Introdução. (Eletrônica 1) GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima

Tamanho: px
Começar a partir da página:

Download "Introdução. (Eletrônica 1) GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima"

Transcrição

1 Introdução (Eletrônica 1) GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima

2 O que são sistemas eletrônicos? Sistemas elétricos, como os circuitos da sua casa, usam corrente elétrica para alimentar coisas como lâmpadas, aquecedores, ventiladores, etc. Os sistemas eletrônicos são sistemas que controlam a corrente elétrica, modificando suas flutuações, direção e tempo, de várias formas, para realizar uma série de funções, tais como: diminuir o brilho de lâmpada comunicar-se com satélites amplificar sons Sistema eletrônico A eletrônica do dimmer neste circuito controla o fluxo da corrente elétrica para a lâmpada.

3 Sistemas elétricos Sistemas eletrônicos

4 Por que estudar Eletrônica 1? Para entermos como manipular de forma adequada a corrente elétrica em sistemas que interagem, em nosso cotidiano, como usuários de sistemas computacionais: Amplificadores Interface de comunicação Conversão AD e DA Famílias lógicas Como gerar esta corrente elétrica? - Reação química - Força eletromagnética -

5 Sistemas eletrônicos Estes sistemas precisam de fontes de tensão e corrente constantes, ou seja, fontes que possam garantir a entrega de energia necessária para o funcionameto correto de um determinado circuito. Podemos assim definir dois conceitos importantes: Fonte de tensão Fonte de corrente

6 Fontes de alimentação Fonte de alimentação Para que qualquer circuito funcione adequadamente é necessário uma fonte de energia: Fonte de tensão Fornece uma tensão constante ao circuito conectado a ela. Fonte de corrente Fornece uma corrente constante ao circuito conectado a ela.

7 Fonte de tensão Fonte de tensão é um equipamento que fornece uma tensão constante ao circuito conectado a ele, independente de sua carga elétrica. Dizemos que uma fonte de tensão é ideal quando ela apresenta uma resistência interna igual a zero. Ou seja, apenas a corrente muda no circuito em função da carga R L. Uma fonte de tensão Real, no entanto, não pode fornecer uma corrente infinita quando sua carga vai para zero, uma vez que a mesma sempre possui uma pequena resistência interna. Não existe fonte de tensão capaz de fornecer uma corrente de valor infinito desde que toda fonte de tensão possui uma resistência interna I = V/R L V? + - R S R L 0 Ω V L < V

8 Fonte de tensão Real Características Deve possuir sempre uma resistência interna bem menor que a resistência de carga. Para fins de cálculo podemos desprezar está resistência interna da fonte quando a mesma é da ordem de 100 vezes menor que a resistência equivalente da carga do circuito. Exemplo: I = V/R L R L >> R S R S = 0,06 Ω V=12V + R L 6 Ω V L < V V L = 12 - IR S

9 Fonte de corrente Fonte de corrente é um equipamento que fornece uma corrente constante ao circuito conectado a ela, independente de sua carga elétrica. Dizemos que uma fonte de corrente é ideal quando ela apresenta uma resistência interna muito alta. Ou seja, apenas a tensão muda no circuito em função da carga R L Uma fonte de corrente Real fornece uma corrente quase constante quando o valor da resistência de sua carga é bem inferior a sua resistência interna. Como R L é bem menor que a resistência interna da fonte, a corrente quase não se altera no circuito (I constante) I = V/(R S +R L ) Constante V + R S R L << R S

10 Fonte de corrente Características Deve possuir sempre uma resistência interna bem maior (ideal seria R S -> ) que a resistência de carga. Para fins de cálculo podemos desprezar o valor da resistência de carga do circuito quando esta é da ordem de 100 vezes menor que a resistência interna da fonte. V=12V Exemplo: R S = 10 MΩ + I = 12 (10x10 6 +R L ) R L = 10KΩ Fonte de corrente Real (simbologia) R S

11 Fonte de corrente V=12V I R L (KΩ) I(µA) 0 1,200 R S (10M Ω) R L 1 1, , ,188 I = 12 µa (10x10 6 +R L ) I(µA) ,090 Ponto de 99% Região quase ideal 100 R L (KΩ)

12 Como obter fontes de alimentação DC? Bateria + - Fonte AC/DC AC Circuito retificador DC /± 220V V ac + - V dc

13 Fontes de alimentação AC-DC Uma fonte de alimentação DC a partir de uma fonte AC, no Brasil, significa retificar tensões que trabalham a 60 Hz (senoidal). Estas tensões podem aparecer em diferentes valores (220V, 110V, 12V, etc), dependendo do fator de redução aplicado. Em geral, os equipamentos eletrônicos trabalham a baixa tensão, o que implica na necessidade de um transformador para reduzir da tensão da rede, antes de se efetivar a retificação. Circuito retificador /± 220V V ac + - V dc

14 Transmissão de energia elétrica Transformador (eleva a tensão) A energia elétrica produzida nas usinas hidrelétricas é levada, mediante condutores de eletricidade, aos lugares mais adequados para o seu aproveitamento. Para o transporte da energia até os pontos de utilização, não bastam fios e postes. Toda a rede de distribuição depende estreitamente dos transformadores, que ora elevam a tensão, ora a reduzem. Transformador (baixa a tensão) Linhas de transmissão de alta tensão

15 O transformador espiras N 1 Voltagem primária espiras N 2 Voltagem secundária primário secundário I N 1 : N 2 1 I 2 V 1 V 2 carga Onde: N 2 = Número de espiras do secundário do transformador N 1 = Número de espiras do primário do transformador Considere que não há perda no circuito magnético do transformador (transformador ideal), ou seja, a potência de entrada é igual a potência de saída (P 1 =P 2 ). Se P 1 =P 2, então I 1 V 1 = I 2 V 2 => I 1 / I 2 = V 2 /V 1 ; Relação tensão/número de espiras em um transformador: como V 2 / V 1 =N 2 / N 1, então I 1 / I 2 = N 2 /N 1, ou seja, I 1 = (N 2 /N 1 ). I 2 e I 2 = (N 1 /N 2 ). I 1

16 Transformador Transformador isolador Este transformador se chama isolador porque separa galvanicamente a tensão de entrada da tensão de saída, através de dois enrolamentos totalmente separados, colocados em volta de um núcleo magnético que realiza a transferência de energia. O enrolamento da tensão de entrada é chamado de primário e o da tensão de saída, secundário. Auto-Transformador O transformador que só apresenta um enrolamento, onde o primário e o secundário são eletricamente conectados, é chamado de autotransformador.

17 Transformador X Auto-transformador Vantagens econômicas do Auto-transformador => transformador Economiza-se cobre, correspondente ao enrolamento secundário. No entanto é preciso aumentar o diâmetro do fio do primário, pois na parte comum (secundárioxprimário) circula a mesma corrente de antes. Ao suprimir-se um enrolamento, se reduz o núcleo magnético e portanto as perdas no ferro e o tamanho físico. Com perda menor, o rendimento também melhora. Desvantagens do Auto-transformador => transformador Os autotransformadores tem o inconveniente de manter eletricamente unidos os circuitos primário e secundário. Se houver um rompimento nas bobinas no secundário a tensão do primário fica igual a do secundário.

