MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano)

Save this PDF as:

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano)"

Transcrição

1 MTMÁTI - 3o ciclo ircunferência - ângulos e arcos (9 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados a circunferência de centro no ponto e diâmetro [] e o trapézio isósceles [], inscrito na circunferência. 80 Sabe-se que a amplitude do arco é 80. etermina a amplitude, em graus, do ângulo. presenta todos os cálculos que efetuares. rova inal 3 o iclo 2017, Época especial 2. Na figura ao lado, estão representados dois triângulos, [] e [], inscritos numa circunferência. o triângulo [] é isósceles, sendo = ; a amplitude do arco é 60 ; o ponto pertence ao arco ; ˆ = 20 figura não está desenhada à escala. 20 etermina a amplitude, em graus, do ângulo presenta todos os cálculos que efetuares. 60 rova inal 3 o iclo 2017, 2 a chamada 3. Na figura ao lado, está representado um triângulo [], inscrito numa circunferência. Â = 40 ; a amplitude do arco é 120 ; o ponto pertence ao arco maior. figura não está desenhada à escala. etermina a amplitude, em graus, do ângulo. presenta todos os cálculos que efetuares. 40 rova inal 3 o iclo 2017, 1 a chamada ágina 1 de 13

2 4. Na figura ao lado, está representada uma semicircunferência de diâmetro []. pontos e pertencem à semicircunferência; o ponto é o ponto de intersecção dos segmentos de reta [] e []; Ê = 70. etermina a amplitude do arco. 70 rova inal 3 o iclo 2016, Época especial 5. Na figura seguinte, estão representadas duas circunferências, c 1 e c 2, tangentes no ponto. as circunferências c 1 e c 2 têm centro, respetivamente, no ponto 1 e no ponto 2 ; os pontos e pertencem à circunferência c 1 ; os pontos e pertencem à circunferência c 2 ; os pontos, e pertencem à reta 1 2 ; as retas e são paralelas. figura não está desenhada à escala. dmite que a amplitude do arco é igual a 110. c 2 c etermina a amplitude, em graus, do ângulo. rova inal 3 o iclo 2016, 2 a fase 6. Na figura seguinte, estão representados o triângulo escaleno [LMN], as semirretas Ṁ e Ṅ, bissetrizes dos ângulos LMN e MNL, respetivamente, e a circunferência inscrita no triângulo LMN. a reta M N é tangente à circunferência no ponto ; o ponto Q é a intersecção do segmento de reta [M ] com a circunferência. Sabe-se também que ˆMN = 15. Qual é a amplitude do arco Q? M Q L N () 70 () 75 () 80 () 85 rova inal 3 o iclo 2016, 1 a fase ágina 2 de 13

3 7. Na figura seguinte, está representada uma semicircunferência de centro no ponto e diâmetro [] ponto pertence à semicircunferência; o ponto pertence à corda [] o triângulo [] é retângulo em = 1 cm  = 25 figura não está desenhada à escala. Qual é a amplitude, em graus, do arco? rova inal 3 o iclo 2015, 2 a fase 8. Na figura seguinte, estão representados uma circunferência de centro no ponto e um triângulo isósceles [] os pontos, e pertencem à circunferência = [] é a altura do triângulo [] relativa à base [] a amplitude do arco é igual a 100 figura não está desenhada à escala. Qual é a amplitude, em graus, do ângulo? rova inal 3 o iclo 2015, 1 a fase 9. Na figura seguinte, estão representadas as retas e e a circunferência de diâmetro [] ponto pertence à circunferência e à reta a reta é tangente à circunferência no ponto = 50 = 8 cm 50 figura não está desenhada à escala. Qual é a amplitude, em graus, do arco? () 60 () 70 () 80 () 90 rova inal 3 o iclo 2014, 2 a chamada ágina 3 de 13

4 10. Na figura seguinte, está representada uma circunferência com centro no ponto s pontos, e pertencem à circunferência. ponto pertence à corda [] os segmentos de reta [] e [ ] são perpendiculares  = 65 = 1,6 cm figura não está desenhada à escala. Qual é a amplitude, em graus, do ângulo? () 65 o () 100 o () 130 o () 195 o rova inal 3 o iclo 2014, 1 a chamada 11. Na figura ao lado, está representada uma circunferência de centro no ponto. stão também representados o triângulo [ ] e o quadrado [], cujos vértices pertencem à circunferência. 60 a amplitude do ângulo é 60 o a amplitude do arco é 20 o etermina a amplitude, em graus, do arco 12. Na figura seguinte, está representada uma circunferência de centro no ponto Teste Intermédio 9 o ano os pontos, e pertencem à circunferência = o segmento de reta [] é a altura do triângulo [] relativa à base [] Ô = 72 = 2 cm Qual é a amplitude, em graus, do ângulo? rova inal 3 o iclo 2013, 2 a chamada ágina 4 de 13

