, com A,B R é dita contínua se variações suficientemente pequenas em x resultam em variações pequenas de f(x), ou equivalentemente, se para x suficientemente

Leia mais

Aula 25 - Espaços Vetoriais

Aula 25 - Espaços Vetoriais Espaço Vetorial: Aula 25 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado

Leia mais

Séries de Fourier. Victor Rios Silva

Séries de Fourier. Victor Rios Silva Séries de Fourier Victor Rios Silva victorrios@live.com Universidade Federal Fluminense (UFF) Instituto de Matemática (IM) Departamento de Matemática Aplicada (GMA) Rua Mário Santos Braga, S/N Valonguinho

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Escolas João de Araújo Correia ORGANIZAÇÃO DO ANO LETIVO 16 17 GESTÃO CURRICULAR DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA A 11º ANO 1º PERÍODO ---------------------------------------------------------------------------------------------------------------------

Leia mais

CÁLCULO 3-1 ō Semestre de 2009 Notas de curso: Séries Numéricas e Séries de Taylor

CÁLCULO 3-1 ō Semestre de 2009 Notas de curso: Séries Numéricas e Séries de Taylor UFPE CCEN DEPARTAMENTO DE MATEMÁTICA ÁREA II CÁLCULO 3 - ō Semestre de 29 Notas de curso: Séries Numéricas e Séries de Taylor Professor: Sérgio Santa Cruz Estas notas têm o objetivo de auxiliar o aluno

Leia mais

PLANIFICAÇÃO A MÉDIO/LONGO PRAZO

PLANIFICAÇÃO A MÉDIO/LONGO PRAZO 07/08 PLANIFICAÇÃO A MÉDIO/LONGO PRAZO DISCIPLINA: Matemática A ANO: º CURSO GERAL DE CIÊNCIAS E TECNOLOGIAS Total de aulas previstas: 53 Mês Unidades Temáticas Conteúdos Conteúdos programáticos Descritores

Leia mais

Espaços Vetoriais II

Espaços Vetoriais II Espaços Vetoriais II Juliana Pimentel juliana.pimentel@ufabc.edu.br http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 Espaço Vetorial C[a, b] Denotamos por C[a, b] o conjunto de

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Séries de Potências Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Séries de Potências Definição A série do tipo a n (x c) n é denominado de série de potências. Dado uma série de potências,

Leia mais

Os Teoremas Fundamentais do Cálculo

Os Teoremas Fundamentais do Cálculo Os Teoremas Fundamentais do Cálculo Manuel Ricou IST, 1 de Fevereiro de 2010 O que são os TFC s? Para já, um pretexto para discutirmos algumas das questões mais básicas e mais antigas da Matemática, Alguns

Leia mais

SÉRIES DE FOURIER. Felipe do Carmo Amorim. Fernando Soares Alves. Marcelo da Rocha Lopes. Engenharia Mecânica RESUMO

SÉRIES DE FOURIER. Felipe do Carmo Amorim. Fernando Soares Alves. Marcelo da Rocha Lopes. Engenharia Mecânica RESUMO SÉRIES DE FOURIER Felipe do Carmo Amorim Fernando Soares Alves Marcelo da Rocha Lopes Engenharia Mecânica RESUMO Apresentam-se no artigo que segue os conceitos sobre função periódica, séries trigonométricas,

Leia mais

Curso: Análise e Desenvolvimento de Sistemas. (Material de Nivelamentos,Conceitos de Limite, Diferencial e Integral)

Curso: Análise e Desenvolvimento de Sistemas. (Material de Nivelamentos,Conceitos de Limite, Diferencial e Integral) Curso: Análise e Desenvolvimento de Sistemas Disciplina Sistemas de Controle e Modelagem (Material de Nivelamentos,Conceitos de Limite, Diferencial e Integral) Prof. Wagner Santos C. de Jesus wsantoscj@gmail.com

Leia mais

Universidade Federal de Minas Gerais. Função de Weierstrass. Wesller Germano

Universidade Federal de Minas Gerais. Função de Weierstrass. Wesller Germano Universidade Federal de Minas Gerais Função de Weierstrass Wesller Germano Belo Horizonte, 2010 Wesller Germano Função de Weierstrass Monografia apresentada para conclusão do curso de Pós-Graduação em

Leia mais

Física Matemática II: Notas de aula

Física Matemática II: Notas de aula Física Matemática II: Notas de aula Rafael Sussumu Y. Miada Nessas notas, faremos uma introdução à teoria dos espaços métricos e normados, e aos operadores lineares em espaços normados. Os resultados obtidos