18 Tensão/Corrente Alternada (AC) Tensão/corrente alternada Corrente: i = I p sen(wt) Tensão: v = V p sen(wt + ø) Legenda: v - tensão instantânea i - corrente instantânea V p - tensão de pico I p - corrente de pico f - freqüência w - freqüência angular t - tempo ø - ângulo de fase T - período (1 / f)

19 Valores de tensão/corrente gerados Valor Eficaz ou valor RMS de uma corrente alternada é o valor equivalente a de uma corrente contínua que produz a mesma dissipação de calor em um resistor. V A razão média de calor produzido por uma corrente alternada durante um ciclo é dada por 2π P= (1/T) R.i(t) 2. dt 0 A razão média de calor produzido por uma corrente contínua na mesma resistência é dada por: P= R.I 2. I = Constante i(t) = alternada + - P= R.I 2 V R 2π P= (1/T) R.i(t) 2. dt 0 R

20 Valores de tensão/corrente gerados Assim: 2π R.I 2 = (1/T) R.i(t) 2. dt => I = (1/T) i(t) 2. dt = i(t) 2 médio 0 A corrente I define a corrente alternada em função da razão média de calor que ela produz em uma resistência e é chamado de valor médio quadrado (vmq ou rms), I rms. I rms = i(t) 2 médio

21 i(t) 2 i p (t) i(t) 2 médio i(t) 2 médio = I rms i(t) Se i = i(t) = i RI 2 = (1/T) R.i(t) 2. p sen(ωt), em termos de potência: dt, I 2 rms = (1/T) i p2 sen 2 (ωt) dt => I 2 rms = (1/T) i 2 p sen 2 (ωt) dt => I 2 rms = (1/T) i 2 p ((1/2-1/2.cos(2ωt)) dt => I rms 2 = (1/T) i p 2 [ ((1/2.T-1/4.sen 2 (2π/T)) ] => I rms 2 = i p (t) 2 /2 I rms = i p (t)/ 2 Valor Eficaz ou valor RMS

22 Valores de tensão gerados Corrente e tensão eficazes: I rms = i p (t)/ 2 V rms = V p (t)/ 2 Tensão Eficaz (ou RMS-Root-Mean-Square)= 0,707 do valor máximo (tensão de pico), ou seja, 70%. Geralmente, quando se fala de uma corrente ou tensão alternada, fazse referência ao seu valor eficaz. A corrente e tensão alternadas medidas por um amperímetro representam seus valores eficazes. Os medidores indicam comumente valores eficazes (ou RMS). o Tensão e corrente eficazes ainda são alternadas. Como então podemos gerar tensão e corrente contínuas para alimentar nossos circuitos eletrônicos? AC Circuito retificador DC /± 220V V ac + - V dc

23 Programa do curso Introdução (conceitos) Fonte de tensão Fonte de Corrente Resistores/capacitores (revisão) Diodos Diodo de retificação Diodo Zener Aplicações Transistor bipolar Polarização, amplificadores, seguidor de emissor,... Famílias lógicas: DL, DTL, TTL, CMOS Amplificadores Operacionais e aplicações Conversões AD e DA Instrumentação/ferramentas Osciloscópio Digital Fontes de alimentação Gerador de funções Multímetro Digital Ferramenta de CAD (Multsim) Laboratórios Projetos do curso Dois Exercícios escolares

24 Programa do curso Aplicações/projetos 1a unidade Fontes de alimentação amplificador 2a Unidade Conversores A/D e D/A Interfaces Projeto da disciplina Casa Inteligente/granja Avaliação 2 Unidades Cada unidade: 1 exercício teórico 1 exercício prático 1 Projeto Laboratórios (listas) Referências 1. Eletrônica, Malvino, Vol I e Vol II, 4 a Edição, Pearson Education Makron Books, Dispositivos Eletrônicos e Teoria de circuitos, Robert L. Boylestad, Loius Nashelsky, 8 a edição, Pearson Education Prentice Hall, Microeletrônica, Kenneth C Smith, Adel S. Sedra, 4ª edição.

25 Retificação de tensão Existem várias formas de retificação de onda alternada para contínua, dentre elas a retificação utilizando diodos, dispositivos semicondutores que permitem a pssagem da corrente elétrica por seu corpo em uma só direção. Dentre as formas de retificação podemos destacar: Retificação de meia onda Retificação de completa com tap central Retificação de onda completa em ponte

26 Retificação de meia onda Um dispositivo capaz de converter uma onda senoidal (cujo valor médio é zero) em uma forma de onda unidirecional, com uma componente não zero, é chamado retificador. N 1 : N 2 5 : 1 V 1 (rms) V 2 (rms) R L V dc =? π 2π α=ϖt V(volts) V p 0 π 2π α=ϖt

27 Retificação de meia onda N 1 : N 2 5 : 1 1N4001 V 1 = 120V rms V 2 = 24 V rms R L V dc =? Tensão de pico no primário: V p1 = Vrms. 2 => (120.1,414) V = 170 V Tensão de pico no secundário: V p2 = (N 2 / N 1 ). V p1 = (1/5) V A freqüência do sinal de meia onda é igual à freqüência da linha: f = 60 Hz, T= 1/f = 16,7 ms Considere que o diodo é um diodo ideal

28 N 1 : N 2 5: 1 1N4001 Retificação em meia onda T = 16.7 ms V 1 = 120V rms V 2 = 24 V rms R L V dc =10,8 V T/2 T V(volts) T = 16.7 V 2 V(volts) = 16.7 V t(ms) t(ms) - 34 O valor médio de uma função periódica é dado por V dc = (1/T). V(t)dt, ou seja, a área de um ciclo (área da meia onda) dividido pela base (T= 2 π ) V dc = (1/T) V(t)dt, T=2 π. para meia onda (onda retificada): T/2 V dc =(1/T) V p sen(wt). dt = V p /π = 0,318 Vp. 0 Assim, V dc = 0,318.(34)V = 10,8 V Freqüência: f=1/t = 1/16.7 ms = 60 Hz

29 V(volts) 170 Fator de ondulação = 16.7 Retificação em meia onda T = 16.7 ms t(ms) N 1 : N 2 5 : 1 1N4001 T/2 T V 1 = 120V rms V 2 = 24 V rms R L V dc = Vp/π = 0,318 Vp = 10,8 V Fator de Ondulação(F.O) é dado por: tensão de pico/ valor médio da tensão retificada= Vp/(V p /π) = π

30 Retificação de onda completa Devido ao tap central da saída de baixa do transformador, o circuito é equivalente a dois retificadores de meia onda. O retificador inferior retifica o semiciclo negativo (D2) e o retificador superior o semiciclo positivo (D1). Ou seja, D1 conduz durante o semiciclo positivo e D2 durante o semiciclo negativo. N 1 : N 2 5 : 1 + 1N4001 =12V V 1 = 120V - + =12V R L V dc 24 V - 1N4001 As duas tensões V 1 e v 2 são idênticas

31 N 1 : N 2 5 : 1 1N4001 (f 2 = 120Hz) V 1 = 120V (f 1 = 60Hz) R L V dc =10,4V 17V 1N Tensão de pico no primário: V p1 = (120.1,414) V = 170 V diodo - Tensão de pico no secundário: V p2 = (N 2 / N 1 ). V p1 = (1/5) V (total) - Como a tomada central está aterrada, cada semiciclo do enrolamento secundário tem uma tensão senoidal de pico com um valor de 17V. - O valor cc (V dc ) ou médio da tensão de saída(carga), considerando o tap central é dado por: V dc = 2.(V p /π) = 0,636 V p = 10,8V A freqüência do sinal de meia onda na saída (tensão retificada) agora é dada por: f 2 = 2.f 1 = 2. (60 Hz), T 2 = 1/f 2 = 16,7/2 = 8,33 ms Fator de ondulação = V p /(2.V p /π) = π/2