5 13. Na figura seguinte, estão representados uma circunferência de centro no ponto e os triângulos [] e [] os pontos, e pertencem à circunferência [] é um diâmetro da circunferência o triângulo [] é retângulo em os triângulos [] e [] são semelhantes figura não está desenhada à escala. dmite que a amplitude do ângulo é igual a 36 o Qual é a amplitude do arco? () 9 o () 18 o () 36 o () 72 o rova inal 3 o iclo 2013, 1 a chamada 14. figura ao lado é uma fotografia de parte de uma tapeçaria feita com base num desenho de lmada Negreiros. figura seguinte, à esquerda, é uma representação dos dois pentágonos regulares que se podem observar nesta fotografia. Na figura da direita, está representada uma circunferência, na qual estão inscritos os dois pentágonos. s vértices dos dois pentágonos são vértices de um decágono regular. etermina a amplitude, em graus, do ângulo α assinalado na figura da direita. J α Mostra como chegaste à tua resposta. I Teste Intermédio 9 o ano ágina 5 de 13

6 15. Na figura seguinte, em cima, está representado um dos envelopes que a eatriz desenhou para os convites da sua festa de aniversário. Na figura seguinte, em baixo, está um modelo geométrico do mesmo envelope. [] é um trapézio isósceles o ponto é o ponto de interseção das diagonais do trapézio os pontos e são os pontos médios das bases do trapézio o ponto pertence ao segmento de reta [ ] e o ponto I pertence ao segmento de reta [ ] I é um arco de circunferência = 3,75 cm = 2,5 cm = 8 cm dmite que o arco I tem 128 de amplitude. etermina a amplitude, em graus, do ângulo I Sugestão: omeça por determinar a amplitude do ângulo Teste Intermédio 9 o ano Na figura seguinte, está representada uma circunferência de centro no ponto os pontos, e pertencem à circunferência as retas e são tangentes à circunferência nos pontos e, respetivamente o ponto pertence à reta dmite que Ô = Qual é a amplitude, em graus, do ângulo? () 35 o () 70 o () 140 o () 280 o etermina a amplitude, em graus, do ângulo rova inal 3 o iclo 2012, 2 a chamada ágina 6 de 13

7 17. Relativamente à figura ao lado, sabe-se que: o triângulo [] é escaleno e é retângulo em os pontos e pertencem ao segmento de reta [] o ponto pertence ao segmento de reta [] o triângulo [] é retângulo em o ponto Q pertence ao segmento de reta [] Q é um arco de circunferência figura não está desenhada à escala. Q dmite que a amplitude do ângulo é 37 etermina a amplitude, em graus, do arco Q rova inal 3 o iclo 2012, 1 a chamada 18. Na figura ao lado, estão representados um retângulo [] e uma circunferência de centro no ponto e raio r o ponto pertence à circunferência e é exterior ao retângulo [] [] e [ ] são diâmetros da circunferência o lado [] do retângulo é tangente à circunferência Ê = dmite que o perímetro do retângulo [] é igual a 30 cm etermina o comprimento da circunferência. presenta o resultado em centímetros, arredondado às décimas. Nota Sempre que, em cálculos intermédios, procederes a arredondamentos, conserva, no mínimo, duas casas decimais etermina a amplitude de uma rotação de centro em que transforme o ponto no ponto Teste Intermédio 9 o ano Na figura ao lado, está representado um modelo geométrico do símbolo da bandeira de uma equipa de futsal. ste modelo não está desenhado à escala.,,, e são pontos da circunferência de centro no ponto e são pontos da corda [] = = 16 cm  = 36 Qual é a amplitude do arco? () 36 o () 54 o () 72 o () 90 o xame Nacional 3 o iclo 2011, Ép. especial ágina 7 de 13

8 20. Na figura ao lado, está representada uma circunferência. figura não está desenhada à escala. os pontos,, e pertencem à circunferência; o ponto é o ponto de interseção das cordas [] e [] a amplitude do arco é 80 a amplitude do ângulo é 85 etermina a amplitude, em graus, do ângulo presenta os cálculos que efetuares xame Nacional 3 o iclo 2011, 2 a chamada 21. Na figura ao lado, está representada uma circunferência de centro no ponto os pontos,,, e pertencem à circunferência [] é um diâmetro da circunferência o ponto é a interseção dos segmentos de reta [] e [] Â = 40 figura não está desenhada à escala. 40 Qual é a amplitude, em graus, do arco? 22. Na figura seguinte, está representada uma circunferência de centro no ponto xame Nacional 3 o iclo 2011, 1 a chamada s pontos,,, e R pertencem à circunferência. a circunferência tem raio 8 = [ R] é um diâmetro da circunferência; o ponto Q é o ponto de intersecção dos segmentos [] e [ R] o ponto S é o ponto de intersecção dos segmentos [] e [ R] ˆ = 36 Q 36 8 S R Qual é a amplitude, em graus, do arco? Teste Intermédio 9 o ano ágina 8 de 13