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

Álgebra linear A Primeira lista de exercícios

Álgebra linear A Primeira lista de exercícios Álgebra linear A Primeira lista de exercícios Prof. Edivaldo L. dos Santos (1) Verifique, em cada um dos itens abaixo, se o conjunto V com as operações indicadas é um espaço vetorial sobre R. {[ ] a b

Leia mais

ANÁLISE MATEMÁTICA II 2007/2008. Cursos de EACI e EB

ANÁLISE MATEMÁTICA II 2007/2008. Cursos de EACI e EB ANÁLISE MATEMÁTICA II 2007/2008 (com Laboratórios) Cursos de EACI e EB Acetatos de Ana Matos 1ª Parte Sucessões Séries Numéricas Fórmula de Taylor Séries de Potências Série de Taylor DMAT Ana Matos - AMII0807

Leia mais

Continuidade de processos gaussianos

Continuidade de processos gaussianos Continuidade de processos gaussianos Roberto Imbuzeiro Oliveira April, 008 Abstract 1 Intrudução Suponha que T é um certo conjunto de índices e c : T T R é uma função dada. Pergunta 1. Existe uma coleção

Leia mais

Propriedades das Funções Contínuas

Propriedades das Funções Contínuas Propriedades das Funções Contínuas Prof. Doherty Andrade 2005- UEM Sumário 1 Seqüências 2 1.1 O Corpo dos Números Reais.......................... 2 1.2 Seqüências.................................... 5

Leia mais

Espaços Vetoriais e Produto Interno

Espaços Vetoriais e Produto Interno Universidade Federal do Vale do São Francisco Engenharia Civil Álgebra Linear Prof o. Edson 1 o Semestre 1 a Lista de Exercícios 2009 Data: Sexta-feira 27 de Fevereiro Prof o. Edson Espaços Vetoriais e

Leia mais

Convergência das Séries de Fourier

Convergência das Séries de Fourier Convergência das Séries de Fourier Elton Gastardelli Kleis 6 de outubro de 010 1 1 Palavras-Chave Séries de Fourier, convergência de séries e convergência Resumo O objetivo do presente artigo é estudar

Leia mais

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

1 Séries de números reais

1 Séries de números reais Universidade do Estado do Rio de Janeiro - PROFMAT MA 22 - Fundamentos de Cálculo - Professora: Mariana Villapouca Resumo Aula 0 - Profmat - MA22 (07/06/9) Séries de números reais Seja (a n ) n uma sequência

Leia mais

Campos hamiltonianos e primeiro grupo de cohomologia de De Rham.

Campos hamiltonianos e primeiro grupo de cohomologia de De Rham. Campos hamiltonianos e primeiro grupo de cohomologia de De Rham. Ronaldo J. S. Ferreira e Fabiano B. da Silva 18 de novembro de 2015 Resumo Neste trabalho vamos explorar quando um campo vetorial simplético

Leia mais

AULA DE APOIO - 1 FÍSICA MATEMÁTICA I. A transformada de Fourier

AULA DE APOIO - 1 FÍSICA MATEMÁTICA I. A transformada de Fourier AULA DE APOIO - 1 FÍSICA MATEMÁTICA I A transformada de Fourier Assuntos da aula 1 Visão geral Motivações Linearidade e limitação uniforme 2 3 Translações, modulações, continuidade e etc. Física-Matemática.

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática. O Teorema de Arzelá. José Renato Fialho Rodrigues

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática. O Teorema de Arzelá. José Renato Fialho Rodrigues Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática O Teorema de Arzelá José Renato Fialho Rodrigues Belo Horizonte - MG 1994 José Renato Fialho Rodrigues O Teorema

Leia mais

MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas

MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos que uma função

Leia mais

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução

Leia mais

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados. 11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.10 Séries de Taylor e Maclaurin Copyright Cengage Learning. Todos os direitos reservados. Começaremos supondo

Leia mais

Apresente todos os cálculos e justificações relevantes

Apresente todos os cálculos e justificações relevantes Análise Matemática I 2 o Teste e o Exame Campus da Alameda 9 de Janeiro de 2006, 3 horas Licenciaturas em Engenharia do Ambiente, Engenharia Biológica, Engenharia Civil, Engenharia e Arquitectura Naval,

Leia mais