32 Retificação de onda completa em ponte Construção que também retifica a onda nos dois sentidos, só que diferentemente do circuito com dois diodos, este modelo utiliza um trafo sem tap central (tomada central aterrada). A vantagem de não usarmos a tomada central é que a tensão retificada na carga é o dobro daquela que teria o retificar de onda completa com tomada central. 24 V V 1 = 120V (6OhZ) D 1 D 2 D 4 D 3 V

33 170V 34 V -170V Tensão reversa Tensão reversa

34 D 1 D 2 D 4 34V D 3 V Neste tipo de retificador a tensão de pico V p saída é dada por: V p = 24/0.707 = 34 V Considerando os dois diodos em série, temos que a tensão de pico na carga é dada por V p 2.(0.7) = 32,6 V Vantagens deste modelo: 1. saída em onda completa 2. Tensão ideal de pico igual a tensão de pico no secundário 3. Não necessidade de tomada central no enrolamento secundário. - O valor cc (V dc ) ou médio da tensão de saída(carga) é dado por: V dc = 2.(V p /π) = 0,636 V p.observe que a tensão de pico aqui é duas vezes a tensão de pico na retificação com tap central. Obs: A freqüência do sinal de meia onda na saída (tensão retificada) agora é dada por: f 2 = 2.f 1 = 2. (60 Hz), T 2 = 1/f 2 = 16,7/2 = 8,33 ms Fator de ondulação V p /(2.V p /π) = π/2

35 Comparação dos métodos de retificação (Tap central) Obs: V p na retificação em ponte é igual ao dobro do valor de V p para as retificação meia onda e onda completa com tap central.

36 Reduzindo Fator de ondulação - filtro Tensão de ondulação Redução do F.O através da introdução de um capacitor em paralelo com a carga do circuito T r = tensão de ondulação (ripple)(pico a pico) T p = tempo entre picos na tensão de saída Funcionamento: 1. Inicialmente o capacitor está descarregado. 2. Durante o primeiro meio ciclo da tensão do secundário o diodo está conduzindo permitindo que o secundário carregue o capacitor até a tensão de pico. 3. Logo após, no ciclo negativo, o diodo pára de conduzir, o que significa uma chave aberta. Neste estágio, o capacitor, como tem uma tensão V p polariza inversamente o diodo e começa a descarregar-se na carga (R l ). 4. O que devemos pensar é em torno da constante de tempo de descarga do capacitor, que é função de R l e de C. Esta constante deve ser bem maior que o período T do sinal de entrada. Assim, o capacitor só de descarregará um pouco até o próximo ciclo.

37 Capacitor curva de carga Equação de carga do capacitor V Em t = RC V 0 V 0 V 0 Em t = 2RC 0,86V 0 V 0 0,63 V 0

38 Equação de descarga do capacitor V o V V o

39 V max T 1 -T 2 A voltagem entre os tempos T1 e T2 se comporta como na descarga do capacitor, dada por: V min A voltagem de ondulação é definida como a voltagem entre Vmax e Vmin: V r (pp) = V max -V min = V max (1- e - (T 2 -T 1 ) RC ) Se a capacitância é grande, RC >> T2-T1, podemos aproximar a exponencial como Assim, Desde que T2-T1 T/2, onde T é o período da onda senoidal, então a tensão de ondulação na retificação de onde completa é dada por: => V r (pp) = V max T/2RC=V max /2fRC

40 Fator de ondulação Retificação em meia onda T = 16.7 ms V max V min Para um circuito com retificação de meia onda V r (pp) = V max /frc

41 Circuito retificador em ponte A tensão de saída da fonte, levando-se em conta uma ponte retificadora: Existe dois diodos ligados em série, cada um com 0,7V de queda de tensão. V dc = V p 1.4V Se considerarmos a ondulação em nossos cálculos podemos estimar que: V cc (com ondulação) = V cc (sem ondulação) V r ( pp )/2 Este é um valor médio utilizado na prática. O valor de pico a pico da tensão de ondulação é menor que 10% do valor de pico.

42 Circuito retificador em ponte Corrente cc média no diodo em uma ponte retificadora é dada por: I D = 0,5.I L Isto ocorre porque cada diodo conduz durante um semi-ciclo. Assim, por exemplo, para um diodo que suporta 1 A, a carga máxima do circuito deveria ser de 2 A. Tensão de pico reversa no diodo que não estiver em condução. PIV = V p2 Corrente de surto Corrente existente quando da ligação do equipamento, quando o capacitor está descarregado. O diodo deve suportar uma corrente de pico em um tempo determinado. Se o capacitor for, em geral,menor que µf, a corrente de surto é geralmente muita rápida para danificar o diodo. Se o capacitor for superior a µf, necessitando de vários ciclos até sua carga, ele pode danificar o diodo.

43 Tutorial Projetar uma fonte de tensão com as seguintes características: Tensão: 9*1.414 = V DC (Trafo: 220/18V (9V-0-9V)) Retificação onda completa com tap central Corrente máxima = 100mA (plena carga) Retificação: Ondulação máxima menor que 5%V max Considerar apenas a retificação com capacitores Obs: Utilizar a retificação onda completa Demonstrar projeto no Multsim Material disponível Transformador 220/18 V (com tap central (9V-0V-9V)) Diodos retificadores 1N4001 Capacitor (a ser especificado) Carga para teste

44 Cálculos Cálculo dos componentes: Capacitor retificador: Dado que o valor de ripple é 5% do valor de pico, temos que: V r (pp)=v max /2fRC V r (pp)= 5% de V max => V r (pp) = 0.635V Assim, o valor da capacitância da fonte pode ser dado por: C = V max /(2fRV r (pp)) Onde: f= 60 Hz R(carga máxima) V/I = (12.76/100*10-3 )Ω = Ω Vmax = 12.76V Daí: C = 12.76/(2*60*127.6*0.635) = F 1312 µf * Utilizamos o valor comercial de 1500µF

45 Conversão AC DC - Exemplo Inversão de fase

46 Conversão AC - DC Vr(pp) Canal B (ripple) Canal B Canal A

47 Revisão

Eletrônica Diodo 01 CIN-UPPE

Eletrônica Diodo 01 CIN-UPPE Eletrônica Diodo 01 CIN-UPPE Diodo A natureza de uma junção p-n é que a corrente elétrica será conduzida em apenas uma direção (direção direta) no sentido da seta e não na direção contrária (reversa).