9 23. Relativamente à figura ao lado, sabe-se que: [] é um quadrado de lado 4 e centro ; os pontos,, e são os pontos médios dos lados do quadrado []; I os vértices do quadrado [] são os centros das circunferências representadas na figura; o raio de cada uma das circunferências é 2; o ponto I pertence à circunferência de centro no ponto ; o ponto pertence ao segmento de reta [I] Qual é a amplitude, em graus, do ângulo I? etermina a área da região sombreada. presenta os cálculos que efetuaste. screve o resultado arredondado às décimas. Nota Sempre que, nos cálculos intermédios, procederes a arredondamentos, conserva duas casas decimais. xame Nacional 3 o iclo 2010, 2 a chamada 24. Na figura ao lado, está representada uma circunferência de centro, na qual está inscrito um retângulo [] figura não está desenhada à escala. ˆ = 70 = 4,35 cm Qual é a amplitude, em graus, do arco? xame Nacional 3 o iclo 2010, 1 a chamada 25. Na figura ao lado, está representada uma circunferência de centro, na qual está inscrito um hexágono regular [ ] Qual é a amplitude, em graus, do ângulo? Relativamente à figura ao lado, sabe-se ainda que: a circunferência tem raio 4; o triângulo [] tem área 4 3 etermina a área da região sombreada. screve o resultado arredondado às unidades. presenta os cálculos que efetuaste. Nota: Sempre que, nos cálculos intermédios, procederes a arredondamentos, conserva, no mínimo, duas casas decimais. Teste Intermédio 9 o ano ágina 9 de 13

10 26. Na figura ao lado, sabe-se que: o diâmetro [] é perpendicular ao diâmetro []; [] e [ ] são quadrados geometricamente iguais; o ponto é o centro do círculo; = 2 cm. screve, em graus, a amplitude do ângulo. xame Nacional 3 o iclo 2009, 2 a chamada 27. Na figura ao lado, sabe-se que: é o centro da circunferência; [] e [] são cordas geometricamente iguais; é o ponto de interseção do diâmetro [] com a corda []. Nota: figura não está construída à escala. Qual é, em graus, a amplitude do arco, supondo que ˆ = 28? xame Nacional 3 o iclo 2009, 1 a chamada 28. Na figura ao lado, está representada uma circunferência. [] é um diâmetro de comprimento 15. é um ponto da circunferência. = 12 Justifica que o triângulo [] é rectângulo em. Teste Intermédio 9 o ano Na figura ao lado, está representada uma circunferência de centro no ponto e diâmetro []. α ponto pertence à circunferência. etermina a amplitude, em graus, do ângulo α. β = 60 presenta os cálculos que efetuares. xame Nacional 3 o iclo 2008, 2 a chamada ágina 10 de 13

11 30. Num círculo de raio r, sejam d o diâmetro, o perímetro e a área. Qual das seguintes igualdades não é verdadeira? () r 2 = π () 2r = π () 2r = π () d = π xame Nacional 3 o iclo , 2 a chamada 31. Na figura ao lado está representada uma circunferência de centro, em que está inscrito um pentágono regular [ QRST ] Qual é a amplitude, em graus, do ângulo T Q? presenta todos os cálculos que efetuares a circunferência tem raio 5; o triângulo [SR] tem área 12. etermina a área da zona sombreada a cinzento na figura. presenta todos os cálculos que efetuares e indica o resultado arredondado às décimas. T S R Q Teste Intermédio 9 o ano Sejam, e, e três pontos distintos de uma circunferência em que o arco tem 180 de amplitude. Justifica a seguinte afirmação: triângulo [] não é equilátero. xame Nacional 3 o iclo , 2 a chamada 33. Na figura ao lado, está representada uma circunferência, de centro em que:,, e são pontos da circunferência; o segmento de reta [] é um diâmetro; é o ponto de interseção das retas e ; o triângulo [] é retângulo em ; Â = Qual é a amplitude, em graus, do arco (assinalado na figura a traço mais grosso)? Sem efetuares medições, explica por que é que a seguinte afirmação é verdadeira. s triângulos [] e [] são geometricamente iguais. 30 xame Nacional 3 o iclo , 1 a chamada 34. Na figura ao lado, está representada uma circunferência, de centro em que:,, e são pontos da circunferência; Â = 50 ; Ô = 60. Qual é, em graus, a amplitude do arco? xame Nacional 3 o iclo 2006, 2 a chamada ágina 11 de 13

12 35. Na figura seguinte, está representada uma circunferência, de centro em que:, e são pontos da circunferência; o segmento de reta [] é um diâmetro; Â = Qual é a amplitude do arco (em graus)? onsidera uma reta tangente à circunferência no ponto. Seja um ponto pertencente a essa reta. 30 Sabendo que o ângulo é agudo, determina a sua amplitude (em graus). Justifica a tua resposta. xame Nacional 3 o iclo 2005, 2 a chamada 36. Na figura ao lado, está representado um octógono regular [ ], inscrito numa circunferência de centro. o observar a figura, e sem efetuar medições, a na afirmou: quadrilátero [ ] é um quadrado. omo é que ela poderá ter chegado a esta conclusão? Justifica a tua resposta. xame Nacional 3 o iclo 2005, 2 a chamada 37. Na figura está representado um decágono regular [ IJ], inscrito numa circunferência de centro. J s segmentos de reta [I] e [] são diâmetros desta circunferência. o observar a figura, a Rita afirmou: amplitude do ângulo I é igual à amplitude do ângulo I. I Uma vez que a Rita não tinha transferidor, como é que ela poderá ter chegado a esta conclusão? Justifica a tua resposta. xame Nacional 3 o iclo 2005, 1 a chamada ágina 12 de 13

13 38. Quatro amigos encontraram-se para resolver um problema de Matemática que envolvia o cálculo do perímetro de um círculo com 10 cm de diâmetro. Na tabela que se segue, está indicado o valor que cada um obteve para o perímetro do círculo. Rita arlos João Sofia 31,4 cm 31,41 cm 31,42 cm 31,43 cm Qual dos quatro amigos obteve uma melhor aproximação do perímetro daquele círculo? () Rita () arlos () João () Sofia xame Nacional 3 o iclo 2005, 1 a chamada 39. roda gigante de uma feira de diversões tem 12 cadeiras, espaçadas igualmente ao longo do seu perímetro. diâmetro da roda é de 10 m, e a roda movese no sentido contrário ao dos ponteiros do relógio. J I K L Uma viagem na roda gigante consta de 6 voltas (rotações) completas. etermina o comprimento total do percurso efetuado pela cadeira da roda onde ia sentada a Rita, ao fim das 6 voltas completas. presenta o resultado arredondado aos metros Qual é a amplitude, em graus, do ângulo? rova de ferição 2004 ágina 13 de 13

MATEMÁTICA - 3o ciclo Circunferência (9 o ano)

MATEMÁTICA - 3o ciclo Circunferência (9 o ano) MTMÁTI - 3o ciclo ircunferência (9 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura seguinte, está representada uma semicircunferência de centro no ponto e diâmetro [] ponto pertence

Leia mais

MATEMÁTICA - 3o ciclo Circunferência (9 o ano)

MATEMÁTICA - 3o ciclo Circunferência (9 o ano) MTMÁTI - 3o ciclo ircunferência (9 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura seguinte, estão representadas duas circunferências com centro no ponto, uma de raio e outra de

Leia mais

MATEMÁTICA - 3o ciclo Figuras semelhantes (7 o ano)

MATEMÁTICA - 3o ciclo Figuras semelhantes (7 o ano) MTMÁTI - 3o ciclo Figuras semelhantes (7 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura seguinte, está representado o triângulo [], inscrito numa circunferência de centro no ponto

Leia mais

MATEMÁTICA - 3o ciclo Figuras semelhantes (7 o ano)

MATEMÁTICA - 3o ciclo Figuras semelhantes (7 o ano) MTMÁTI - 3o ciclo Figuras semelhantes (7 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura seguinte, estão representadas duas semirretas, Ȯ e Ȯ, e duas retas paralelas, r e s. a reta

Leia mais

MATEMÁTICA - 3o ciclo Figuras semelhantes (7 o ano)

MATEMÁTICA - 3o ciclo Figuras semelhantes (7 o ano) MTMÁTI - 3o ciclo iguras semelhantes (7 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura ao lado, está representado o triângulo [], retângulo em figura não está desenhada à escala.

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano)

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) MTMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados um cilindro e um prisma quadrangular regular [ ] de bases []

Leia mais

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano)

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) MTMÁTI - 3o ciclo Trigonometria (9 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados uma circunferência de centro no ponto e os pontos T, P,, M e figura

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano)

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) MTMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) xercícios de provas nacionais e testes intermédios 1. No transporte marítimo de gás, usam-se, frequentemente, navios com tanques esféricos. Na figura seguinte,

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano)

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) MTMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados uma circunferência de centro no ponto e os pontos T, P,, M

Leia mais

MATEMÁTICA - 3o ciclo Isometrias (8 o ano)

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) MTMÁTI - 3o ciclo Isometrias (8 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura ao lado, está representado um painel formado por seis azulejos quadrados todos iguais. m cada azulejo

Leia mais

Tema: Circunferência e Polígonos. Rotações

Tema: Circunferência e Polígonos. Rotações Nome: N.º: Turma: 9.º no Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência e Polígonos. Rotações 1. Na figura está representado um decágono regular [ BCDEFGHIJ

Leia mais

Escola Básica de Ribeirão (Sede) ANO LETIVO 2011/2012 Ficha de Trabalho Abril 2012 Nome: N.º: Turma: Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência

Leia mais

MATEMÁTICA - 3o ciclo Isometrias (8 o ano)

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) MTMÁTI - 3o ciclo Isometrias (8 o ano) ercícios de provas nacionais e testes intermédios 1. Na figura ao lado, está representada uma circunferência de centro no ponto figura não está desenhada à escala.

Leia mais

ESCOLA BÁSICA DE ALFORNELOS COMPILAÇÃO DE EXERCÍCIOS RETIRADOS DOS EXAMES NACIONAIS. Circunferência. Isometrias.