Leia mais

Introdução. (Eletrônica 1) GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima

Introdução. (Eletrônica 1) GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima Introdução (Eletrônica 1) GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima Programa do curso Introdução (conceitos) Fonte de tensão Fonte de Corrente Resistores/capacitores (revisão) Diodos Diodo de retificação

Leia mais

Introdução (Eletrônica 1)

Introdução (Eletrônica 1) Introdução (Eletrônica 1) GRECOCINUFPE Prof. Manoel Eusebio de Lima Programa do curso! Primeira Unidade Introdução (revisão) Sistemas elétricos x Sistema eletrônicos Fonte de tensão Fonte de Corrente Transformador/autotransformador

Leia mais

Introdução. GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima

Introdução. GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima Introdução GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima Programa do curso Introdução (conceitos) Fonte de tensão Fonte de Corrente Teorema de Thevenin Teorema de Norton Resistores/capacitores (revisão)

Leia mais

I Retificador de meia onda

I Retificador de meia onda Circuitos retificadores Introdução A tensão fornecida pela concessionária de energia elétrica é alternada ao passo que os dispositivos eletrônicos operam com tensão contínua. Então é necessário retificá-la

Leia mais

www.corradi.junior.nom.br - Eletrônica Básica - UNIP - Prof. Corradi Informações elementares - Projetos práticos. Circuitos retificadores

www.corradi.junior.nom.br - Eletrônica Básica - UNIP - Prof. Corradi Informações elementares - Projetos práticos. Circuitos retificadores www.corradi.junior.nom.br - Eletrônica Básica - UNIP - Prof. Corradi Informações elementares - Projetos práticos. Circuitos retificadores Introdução A tensão fornecida pela concessionária de energia elétrica

Leia mais

EXPERIÊNCIA Nº 2 1. OBJETIVO

EXPERIÊNCIA Nº 2 1. OBJETIVO Universidade Federal do Pará - UFPA Faculdade de Engenharia da Computação Disciplina: Laboratório de Eletrônica Analógica TE - 05181 Turma 20 Professor: Bruno Lyra Alunos: Adam Dreyton Ferreira dos Santos

Leia mais

MAF 1292. Eletricidade e Eletrônica

MAF 1292. Eletricidade e Eletrônica PONTIFÍCIA UNIERIDADE CATÓICA DE GOIÁ DEPARTAMENTO DE MATEMÁTICA E FÍICA Professor: Renato Medeiros MAF 1292 Eletricidade e Eletrônica NOTA DE AUA II Goiânia 2014 Diodos Retificadores Aqui trataremos dos

Leia mais

Instituição Escola Técnica Sandra Silva. Direção Sandra Silva. Título do Trabalho Fonte de Alimentação. Áreas Eletrônica

Instituição Escola Técnica Sandra Silva. Direção Sandra Silva. Título do Trabalho Fonte de Alimentação. Áreas Eletrônica Instituição Escola Técnica Sandra Silva Direção Sandra Silva Título do Trabalho Fonte de Alimentação Áreas Eletrônica Coordenador Geral Carlos Augusto Gomes Neves Professores Orientadores Chrystian Pereira

Leia mais

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 TUTORIAL Fonte Estabilizada de 5 Volts Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 PdP Pesquisa e Desenvolvimento de Produtos http://www.maxwellbohr.com.br

Leia mais

Concurso Público para Cargos Técnico-Administrativos em Educação UNIFEI 13/06/2010

Concurso Público para Cargos Técnico-Administrativos em Educação UNIFEI 13/06/2010 Questão 21 Conhecimentos Específicos - Técnico em Eletrônica Calcule a tensão Vo no circuito ilustrado na figura ao lado. A. 1 V. B. 10 V. C. 5 V. D. 15 V. Questão 22 Conhecimentos Específicos - Técnico

Leia mais

CONVERSORES E CONTROLADORES DE FASE. Circuitos de retificação monofásicos

CONVERSORES E CONTROLADORES DE FASE. Circuitos de retificação monofásicos CONVERSORES E CONTROLADORES DE FASE Um conversor é um equipamento utilizado para converter potência alternada em potência contínua. Num conversor simples, que usa somente diodos retificadores, a tensão

Leia mais

Eletrônica Básica - Curso Eletroeletrônica - COTUCA Lista 4 Análise de circuitos a diodos c.a.

Eletrônica Básica - Curso Eletroeletrônica - COTUCA Lista 4 Análise de circuitos a diodos c.a. Eletrônica Básica - Curso Eletroeletrônica - COTUCA Lista 4 Análise de circuitos a diodos c.a. 1. A Figura abaixo apresenta o oscilograma da forma de onda de tensão em um determinado nó de um circuito

Leia mais

Circuitos Retificadores

Circuitos Retificadores Circuitos Retificadores 1- INTRODUÇÃO Os circuito retificadores, são circuitos elétricos utilizados em sua maioria para a conversão de tensões alternadas em contínuas, utilizando para isto no processo

Leia mais

Eletrônica Aula 07 CIN-UPPE

Eletrônica Aula 07 CIN-UPPE Eletrônica Aula 07 CIN-UPPE Amplificador básico Amplificador básico É um circuito eletrônico, baseado em um componente ativo, como o transistor ou a válvula, que tem como função amplificar um sinal de

Leia mais

Circuitos com Diodos. Eletrônica I Alexandre Almeida Eletrônica dos Semicondutores.

Circuitos com Diodos. Eletrônica I Alexandre Almeida Eletrônica dos Semicondutores. Circuitos com Diodos Eletrônica I Alexandre Almeida Eletrônica dos Semicondutores. O TRANSFORMADOR DE ENTRADA As companhias de energia elétrica no Brasil fornecem.umatensão senoidal monofásica de 127V

Leia mais

Aula 4 Corrente Alternada e Corrente Contínua

Aula 4 Corrente Alternada e Corrente Contínua FUNDMENTOS DE ENGENHI ELÉTIC PONTIFÍCI UNIVESIDDE CTÓLIC DO IO GNDE DO SUL FCULDDE DE ENGENHI ula 4 Corrente lternada e Corrente Contínua Introdução Corrente lternada e Corrente Contínua Transformadores

Leia mais

Corrente Alternada Transformadores Retificador de Meia Onda

Corrente Alternada Transformadores Retificador de Meia Onda Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Eletrônica Básica e Projetos Eletrônicos Corrente Alternada Transformadores Retificador de Meia Onda Clóvis Antônio Petry,

Leia mais

DIAGRAMA DE BLOCOS DE UMA FONTE DE TENSÃO

DIAGRAMA DE BLOCOS DE UMA FONTE DE TENSÃO DIAGRAMA DE BLOCOS DE UMA FONTE DE TENSÃO Essa deficiência presente nos retificadores é resolvida pelo emprego de um filtro Essa deficiência presente nos retificadores é resolvida pelo emprego de um filtro

Leia mais

Circuitos Elétricos Análise de Potência em CA

Circuitos Elétricos Análise de Potência em CA Introdução Circuitos Elétricos Análise de Potência em CA Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Potência é a quantidade de maior importância em

Leia mais

1.1- DIVISÃO DOS TRANSFORMADORES

1.1- DIVISÃO DOS TRANSFORMADORES Quanto a Finalidade: TRANSFORMADORES 1.1- DIVISÃO DOS TRANSFORMADORES a)transformadores de Corrente; b)transformadores de Potencial; c)transformadores de Distribuição; d)transformadores de Força. Quanto

Leia mais

EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos

EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos SEMICONDUCTOR I Semiconductor I Semicondutor I M-1104A *Only illustrative image./imagen meramente ilustrativa./ Imagem meramente ilustrativa. EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos

Leia mais

Lista de Exercícios de Eletrônica Analógica. Semicondutores, Diodos e Retificadores

Lista de Exercícios de Eletrônica Analógica. Semicondutores, Diodos e Retificadores Lista de Exercícios de Eletrônica Analógica Semicondutores, Diodos e Retificadores Questões sobre Semicondutores: 1) O que é um material semicondutor? Dê 2 exemplos. 2) O que é camada de valência? 3) O