ESCOLA BÁSICA DE ALFORNELOS COMPILAÇÃO DE EXERCÍCIOS RETIRADOS DOS EXAMES NACIONAIS. Circunferência. Isometrias. ESCOLA BÁSICA DE ALFORNELOS Prof.ª Arminda Pereira COMPILAÇÃO DE EXERCÍCIOS RETIRADOS DOS EXAMES NACIONAIS Circunferência. Isometrias. 1. Na figura está representada uma semicircunferência de diâmetro

Leia mais

MATEMÁTICA - 3o ciclo Isometrias (8 o ano)

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) MTMÁTI - 3o ciclo Isometrias (8 o ano) ercícios de provas nacionais e testes intermédios 1. Na figura seguinte, está representado um esquema de parte de um pavimento que pode ser encontrado numa cidade

Leia mais

Escola Básica de Ribeirão (Sede) ANO LETIVO 2012/2013 Ficha de Trabalho Fevereiro 2013 Nome: N.º: Turma: Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência

Leia mais

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano)

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) MTMÁTI - 3o ciclo Trigonometria (9 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura seguinte, está representado um esquema de um baloiço num instante em que a cadeira do baloiço se

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9.º Ano Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9.º Ano Nome: N.º: Turma: 1. Coloca, na figura, pela letra conveniente, os elementos

Leia mais

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano)

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) MTMÁTI - 3o ciclo Trigonometria (9 o ano) xercícios de provas nacionais e testes intermédios 1. No Porto de Leixões, existe uma das maiores pontes basculantes do mundo. No esquema da figura seguinte (à

Leia mais

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução MTMÁT - 3o ciclo sometrias (8 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. omo a reflexão do ponto e eixo é o ponto a imagem do ponto pela translação associada ao

Leia mais

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução MTMÁT - 3o ciclo sometrias (8 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. Temos que: a reflexão do ponto relativamente ao eixo r é o ponto a translação do ponto

Leia mais

MATEMÁTICA A - 11o Ano Geometria - Produto escalar

MATEMÁTICA A - 11o Ano Geometria - Produto escalar MMÁI - 11o no Geometria - roduto escalar ercícios de eames e testes intermédios 1. onsidere, num referencial o.n., dois pontos distintos, e eja o conjunto dos pontos desse plano que verificam a condição.

Leia mais

Treino Matemático. 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? (A) (B) (C) (D)

Treino Matemático. 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? (A) (B) (C) (D) Treino Matemático ssunto: ircunferência e círculo. 6º ano Ficha de trabalho 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? () () () (). Na figura sabe-se a reta é tangente

Leia mais

MATEMÁTICA A - 11o Ano Geometria -Trigonometria

MATEMÁTICA A - 11o Ano Geometria -Trigonometria MTEMÁTI - 11o no Geometria -Trigonometria Eercícios de eames e testes intermédios 1. Na figura ao lado, está representada uma circunferência de centro no ponto e raio 1 os diâmetros [ e [ são perpendiculares;

Leia mais

MATEMÁTICA A - 11o Ano Geometria - Produto escalar

MATEMÁTICA A - 11o Ano Geometria - Produto escalar MTMÁTI - o no Geometria - roduto escalar ercícios de eames e testes intermédios. s segmentos de reta [] e [] são lados consecutivos de um heágono regular de perímetro 2 ual é o valor do produto escalar.?

Leia mais

MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o trapézio é isósceles, então BC = AD, pelo que também

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano)

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) MTMÁT - 3o ciclo Áreas e Volumes (9 o ano) xercícios de provas nacionais e testes intermédios 1. O centro geodésico de Portugal continental situa-se na Serra da Melriça, próximo de Vila de Rei. Nesse local,

Leia mais

CIRCUNFERÊNCIA E CÍRCULO

CIRCUNFERÊNCIA E CÍRCULO IRUNFRÊNI ÍRUL 01 ( FUVST) medida do ângulo ˆ inscrito na circunferência de centro é, em graus, ) 100 ) 110 ) 10 ) 15 35º 0 0 ( U ) bserve a figura. la mostra dois círculos de mesmo raio com centros em

Leia mais

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação: Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 19 de fevereiro de 2013 Nome: N.º Turma:

Leia mais

Ficha de Trabalho: Exames e Testes intermédios do 9º ano: Teorema de Pitágoras, áreas e volumes

Ficha de Trabalho: Exames e Testes intermédios do 9º ano: Teorema de Pitágoras, áreas e volumes Ficha de Trabalho: Exames e Testes intermédios do 9º ano: Teorema de Pitágoras, áreas e volumes 1. Considera a figura ao lado, onde: [ABFG] é um quadrado de área 36; [BCDE] é um quadrado de área 64; F

Leia mais

MATEMÁTICA - 3o ciclo Monómios e Polinómios (8 o ano)

MATEMÁTICA - 3o ciclo Monómios e Polinómios (8 o ano) MTMÁTI - 3o ciclo Monómios e Polinómios (8 o ano) xercícios de provas nacionais e testes intermédios 1. onsidera o prisma hexagonal regular HIJKL representado na figura seguinte. as arestas do prisma são