Leia mais

EE531 - Turma S. Diodos. Laboratório de Eletrônica Básica I - Segundo Semestre de 2010

EE531 - Turma S. Diodos. Laboratório de Eletrônica Básica I - Segundo Semestre de 2010 EE531 - Turma S Diodos Laboratório de Eletrônica Básica I - Segundo Semestre de 2010 Professor: José Cândido Silveira Santos Filho Daniel Lins Mattos RA: 059915 Raquel Mayumi Kawamoto RA: 086003 Tiago

Leia mais

Corrente Alternada o básico do básico Revisão para o Provão Elaborado por Gabriel Vinicios

Corrente Alternada o básico do básico Revisão para o Provão Elaborado por Gabriel Vinicios 01 Corrente Alternada o básico do básico Revisão para o Provão Elaborado por Gabriel Vinicios Corrente Alternada: é toda tensão cuja polaridade muda ao longo do tempo. Forma mais comum: Senoidal: Na imagem

Leia mais

Técnico em Eletrotécnica

Técnico em Eletrotécnica Técnico em Eletrotécnica Caderno de Questões Prova Objetiva 2015 01 Em uma corrente elétrica, o deslocamento dos elétrons para produzir a corrente se deve ao seguinte fator: a) fluxo dos elétrons b) forças

Leia mais

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Francisco Erberto de Sousa 11111971 Saulo Bezerra Alves - 11111958 Relatório: Capacitor, Resistor, Diodo

Leia mais

Transformadores trifásicos

Transformadores trifásicos Transformadores trifásicos Transformadores trifásicos Transformadores trifásicos Por que precisamos usar transformadores trifásicos Os sistemas de geração, transmissão e distribuição de energia elétrica

Leia mais

CONHECIMENTOS ESPECÍFICOS TÉCNICO EM ELETRÔNICA

CONHECIMENTOS ESPECÍFICOS TÉCNICO EM ELETRÔNICA CONHECIMENTOS ESPECÍFICOS TÉCNICO EM ELETRÔNICA 26. Com relação aos materiais semicondutores, utilizados na fabricação de componentes eletrônicos, analise as afirmativas abaixo. I. Os materiais semicondutores

Leia mais

Tutorial de Eletrônica Aplicações com 555 v2010.05

Tutorial de Eletrônica Aplicações com 555 v2010.05 Tutorial de Eletrônica Aplicações com 555 v2010.05 Linha de Equipamentos MEC Desenvolvidos por: Maxwell Bohr Instrumentação Eletrônica Ltda. Rua Porto Alegre, 212 Londrina PR Brasil http://www.maxwellbohr.com.br

Leia mais

Boletim Te cnico. Tema: BT002 Fontes para lâmpadas UV

Boletim Te cnico. Tema: BT002 Fontes para lâmpadas UV Boletim Te cnico Tema: BT002 Fontes para lâmpadas UV As fontes para lâmpadas ultravioleta são os circuitos de potência responsáveis pela alimentação das lâmpadas de média pressão. São também conhecidas

Leia mais

Amplificador Operacional Básico. Amplificador Operacional Básico

Amplificador Operacional Básico. Amplificador Operacional Básico Amplificador Operacional Básico Eng.: Roberto Bairros dos Santos. Um empreendimento Bairros Projetos didáticos www.bairrospd.kit.net Este artigo descreve como identificar o amplificador operacional, mostra

Leia mais

Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 6

Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 6 Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 6 1. Titulo: Prática 12 Filtros ativos 2. Objetivos: Estudo de montagem de filtros ativos passa-baixa e passa-alta. 3.

Leia mais

DESTAQUE: A IMPORTÂNCIA DOS TRANSFORMADORES EM SISTEMAS DE ENERGIA ELÉTRICA

DESTAQUE: A IMPORTÂNCIA DOS TRANSFORMADORES EM SISTEMAS DE ENERGIA ELÉTRICA Capítulo 0 Transformadores DESTAQE: A IMPORTÂNCIA DOS TRANSFORMADORES EM SISTEMAS DE ENERGIA ELÉTRICA Os geradores elétricos, que fornecem tensões relativamente baixas (da ordem de 5 a 5 kv), são ligados

Leia mais

Prof. Antonio Carlos Santos. Aula 7: Polarização de Transistores

Prof. Antonio Carlos Santos. Aula 7: Polarização de Transistores IF-UFRJ Elementos de Eletrônica Analógica Prof. Antonio Carlos Santos Mestrado Profissional em Ensino de Física Aula 7: Polarização de Transistores Este material foi baseado em livros e manuais existentes

Leia mais

COORDENADORIA DE ELETROTÉCNICA ELETRÔNICA BÁSICA - LISTA DE EXERCÍCIOS DIODOS SEMICONDUTORES. II III IV Dopagem com impureza. II Lado da junção a) N

COORDENADORIA DE ELETROTÉCNICA ELETRÔNICA BÁSICA - LISTA DE EXERCÍCIOS DIODOS SEMICONDUTORES. II III IV Dopagem com impureza. II Lado da junção a) N COORDENADORIA DE ELETROTÉCNICA ELETRÔNICA BÁSICA - LISTA DE EXERCÍCIOS DIODOS SEMICONDUTORES 1. Associe as informações das colunas I, II, III e IV referentes às características do semicondutor I II III

Leia mais

Quando comparado com uma chave mecânica, uma chave eletrônica apresenta vantagens e desvantagens.

Quando comparado com uma chave mecânica, uma chave eletrônica apresenta vantagens e desvantagens. Chave eletrônica Introdução O transistor, em sua aplicação mais simples, é usado como uma chave eletrônica, ou seja, pode ser usado para acionar cargas elétricas. A principal diferença entre o transistor

Leia mais

Prof. Manoel Eusebio de Lima

Prof. Manoel Eusebio de Lima Eletrônica (Amplificador Push-Pull) Prof. Manoel Eusebio de Lima Operação classe B Estes amplificadores, denominados classe B permite que a corrente do coletor flua apenas por 180 o do ciclo ca em cada

Leia mais

O Transformador. Outro tipo de transformador encontrado em alguns circuitos é o Toroidal, conforme imagem.

O Transformador. Outro tipo de transformador encontrado em alguns circuitos é o Toroidal, conforme imagem. O Transformador No geral, na maioria das fontes lineares ou analógicas, a primeira etapa (bloco) é composta por um componente básico chamado transformador. O que são os transformadores? Trata-se de um

Leia mais

Cap.4 - Medição de Tensão e Corrente Cap. 5 - Medidas com Multímetros Analógicos e Digitais

Cap.4 - Medição de Tensão e Corrente Cap. 5 - Medidas com Multímetros Analógicos e Digitais Universidade Federal de Itajubá UNIFEI Cap.4 - Cap. 5 - Medidas com Multímetros Analógicos e Digitais Prof. Dr. Fernando Nunes Belchior fnbelchior@hotmail.com fnbelchior@unifei.edu.br Medição de Tensão

Leia mais

TRANSFORMADORES. P = enrolamento do primário S = enrolamento do secundário

TRANSFORMADORES. P = enrolamento do primário S = enrolamento do secundário TRANSFORMADORES Podemos definir o transformador como sendo um dispositivo que transfere energia de um circuito para outro, sem alterar a frequência e sem a necessidade de uma conexão física. Quando existe

Leia mais

Disciplina: Eletrônica de Potência (ENGC48)

Disciplina: Eletrônica de Potência (ENGC48) Universidade Federal da Bahia Escola Politécnica Departamento de Engenharia Elétrica Disciplina: Eletrônica de Potência (ENGC48) Tema: Conversores CA-CC Monofásicos Controlados Prof.: Eduardo Simas eduardo.simas@ufba.br

Leia mais

A harmonia da atividade industrial com o meio ambiente é um dos objetivos do SENAI.

A harmonia da atividade industrial com o meio ambiente é um dos objetivos do SENAI. Sumário Introdução 5 Princípio de funcionamento do transformador 6 Princípio de funcionamento 7 Transformadores com mais de um secundário 10 Relação de transformação 11 Tipos de transformadores quanto

Leia mais

Introdução teórica aula 6: Capacitores

Introdução teórica aula 6: Capacitores Introdução teórica aula 6: Capacitores Capacitores O capacitor é um elemento capaz de armazenar energia. É formado por um par de superfícies condutoras separadas por um material dielétrico ou vazio. A

Leia mais

AULA LAB 04 PRINCÍPIOS DE CORRENTE ALTERNADA E TRANSFORMADORES 2 MEDIÇÃO DE VALORES MÉDIO E EFICAZ COM MULTÍMETRO

AULA LAB 04 PRINCÍPIOS DE CORRENTE ALTERNADA E TRANSFORMADORES 2 MEDIÇÃO DE VALORES MÉDIO E EFICAZ COM MULTÍMETRO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO TÉCNICO DE ELETRÔNICA Eletrônica Básica AULA LAB 04 PRINCÍPIOS DE CORRENTE ALTERNADA E TRANSFORMADORES

Leia mais

Experimento 8 Circuitos RC e filtros de freqüência

Experimento 8 Circuitos RC e filtros de freqüência Experimento 8 Circuitos RC e filtros de freqüência 1. OBJETIVO O objetivo desta aula é ver como filtros de freqüência utilizados em eletrônica podem ser construídos a partir de um circuito RC. 2. MATERIAL

Leia mais

2 Objetivos Execução e análise de circuitos amplificadores lineares nas suas configurações como inversor, não-inversor e buffer.

2 Objetivos Execução e análise de circuitos amplificadores lineares nas suas configurações como inversor, não-inversor e buffer. Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 5 1 Título Prática 9 Aplicações Lineares dos Amplificadores Operacionais 2 Objetivos Execução e análise de circuitos amplificadores

Leia mais

Aplicações com OpAmp. 1) Amplificadores básicos. Amplificador Inversor

Aplicações com OpAmp. 1) Amplificadores básicos. Amplificador Inversor 225 Aplicações com OpAmp A quantidade de circuitos que podem ser implementados com opamps é ilimitada. Selecionamos aqueles circuitos mais comuns na prática e agrupamos por categorias. A A seguir passaremos

Leia mais

Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas

Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas elétricas ou a seleção de freqüências em filtros para caixas

Leia mais

São componentes formados por espiras de fio esmaltado numa forma dentro da qual pode ou não existir um núcleo de material ferroso.

São componentes formados por espiras de fio esmaltado numa forma dentro da qual pode ou não existir um núcleo de material ferroso. Luciano de Abreu São componentes formados por espiras de fio esmaltado numa forma dentro da qual pode ou não existir um núcleo de material ferroso. É um dispositivo elétrico passivo que armazena energia

Leia mais

Eletrônica II. Amplificadores de Potência. Notas de Aula José Maria P. de Menezes Jr.

Eletrônica II. Amplificadores de Potência. Notas de Aula José Maria P. de Menezes Jr. Eletrônica II Amplificadores de Potência Notas de Aula José Maria P. de Menezes Jr. Amplificadores Amplificador é um equipamento que utiliza uma pequena quantidade de energia para controlar uma quantidade

Leia mais

11. Dado o circuito abaixo, determine a capacitância equivalente do circuito, sabendo que:

11. Dado o circuito abaixo, determine a capacitância equivalente do circuito, sabendo que: TÉCNICO EM ELETRICIDADE 4 CONHECIMENTOS ESPECÍFICOS QUESTÕES DE 11 A 25 11. Dado o circuito abaixo, determine a capacitância equivalente do circuito, sabendo que: C1 = 300µF C2 = C3 = 300µF C4 = C5 = C6

Leia mais

Os transformadores em geral apresentam perdas de potência quando estão em funcionamento, estas perdas são no cobre e no ferro.

Os transformadores em geral apresentam perdas de potência quando estão em funcionamento, estas perdas são no cobre e no ferro. Perdas no cobre e no ferro Os transformadores em geral apresentam perdas de potência quando estão em funcionamento, estas perdas são no cobre e no ferro. Perdas no cobre As perdas no cobre ocorrem devido

Leia mais

EXPERIÊNCIA 8 TRANSFORMADORES, CIRCUITOS EM CORRENTE ALTERNADA E FATOR DE POTÊNCIA

EXPERIÊNCIA 8 TRANSFORMADORES, CIRCUITOS EM CORRENTE ALTERNADA E FATOR DE POTÊNCIA EXPEÊNA 8 ANSFOMADOES, UOS EM OENE AENADA E FAO DE POÊNA 1 NODUÇÃO O transformador é um dispositivo elétrico que permite modificar a amplitude de tensões e correntes onsiste basicamente de duas bobinas

Leia mais

Circuitos Elétricos Capacitores e Indutores

Circuitos Elétricos Capacitores e Indutores Introdução Circuitos Elétricos e Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) e indutores: elementos passivos, mas e indutores não dissipam energia

Leia mais

Capítulo 1: Eletricidade. Corrente continua: (CC ou, em inglês, DC - direct current), também chamada de

Capítulo 1: Eletricidade. Corrente continua: (CC ou, em inglês, DC - direct current), também chamada de Capítulo 1: Eletricidade É um fenômeno físico originado por cargas elétricas estáticas ou em movimento e por sua interação. Quando uma carga encontra-se em repouso, produz força sobre outras situadas em

Leia mais

REVISÃO: DIAGRAMA EM BLOCOS Estrutura convencional de um sistema de retificação :

REVISÃO: DIAGRAMA EM BLOCOS Estrutura convencional de um sistema de retificação : UNIERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA 1 ET74C Profª Elisabete N Moraes AULA 8 RETIFICADOR MONOFÁSICO DE ONDA COMPLETA Em 22 de outubro de 2014. REISÃO:

Leia mais

Capítulo. Meta deste capítulo Entender o princípio de funcionamento de osciladores a cristal.

Capítulo. Meta deste capítulo Entender o princípio de funcionamento de osciladores a cristal. 9 Osciladores Capítulo a Cristal Meta deste capítulo Entender o princípio de funcionamento de osciladores a cristal. objetivos Entender o princípio de funcionamento de osciladores a cristal; Analisar osciladores

Leia mais

CAPACITOR. Simbologia: Armazenamento de carga

CAPACITOR. Simbologia: Armazenamento de carga CAPACITOR O capacitor é um componente eletrônico capaz de armazenar cargas elétricas. É composto por duas placas de material condutor, eletricamente neutras em seu estado natural, denominadas armaduras,

Leia mais

Prof.: Geraldo Barbosa Filho

Prof.: Geraldo Barbosa Filho AULA 07 GERADORES E RECEPTORES 5- CURVA CARACTERÍSTICA DO GERADOR 1- GERADOR ELÉTRICO Gerador é um elemento de circuito que transforma qualquer tipo de energia, exceto a elétrica, em energia elétrica.