Leia mais

Teste Intermédio 2012

Teste Intermédio 2012 Teste Intermédio 01 1. Uma escola básica tem duas turmas de 9. ano: a turma e a turma. Os alunos da turma distribuem-se, por idades, de acordo com o seguinte diagrama circular. Idades dos alunos da turma

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes MTMÁTI - 12o no N o s omplexos - Potências e raízes xercícios de exames e testes intermédios 1. m, conjunto dos números complexos, seja z = 2i 1 i + 2i23 etermine, sem recorrer à calculadora, os números

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano)

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) MTMÁT - 3o ciclo Áreas e Volumes (9 o ano) xercícios de provas nacionais e testes intermédios 1. No transporte marítimo de gás, usam-se, frequentemente, navios com tanques esféricos. Na figura seguinte,

Leia mais

MATEMÁTICA - 3o ciclo Monómios e Polinómios (8 o ano)

MATEMÁTICA - 3o ciclo Monómios e Polinómios (8 o ano) MTMÁTI - 3o ciclo Monómios e Polinómios (8 o ano) ercícios de provas nacionais e testes intermédios 1. onsidera a igualdade ( 3) 2 = 2 + m + n, em que m e n são números reais. Para que valores de m e n

Leia mais

Ficha de Trabalho nº 1

Ficha de Trabalho nº 1 Matemática Nome: Setembro 0 º no Nº Turma: Parte I Escolha Múltipla No triângulo, 5 cm Sabemos ainda que 60 área do triângulo é: e 0 cm () 75 cm () 75 cm () 7, 5 cm () 50 cm No referencial on está representado

Leia mais

Escola Secundária/2,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9.

Escola Secundária/2,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9. Escola Secundária/,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 3/01/01 Circunferência e polígonos; Rotações. 9.º Ano Nome: N.º: Turma: 1. Coloca, na figura, pela letra conveniente,

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Figuras no plano Retas, semirretas e segmentos de reta Ângulos: amplitude e medição Polígonos: propriedades e classificação Círculo e circunferência: propriedades e construção Reflexão, rotação

Leia mais

Agrupamento de Escolas de Diogo Cão, Vila Real

Agrupamento de Escolas de Diogo Cão, Vila Real grupamento de scolas de iogo ão, Vila Real 2015/2016 MTMÁTI FIH TRLHO Nº 8 º PRÍOO MIO Nome: Nº Turma: 7º ata: 1 Observa o polígono da figura 2. fig. 2 1. 1) Indica o número de ângulos internos. 1. 2)

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a reta T P é tangente à circunferência no ponto T é perpendicular ao

Leia mais

Apresentam-se a seguir quatro igualdades. Apenas uma está correcta. Qual? (B) (D)

Apresentam-se a seguir quatro igualdades. Apenas uma está correcta. Qual? (B) (D) ESCOLA E. B. 2, 3 DE ALGOZ Matemática 9º ANO Ano Letivo 2011 /2012 Abril de 2012 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO DEPARTAMENTO MATEMÁTICA GEOMETRIA TAREFA Nº 5 9º ANO TURMA: Nº NOME: TRIGONOMETRIA

Leia mais

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução MTEMÁTI - o no Geometria -Trigonometria ropostas de resolução Eercícios de eames e testes intermédios. bservando que os ângulos e RQ têm a mesma amplitude porque são ângulos de lados paralelos), relativamente

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Teste de Avaliação 9 o D 30/05/017 Parte I - 30 minutos - É permitido o uso de calculadora Na resposta aos itens de escolha múltipla, seleciona

Leia mais

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 30 min (Parte 1) + 60 min (Parte 2) 12.04.2013 9.º Ano de Escolaridade

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo o triângulo [] é um triângulo retângulo em, (porque [EF GH] é paralelepípedo

Leia mais

Proposta de teste de avaliação Matemática 9

Proposta de teste de avaliação Matemática 9 Proposta de teste de avaliação Matemática 9 Oo Nome da Escola no letivo 0-0 Matemática 9.º ano Nome do luno Turma N.º Data Professor - - 0 PRTE Nesta parte é permitido o uso da calculadora.. Relativamente

Leia mais

3.º Ciclo do Ensino Básico. Duração da Prova: 90 minutos Tolerância: 30 minutos. 9 páginas. Prova modelo de Matemática. 3º ciclo do ensino básico

3.º Ciclo do Ensino Básico. Duração da Prova: 90 minutos Tolerância: 30 minutos. 9 páginas. Prova modelo de Matemática. 3º ciclo do ensino básico Prova modelo de Matemática 3.º Ciclo do Ensino Básico Duração da Prova: 90 minutos Tolerância: 30 minutos 9 páginas 2013 1 / 9 1. A família Antunes percebeu, depois de algumas análises, que a probabilidade

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/2.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30

Leia mais

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação: Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 25 de fevereiro de 2013 Nome: N.º Turma:

Leia mais

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 30 min (Parte 1) + 60 min (Parte 2) 12.04.2013 9.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de janeiro

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática. N DE ESLRIDDE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item

Leia mais

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I Escola Secundária com º ciclo D. Dinis 10º no de Matemática Geometria no Plano e no Espaço I Trabalho de casa nº 5 Estes trabalhos de casa, até ao fim do período, vão ser constituídos por exercícios propostos

Leia mais

Prova Escrita de Matemática. 3.º Ciclo do Ensino Básico. Prova 23/Época Especial. Duração da Prova: 90 minutos. Tolerância: 30 minutos.