Leia mais

Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios.

Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios. Conteúdo programático: Elementos armazenadores de energia: capacitores e indutores. Revisão de características técnicas e relações V x I. Caracterização de regime permanente. Caracterização temporal de

Leia mais

Lista VI de Eletrônica Analógica I Retificadores e Filtro Capacitivo

Lista VI de Eletrônica Analógica I Retificadores e Filtro Capacitivo Lista VI de Eletrônica Analógica I Retificadores e Filtro Capacitivo Prof. Gabriel Vinicios Silva Maganha (http://www.gvensino.com.br) Lista de Exercícios 6 de Eletrônica Analógica Introdução Teórica Os

Leia mais

Roteiro para experiências de laboratório. AULA 2: Osciloscópio e curvas do diodo. Alunos: 2-3-

Roteiro para experiências de laboratório. AULA 2: Osciloscópio e curvas do diodo. Alunos: 2-3- Campus SERRA COORDENADORIA DE AUTOMAÇÃO INDUSTRIAL Disciplinas: ELETRÔNICA BÁSICA e ELETRICIDADE GERAL Professores: Vinícius Secchin de Melo Wallas Gusmão Thomaz Roteiro para experiências de laboratório

Leia mais

FÍSICA 3 Circuitos Elétricos em Corrente Contínua. Circuitos Elétricos em Corrente Contínua

FÍSICA 3 Circuitos Elétricos em Corrente Contínua. Circuitos Elétricos em Corrente Contínua FÍSICA 3 Circuitos Elétricos em Corrente Contínua Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba EMENTA Carga Elétrica Campo Elétrico Lei de Gauss Potencial Elétrico Capacitância Corrente e resistência

Leia mais

Amplificadores Operacionais: Circuitos típicos e aplicações

Amplificadores Operacionais: Circuitos típicos e aplicações Amplificadores Operacionais: Circuitos típicos e aplicações Prof. Alberto de Lima alberto.lima@cefet-rj.br Educação Profissional de Nível Médio Curso: Eletrônica 1 Características gerais As aplicações

Leia mais

CENTRO TECNOLÓGICO ESTADUAL PAROBÉ CURSO DE ELETRÔNICA

CENTRO TECNOLÓGICO ESTADUAL PAROBÉ CURSO DE ELETRÔNICA CENTRO TECNOLÓGO ESTADUAL PAROBÉ CURSO DE ELETRÔNA LABORATÓRIO DE ELETRÔNA ANALÓGA I Prática: 6 Assunto: Transistor Bipolar 1 Objetivos: Testar as junções e identificar o tipo de um transistor com o multímetro.

Leia mais

Princípios de Eletricidade e Eletrônica. Aula 2 Reatância. Prof. Marcio Kimpara

Princípios de Eletricidade e Eletrônica. Aula 2 Reatância. Prof. Marcio Kimpara 1 Princípios de Eletricidade e Eletrônica Aula 2 Reatância Universidade Federal de Mato Grosso do Sul FAENG / Engenharia Elétrica Campo Grande MS 2 Para relembrar (aula passada)... Tensão e Corrente Alternada

Leia mais

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Circuitos Elétricos 1º parte Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Introdução Um circuito elétrico é constituido de interconexão de vários

Leia mais

ENCONTRO 3 AMPLIFICADORES EM CASCATA (ESTUDO DOS PRÉ-AMPLIFICADORES)

ENCONTRO 3 AMPLIFICADORES EM CASCATA (ESTUDO DOS PRÉ-AMPLIFICADORES) CURSO DE ENGENHARIA ELÉTRICA DISCIPLINA: ELETRÔNICA I PROFESSOR: VLADEMIR DE J. S. OLIVEIRA ENCONTRO 3 AMPLIFICADORES EM CASCATA (ESTUDO DOS PRÉ-AMPLIFICADORES) 1. COMPONENTES DA EQUIPE Alunos Nota: Data:

Leia mais

Em termos de estrutura, um transformador é composto essencialmente pelas seguintes partes:

Em termos de estrutura, um transformador é composto essencialmente pelas seguintes partes: ransformadores são equipamentos utilizados na transformação de valores de tensão e corrente, além de serem usados na modificação de impedâncias em circuitos eléctricos. Inventado em 1831 por Michael Faraday,

Leia mais

Eletrônica Analógica e de Potência

Eletrônica Analógica e de Potência Eletrônica Analógica e de Potência Conversores CC-CC Prof.: Welbert Rodrigues Introdução Em certas aplicações é necessário transformar uma tensão contínua em outra com amplitude regulada; Em sistemas CA

Leia mais

Geração, Transmissão e Distribuição de Energia Elétrica

Geração, Transmissão e Distribuição de Energia Elétrica Geração, Transmissão e Distribuição de Energia Elétrica Existem diversas maneiras de se gerar energia elétrica. No mundo todo, as três formas mais comuns são por queda d água (hidroelétrica), pela queima

Leia mais

AULA #4 Laboratório de Medidas Elétricas

AULA #4 Laboratório de Medidas Elétricas AULA #4 Laboratório de Medidas Elétricas 1. Experimento 1 Geradores Elétricos 1.1. Objetivos Determinar, experimentalmente, a resistência interna, a força eletromotriz e a corrente de curto-circuito de

Leia mais

Prof. Rogério Eletrônica Geral 1

Prof. Rogério Eletrônica Geral 1 Prof. Rogério Eletrônica Geral 1 Apostila 2 Diodos 2 COMPONENTES SEMICONDUTORES 1-Diodos Um diodo semicondutor é uma estrutura P-N que, dentro de seus limites de tensão e de corrente, permite a passagem

Leia mais

AULA #4 Laboratório de Medidas Elétricas

AULA #4 Laboratório de Medidas Elétricas AULA #4 Laboratório de Medidas Elétricas 1. Experimento 1 Geradores Elétricos 1.1. Objetivos Determinar, experimentalmente, a resistência interna, a força eletromotriz e a corrente de curto-circuito de

Leia mais

Eletrônica Industrial Apostila sobre Modulação PWM página 1 de 6 INTRODUÇÃO

Eletrônica Industrial Apostila sobre Modulação PWM página 1 de 6 INTRODUÇÃO Eletrônica Industrial Apostila sobre Modulação PWM página 1 de 6 Curso Técnico em Eletrônica Eletrônica Industrial Apostila sobre Modulação PWM Prof. Ariovaldo Ghirardello INTRODUÇÃO Os controles de potência,

Leia mais

Retificadores Monofásicos de Meia Onda com Carga Resistiva-Indutiva

Retificadores Monofásicos de Meia Onda com Carga Resistiva-Indutiva 6 Capítulo Retificadores Monofásicos de Meia Onda com Carga Resistiva-Indutiva Meta deste capítulo Estudar os conversores ca-cc monofásicos operando com carga resistiva-indutiva objetivos Entender o funcionamento

Leia mais

Aula Prática 8 Transformador em Corrente Contínua e Alternada

Aula Prática 8 Transformador em Corrente Contínua e Alternada Aula Prática 8 Transformador em Corrente Contínua e Alternada Disciplinas: Física III (ENG 06034) Fundamentos de Física III (ENG 10079) Depto Engenharia Rural - CCA/UFES Estratégia: Avaliação do funcionamento

Leia mais

EXPERIÊNCIA 6 CAPACITOR E INDUTOR EM CORRENTE CONTÍNUA E ALTERNADA

EXPERIÊNCIA 6 CAPACITOR E INDUTOR EM CORRENTE CONTÍNUA E ALTERNADA EXPERIÊNCIA 6 CAPACITOR E INDUTOR EM CORRENTE CONTÍNUA E ALTERNADA 1. INTRODUÇÃO TEÓRICA 1.1 CAPACITOR O capacitor é um dispositivo utilizado nos circuitos elétricos que apresenta um comportamento em corrente

Leia mais

Parte 1 Introdução... 1

Parte 1 Introdução... 1 Sumário SUMÁRIO V Parte 1 Introdução... 1 Capítulo 1 Unidades de Medida... 3 Introdução...3 Grandezas Físicas...3 Múltiplos e Submúltiplos...4 Arredondamentos...6 Exercícios...7 Capítulo 2 Simbologia...

Leia mais

EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos 1

EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos 1 SEMICONDUCTOR III Semiconductor III Semicondutor III M-1105A *Only illustrative image./imagen meramente ilustrativa./imagem meramente ilustrativa. EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos

Leia mais

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador Geradores elétricos Geradores elétricos são dispositivos que convertem um tipo de energia qualquer em energia elétrica. Eles têm como função básica aumentar a energia potencial das cargas que os atravessam

Leia mais

Circuitos Capacitivos

Circuitos Capacitivos CEFET BA Vitória da Conquista Análise de Circuitos Circuitos Capacitivos Prof. Alexandre Magnus Conceito Um capacitor é um dispositivo elétrico formado por 2 placas condutoras de metal separadas por um

Leia mais

Geradores de Corrente Contínua UNIDADE 2 Prof. Adrielle de Carvalho Santana

Geradores de Corrente Contínua UNIDADE 2 Prof. Adrielle de Carvalho Santana Geradores de Corrente Contínua UNIDADE 2 Prof. Adrielle de Carvalho Santana INTRODUÇÃO Um gerador de corrente continua é uma máquina elétrica capaz de converter energia mecânica em energia elétrica. Também

Leia mais

Fundamentos de Máquinas Elétricas

Fundamentos de Máquinas Elétricas Universidade Federal do C Engenharia de nstrumentação, utomação e Robótica Fundamentos de Máquinas Elétricas rof. Dr. José Luis zcue uma Regulação de tensão Rendimento Ensaios de curto-circuito e circuito

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 2

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 2 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Módulo 2 Thévenin Norton Helmholtz Mayer Ohm Galvani Conteúdo 2 Elementos básicos de circuito e suas associações...1 2.1 Resistores lineares

Leia mais

DIODO SEMICONDUTOR. Conceitos Básicos. Prof. Marcelo Wendling Ago/2011

DIODO SEMICONDUTOR. Conceitos Básicos. Prof. Marcelo Wendling Ago/2011 DIODO SEMICONDUTOR Prof. Marcelo Wendling Ago/2011 Conceitos Básicos O diodo semicondutor é um componente que pode comportar-se como condutor ou isolante elétrico, dependendo da forma como a tensão é aplicada

Leia mais

TRANSFORMADOR. A figura 1 mostra o esquema de um transformador básico.

TRANSFORMADOR. A figura 1 mostra o esquema de um transformador básico. TRAFORMADOR O transformador é constituído basicamente por dois enrolamentos que, utilizando um núcleo em comum, converte primeiramente e- nergia elétrica em magnética e a seguir energia magnética em elétrica.

Leia mais

CURSO Eletroeletrônica - DATA / / Eletromagnetismo. Indução eletromagnética

CURSO Eletroeletrônica - DATA / / Eletromagnetismo. Indução eletromagnética 1 de 9 CURSO Eletroeletrônica - DATA / / COMPONENTE ALUNO DOCENTE Eletromagnetismo Prof. Romeu Corradi Júnior [www.corradi.junior.nom.br] RA: Assunto: Resumo com comentários Eletromagnetismo Indução eletromagnética

Leia mais

REVISÃO ENEM. Prof. Heveraldo

REVISÃO ENEM. Prof. Heveraldo REVISÃO ENEM Prof. Heveraldo Fenômenos Elétricos e Magnéticos Carga elétrica e corrente elétrica. Lei de Coulomb. Campo elétrico e potencial elétrico. Linhas de campo. Superfícies equipotenciais. Poder

Leia mais

1º Experimento 1ª Parte: Resistores e Código de Cores

1º Experimento 1ª Parte: Resistores e Código de Cores 1º Experimento 1ª Parte: Resistores e Código de Cores 1. Objetivos Ler o valor nominal de cada resistor por meio do código de cores; Determinar a máxima potência dissipada pelo resistor por meio de suas

Leia mais

Prof. Jener Toscano Lins e Silva

Prof. Jener Toscano Lins e Silva Prof. Jener Toscano Lins e Silva *É de fundamental importância a completa leitura do manual e a obediência às instruções, para evitar possíveis danos ao multímetro, ao equipamento sob teste ou choque elétrico

Leia mais

LABORATÓRIO DE ELETRICIDADE ANALÓGICA LELA2

LABORATÓRIO DE ELETRICIDADE ANALÓGICA LELA2 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO CAMPUS DE PRESIDENTE EPITÁCIO LABORATÓRIO DE ELETRICIDADE ANALÓGICA LELA2 CURSO: TÉCNICO EM AUTOMAÇÃO INDUSTRIAL

Leia mais

QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE- PARTE - 1

QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE- PARTE - 1 QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE- PARTE - 1 QUESTÕES DE SIMPLES ESCOLHA - PARTE 1 PRÓXIMA => QUESTÃO 1 a. ( ) Fonte de corrente alternada. b. ( ) Fonte de tensão contínua. c. ( ) Fonte de corrente

Leia mais

MAN 006A-08-12 Uso do Alicate Amperímetro

MAN 006A-08-12 Uso do Alicate Amperímetro MAN 006A-08-12 Uso do Alicate Amperímetro Geração: equipe técnica Metalfrio. Revisão: Alexandre Mendes, Fernando Madalena, Gustavo Brotones e Rafael Atílio. http://treinamento.metalfrio.com.br treinamento@metalfrio.com.br

Leia mais

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL Esta aula apresenta o princípio de funcionamento dos motores elétricos de corrente contínua, o papel do comutador, as características e relações

Leia mais

Controle universal para motor de passo

Controle universal para motor de passo Controle universal para motor de passo No projeto de automatismos industriais, robótica ou ainda com finalidades didáticas, um controle de motor de passo é um ponto crítico que deve ser enfrentado pelo

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA EXERCÍCIOS NOTAS DE AULA I Goiânia - 014 1. Um capacitor de placas paralelas possui placas circulares de raio 8, cm e separação

Leia mais

Diodos. TE214 Fundamentos da Eletrônica Engenharia Elétrica

Diodos. TE214 Fundamentos da Eletrônica Engenharia Elétrica Diodos TE214 Fundamentos da Eletrônica Engenharia Elétrica Sumário Circuitos Retificadores Circuitos Limitadores e Grampeadores Operação Física dos Diodos Circuitos Retificadores O diodo retificador converte

Leia mais