Prova Escrita de Matemática. 3.º Ciclo do Ensino Básico. Prova 23/Época Especial. Duração da Prova: 90 minutos. Tolerância: 30 minutos. EXAME NACIONAL DO ENSINO BÁSICO Prova 23 / Época Especial / 2011 Decreto-Lei n.º 6/2001, de 18 de Janeiro A PREENCHER PELO ESTUDANTE Nome Completo Documento de Identificação BI n.º Emitido em ou CC n.º

Leia mais

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Trigonometria 1 (Revisões) 12.º Ano

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Trigonometria 1 (Revisões) 12.º Ano Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo de 00/04 Trigonometria 1 (Revisões) 1º no Nome: Nº: Turma: 1 Um cone, cuja base tem raio r e cuja geratriz tem comprimento l, roda

Leia mais

Prova Final ª chamada

Prova Final ª chamada Prova Final 01.ª chamada 1. Um saco contém várias bolas com o número 1, várias bolas com o número e várias bolas com o número. s bolas são indistinguíveis ao tato. Maria realizou dez vezes o seguinte procedimento:

Leia mais

T E S T E D E A V A L I A Ç Ã O GRUPO I VERSÃO 1

T E S T E D E A V A L I A Ç Ã O GRUPO I VERSÃO 1 1º T E S T E D E A V A L I A Ç Ã O COLÉGIO INTERNACIONAL DE Disciplina Matemática A VERSÃO 1 VILAMOURA INTERNATIONAL Ensino Secundário Ano 11º - A e B Duração 90 min SCHOOL Curso CCS e CCT Componente de

Leia mais

MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como a superfície esférica tem centro no ponto V e contém o ponto A, então

Leia mais

ATIVIDADES COM GEOPLANO CIRCULAR

ATIVIDADES COM GEOPLANO CIRCULAR ATIVIDADES COM GEOPLANO CIRCULAR Observações. O geoplano circular utilizado tem 24 pinos no círculo. Os pinos do geoplano circular são chamados de pontos. Os pontos do círculo são enumerados de 1 até 24

Leia mais

Exercícios de testes intermédios

Exercícios de testes intermédios Exercícios de testes intermédios 1. Qual das expressões seguintes designa um número real positivo, para qualquer x pertencente 3 ao intervalo,? (A) sin x cos x (B) cos x tan x tan x sin x sin x tan x Teste

Leia mais

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos) MATEMÁTICA 3º CICLO FICHA 16 Geometria regular inscrito numa circunferência Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) é uma figura plana limitada por segmentos de

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS) Na figura 1, BC é paralelo a DE e, na figura 2, GH é paralelo a IJ. x E y J a C H a (a) ab e a/b (b) ab e b/a (c) a/b e ab (d) b/a e ab (e) a/b e 1/b Então x e y valem,

Leia mais

NOÇÕES DE GEOMETRIA PLANA

NOÇÕES DE GEOMETRIA PLANA NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano)

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) MTMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura seguinte, estão representadas duas circunferências com centro no ponto, uma de raio e outra

Leia mais

BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome em ASSINATURA DO ESTUDANTE. Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL

BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome em ASSINATURA DO ESTUDANTE. Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL EXAME NACIONAL DE MATEMÁTICA 2005 9.º ANO DE ESCOLARIDADE / 3.º CICLO DO ENSINO BÁSICO A preencher pelo estudante NOME COMPLETO BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome

Leia mais

MATEMÁTICA - 3o ciclo Posição relativa de retas e planos (9 o ano)

MATEMÁTICA - 3o ciclo Posição relativa de retas e planos (9 o ano) MTMÁT - 3o ciclo Posição relativa de retas e planos (9 o ano) xercícios de provas nacionais e testes intermédios 1. onsidera o prisma hexagonal regular KL representado na figura seguinte. Relativamente

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30

Leia mais

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Teste de Avaliação 9 o A 24/05/2017 Parte I - 0 minutos - É permitido o uso de calculadora Na resposta aos itens de escolha múltipla, seleciona

Leia mais

Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 2011 Assunto: Preparação para o Exame Nacional

Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 2011 Assunto: Preparação para o Exame Nacional Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 011 Assunto: Preparação para o Exame Nacional 1. Copia o triângulo [ ABC ] para o teu caderno. Desenha o triângulo [ A '

Leia mais

9.º Ano. Escola EB 2,3 de Ribeirão (Sede) ANO LECTIVO 2009/2010

9.º Ano. Escola EB 2,3 de Ribeirão (Sede) ANO LECTIVO 2009/2010 Escola EB,3 de Ribeirão (Sede) ANO LECTIVO 009/010 Ficha Trabalho Circunferência, Trigonometria, Áreas e Volumes, Equações do º grau Maio 010 Nome: 1ª PARTE N.º: Turma: 9.º Ano 1. Observa a seguinte figura:

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30

Leia mais

BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL

BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL PROFESSOR: EQUIPE E TEÁTI O E QUESTÕES - GEOETRI - 8º O - ESIO FUETL ============================================================================ 01- Um polígono de 4 lados chama-se: () quadrado. () paralelogramo.

Leia mais

Proposta de Prova Final de Matemática

Proposta de Prova Final de Matemática Proposta de Prova Final de Matemática 3. o Ciclo do Ensino Básico Duração da Prova (CADERNO 1 + CADERNO ): 90 minutos Tolerância: 30 minutos Data: Caderno 1: 35 minutos. Tolerância: 10 minutos (é permitido

Leia mais

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO

BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO DOMÍNIO: Trigonometria e funções trigonométricas 1. Considera o triângulo PQR e as medidas apresentadas na figura ao lado. O comprimento do lado QR é: (A) 4 (C)

Leia mais

MATEMÁTICA A - 11o Ano Geometria - Equações de retas e planos

MATEMÁTICA A - 11o Ano Geometria - Equações de retas e planos MTMÁTI - 11o no Geometria - quações de retas e planos ercícios de eames e testes intermédios 1. Na figura ao lado, está representado, num referencial o.n., um cilindro de revolução de altura 3 o ponto

Leia mais

Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.

Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Nome: Ano / Turma: N.º: Data: - - Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou

Leia mais

Matemática A. Outubro de 2009

Matemática A. Outubro de 2009 Matemática A Outubro de 2009 Matemática A Itens 10.º Ano de Escolaridade No Teste intermédio, que se irá realizar no dia 29 de Janeiro de 2010, os itens de grau de dificuldade mais elevado poderão ser

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρe iα, onde: ρ = i i = + ) = tg α = = ; como

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação . Proposta de teste de avaliação Matemática 0. N E ESLRIE uração: 90 minutos ata: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρ cis α, onde: ρ = i i = + ) = tg α = = ;

Leia mais

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir.

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercícios Propostos Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercício 2: As bissetrizes de dois ângulos adjacentes AÔB e BÔC são,

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

(Z designa o conjunto dos números inteiros relativos) (retirado do Teste Intermédio de Matemática 9º Ano Maio 2011)

(Z designa o conjunto dos números inteiros relativos) (retirado do Teste Intermédio de Matemática 9º Ano Maio 2011) AGRUPAMENTO DE ESCOLAS N.º 1 DE SERPA ESCOLA BÁSICA DE PIAS TESTE DE AVALIAÇÃO DE MATEMÁTICA 9º ANO 3º Teste / Versão A / 30 de janeiro de 2013 A preencher pelo estudante Nome: N.ª: Ano: 9º Turma: Data:

Leia mais

Prova Final Matemática 9.º ano

Prova Final Matemática 9.º ano 2017 Preparação para a Prova Final Matemática 9.º ano Maria ugusta Ferreira Neves Luísa Faria 9 omo aceder gratuitamente aos conteúdos digitais? Vai a www.escolavirtual.pt e seleciona TIVR ÓIGS lica em

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [janeiro 2015]

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [janeiro 2015] Proposta de Teste Intermédio [janeiro 015] Nome: Ano / Turma: N.º: Data: - - GRUPO I Na resposta a cada um dos itens deste grupo, seleciona a única opção correta. Escreve, na folha de respostas: o número

Leia mais

1º Teste de Matemática A

1º Teste de Matemática A º Teste de Matemática.º no de Escolaridade VERSÃO 8Páginas uração da Prova: 0 minutos + 0 minutos de tolerância 8 de outubro de 0 Na sua folha de respostas, indique claramente a versão do teste. ausência

Leia mais

Prova Escrita de Matemática

Prova Escrita de Matemática PROVA FINAL DE CICLO A NÍVEL DE ESCOLA Decreto-Lei nº 139/2012, de 5 de julho Prova Escrita de Matemática 9.º Ano de Escolaridade Prova 82 / 1.ª Fase 16 Páginas Duração da Prova: Caderno 1-35 min ( tolerância:

Leia mais

Departamento de Matemática e Ciências Experimentais. Nome: N.º Data: /maio 2014

Departamento de Matemática e Ciências Experimentais. Nome: N.º Data: /maio 2014 Matemática 9.º Ano - 2013/2014 Agrupamento de Escolas de Carnaxide-Portela Departamento de Matemática e Ciências Experimentais Ficha de Trabalho n.º12 5.ª Ficha de Avaliação Nome: N.º Data: /maio 2014

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas

Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas 1. Observa as linhas seguintes. 1.1. Identifica: a) as linhas poligonais; b) as linhas poligonais simples; c) as linhas poligonais fechadas. 1.2. Das linhas poligonais, identifica as que definem: a) polígonos

Leia mais

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F.

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F. Módulo de Triângulo Retângulo, Lei dos Senos e ossenos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares 9 o ano.. Triângulo Retângulo, Lei dos Senos e ossenos, Polígonos Regulares. Relações

Leia mais

Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Teste de Matemática A 2018 / 2019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais