DATA WAREHOUSE & DATA MINING

Tamanho: px
Começar a partir da página:

Download "DATA WAREHOUSE & DATA MINING"

Transcrição

1 UNIVERSIDADE FEDERAL DE SANTA CATARINA UFSC Centro Tecnológico - Departamento de Informática e Estatística - INE Disciplina: EPS 5216 Sistemas de Informações Gerenciais Professora: Aline França de Abreu DATA WAREHOUSE & DATA MINING Adriana Orthmann Fernandes Everton Fernandes Júlio Gonçalves Reinaldo Paulo Naves Veloso Sérgio Videira Thiago Schneider Wilson Raphael T. de Andrade

2 Introdução: Temos como objetivos neste trabalho explicar com clareza o que são Data Warehouse e Data Minig. Data Warehouse (armazém de dados) é um sistema de computação utilizado para armazenar informações relativas às atividades de uma organização em bancos de dados, de forma consolidada. Data Mining (Mineração de dados) é o processo de varrer grandes bases de dados a procura de padrões como regras de associação, sequências temporais, para classificação de ítens ou agrupamento.

3 Data Warehouse: Definição e Objetivos: Data Warehouse que pode ser definido como uma coleção de dados, orientados por assunto, integrados, variáveis com o tempo e não voláteis, para dar suporte ao processo de tomada de decisão. As bases de dados convencionais possuem caracteristicas, tais como, o fato de serem dinâmicas, incompletas, redundantes e ruidosas, que tornam confusa e não viável a extração de informação delas próprias. Os Data Warehouses surgiram com o objetivo de fornecer os subsídios necessários para a transformação de uma base de dados de uma organização de OLTP (On-Line Transaction Processing: Processamentos que executam as operações do dia-a-dia da organização) para OLAP (On Line Analytical Processing: Processamentos que suportam a tomada de decisões) e, assim, providenciar os elementos necessários a quem toma as decisões nas organizações. Descrição das Principais Características: Conforme já descrito, o Data Warehouse (DW) possui um conjunto de características que o distingue de outros ambientes de sistemas convencionais: - Orientado Por Assunto: o DW está orientado em torno do principal assunto da organização, armazenando informações agrupadas por assuntos de interesse da empresa que são considerados mais importantes, sendo estes chamados de processos de negócio de um empreendimento. - Integrado: é uma das principais características de um DW. Num Data Warehouse os dados devem ser transformados em formatos comuns de medida referência e armazenamento para que possam ser aproveitados. - Variável no Tempo: Os dados de um Data Warehouse são precisos em relação ao tempo e representam resultados operacionais do momento em que foram capturados. A cada mudança, uma nova entrada é criada, ou seja, os dados não são atualizáveis. - Não Volátil: os dados após serem integrados, são carregados e armazenados no banco de dados analítico, possibilitando ao usuário realizar apenas consultas e geração de relatórios necessários à tomada de decisão, não permitindo, portanto atualizações nos mesmos, apenas acesso de leitura. Passos Para a Elaboração de um Data Warehouse Data Warehouse (DW) não é um produto que se compra, mas sim um projeto que envolve a análise e implementação, com a participação de várias tecnologias. Os sete passos para a criação de um DW, que pode ser inicialmente um Data Mart (assunto específico) até chegar ao DW no nível corporativo, são: 1 Passo - Disponibilizar resultados a curto prazo. Os primeiros resultados devem estar disponíveis a curto prazo. É importante traduzir rapidamente as necessidades do negócio em uma especificação que possa ser construída em etapas. Minimiza riscos e o tempo de apresentação dos resultados iniciais.

4 2 Passo - Integrar os sistemas. O desafio principal deste passo é o de conseguir integrar os diversos sistemas da organização. Assim, os Dados de produção e das fontes externas precisam ser mapeados para o modelo de dados do DW. Estas tarefas terão de ser feitas com sincronismo, de forma a evitar problemas de acesso aos dados e também para conseguir fazer devida separação entra os dados operacionais e os dados de tomada de decisão. 3 Passo - Escolher o Banco de Dados. A escolha do banco de dados de suporte ao DW necessita ser criteriosa, ao nível do desempenho na carga e indexação dos dados, tempo de resposta, capacidade de armazenamento, paralelismo, escalabilidade. 4 Passo - Escolher a ferramenta a ser utilizada Considerar as ferramentas disponíveis no mercado. Estas devem prover, interfaces amigáveis, geração de relatórios, análises multi-dimensionais, acesso via web e data mining. 5 Passo - Construir visando expansão. Construir um DW que possa ser expandido, mantendo níveis aceitáveis de desempenho até gigabytes. 6 Passo - Manter o sistema aberto para mudanças. Ambiente DW deve ser aberto para permitir que os componentes ou ferramentas identificadas no passo 4 possam ser substituídas por outras mais atuais e eficientes. 7 Passo - Disponibilizar os equipamentos adequados. Considerar o sistema de armazenamento que fisicamente gerência, o tráfego, alocação, backup e a restauração dos dados Qualquer sistema de Data Warehouse (DW) só funciona e pode ser utilizado plenamente, com boas ferramentas de exploração. Com o surgimento do DW, a tecnologia de Data Mining (mineração de dados) também ganhou a atenção do mercado. Como o DW, possui bases de dados bem organizadas e consolidadas, as ferramentas de Data Mining ganharam grande importância e utilidade. Essa técnica, orientada a mineração de dados, oferece uma poderosa alternativa para as empresas descobrirem novas oportunidades de negócio e acima de tudo, traçarem novas estratégias para o futuro.

5 Data Mining: Definição e Objetivos: Data Mining consiste em um processo analítico projetado para explorar grandes quantidades de dados (tipicamente relacionados a negócios, mercado ou pesquisas científicas), na busca de padrões consistentes e/ou relacionamentos sistemáticos entre variáveis e, então, validá-los aplicando os padrões detectados a novos subconjuntos de dados. O processo consiste basicamente em 3 etapas: exploração, construção de modelo ou definição do padrão e validação/verificação. Talvez a definição mais importante de Data Mining tenha sido elaborada por Usama Fayyad: "...o processo não-trivial de identificar, em dados, padrões válidos, novos, potencialmente úteis e ultimamente compreensíveis", (Fayyad et al. 1996). A premissa do Data Mining é uma argumentação ativa, isto é, em vez do usuário definir o problema, selecionar os dados e as ferramentas para analisar tais dados, as ferramentas do Data Mining pesquisam automaticamente os mesmos a procura de anomalias e possíveis relacionamentos, identificando assim problemas que não tinham sido identificados pelo usuário. Em outras palavras, as ferramentas de Data Mining analisam os dados, descobrem problemas ou oportunidades escondidas nos relacionamentos dos dados, e então diagnosticam o comportamento dos negócios, requerendo a mínima intervenção do usuário. Assim, ele se dedicará somente a ir em busca do conhecimento e produzir mais vantagens competitivas. Como podemos ver, as ferramentas de Data Mining, baseadas em algoritmos que forma a construção de blocos de inteligência artificial, redes neurais, regras de indução, e lógica de predicados, somente facilitam e auxiliam o trabalho dos analistas de negócio das empresas, ajudando as mesmas a conseguirem serem mais competitivas e maximizarem seus lucros.

6 Principais Técnicas de Data Mining: O Data Mining (DM) descende fundamentalmente de 3 linhagens. A mais antiga delas é a estatística clássica. Sem a estatística não seria possível termos o DM, visto que a mesma é a base da maioria das tecnologias a partir das quais o DM é construído. A segunda linhagem do DM é a Inteligência Artificial (IA). Essa disciplina, que é construída a partir dos fundamentos da heurística, em oposto à estatística, tenta imitar a maneira como o homem pensa na resolução dos problemas estatísticos. E a terceira e última linhagem do DM é a chamada machine learning, que pode ser melhor descrita como o casamento entre a estatística e a IA. Enquanto a IA não se transformava em sucesso comercial, suas técnicas foram sendo largamente cooptadas pela machine learning, que foi capaz de se valer das sempre crescentes taxas de preço/performance oferecidas pelos computadores nos anos 80 e 90, conseguindo mais e mais aplicações devido às suas combinações entre heurística e análise estatística. O DM é um campo que compreende atualmente muitas ramificações importantes. Cada tipo de tecnologia tem suas próprias vantagens e desvantagens, do mesmo modo que nenhuma ferramenta consegue atender todas as necessidades em todas as aplicações Existem inúmeras ramificações de Data Mining, sendo algumas delas: Redes neurais: são sistemas computacionais baseados numa aproximação à computação baseada em ligações. Nós simples (ou "neurões", "neurônios", "processadores" ou "unidades") são interligados para formar uma rede de nós - daí o termo "rede neural". A inspiração original para esta técnica advém do exame das estruturas do cérebro, em particular do exame de neurónios. Exemplos de ferramentas: SPSS Neural Connection, IBM Neural Network Utility, NeuralWare NeuralWork Predict. Indução de regras: A Indução de Regras, ou Rule Induction, refere-se à detecção de tendências dentro de grupos de dados, ou de regras sobre o dado. As regras são, então, apresentadas aos usuários como uma lista não encomendada. Exemplos de ferramentas: IDIS da Information Discovey e Knowledge Seeker da Angoss Software. Árvores de decisão: baseiam-se numa análise que trabalha testando automaticamente todos os valores do dado para identificar aqueles que são fortemente associados com os itens de saída selecionados para exame. Os valores que são encontrados com forte associação são os prognósticos chaves ou fatores explicativos, usualmente chamados de regras sobre o dado. Exemplos de ferramentas: Alice d Isoft, Business Objects BusinessMiner, DataMind. Analise de séries temporais: A estatística é a mais antiga tecnologia em DM, e é parte da fundação básica de todas as outras tecnologias. Ela incorpora um envolvimento muito forte do usuário, exigindo engenheiros experientes, para construir modelos que descrevem o comportamento do dado através dos métodos clássicos de matemática. Interpretar os resultados dos modelos requer expertise especializada. O uso de técnicas de estatística também requer um trabalho muito forte de máquinas/engenheiros. A análise de séries temporais é um exemplo disso, apesar de freqüentemente ser confundida como um gênero mais simples de DM chamado forecasting (previsão). Exemplos de ferramentas: S+, SAS, SPSS.

7 Visualização: mapeia o dado sendo minerado de acordo com dimensões especificadas. Nenhuma análise é executada pelo programa de DM além de manipulação estatística básica. O usuário, então, interpreta o dado enquanto olha para o monitor. O analista pode pesquisar a ferramenta depois para obter diferentes visões ou outras dimensões. Exemplos de ferramentas: IBM Parallel Visual Explorer, SAS System, Advenced Visual Systems (AVS) Express - Visualization Edition.

8 Estudo de Caso: Sabesp investe em Data Warehouse [10/11/ :05] - Visão integrada das informações permite reavaliar procedimentos e reduzir gastos (http://www.clientesa.com.br - Cases) Quando a Companhia de Saneamento Básico do Estado de São Paulo, a Sabesp, decidiu implementar um projeto de Data Warehouse com o objetivo de desenvolver uma cultura de autocontrole na empresa, não imaginava que a transformação de dados em informação estratégica fosse tão complexa. Com mais de 17 mil funcionários, faturamento anual na ordem dos R$ 5 bilhões, modelo administrativo descentralizado e capital aberto nas Bolsas de Valores de São Paulo e de Nova York, a Sabesp se deparou com um projeto do tamanho de sua estrutura. O volume de dados e a complexidade para fazer o rastreamento, o tratamento e o armazenamento das informações, levaram os responsáveis da Sabesp a buscar fornecedores de solução que pudessem atender a um grande número de usuários e efectivamente agregar valor ao negócio por meio de análises comparativas, de performance e de resultados, entre unidades. Com investimentos de aproximadamente R$ 3 milhões aplicados em infra-estrutura, software e consultoria, a Sabesp deu início a uma nova cultura de auto controle das unidades, chamada Avaliação de Controles e Resultados (ACR), apoiada pelo Teradata Data Warehouse. A partir da base analítica de dados foram desenvolvidas as aplicações que geraram indicadores, gráficos, painéis, quadros de notas, amostras e relatórios que puderam servir de apoio à tomada de decisão nos diferentes níveis organizacionais, fossem eles estratégicos, táticos ou operacionais. A base única proporcionou uma visão global do negócio, e com isso, uma gestão mais integrada com foco nos resultados. Além do Teradata Data Warehouse, foram contemplados no ACR softwares aplicativos para administração do banco de dados e definição de modelos, que geram cruzamentos de informações mais completos, além de consultas concorrentes e cargas de trabalho mistas. A grande vantagem de um ambiente analítico inteligente é que ele permite uma gestão integrada dos negócios ao facilitar a análise de perfis de consumo, de atendimento ao cliente, de pessoal interno, dentre outros. Gestão integrada - A primeira aplicação do Data Warehouse da Sabesp foi implantada no final de Uma segunda fase do projeto envolvendo novas aplicações está em desenvolvimento, com previsão de implantação até o final de Até o momento, a solução está disponível para aproximadamente 500 usuários das áreas Comercial, RH, Suprimentos, Obras e Serviços Operacionais. Por meio do ACR foi possível o rastreamento de informações de processos críticos que envolvem a região metropolitana de São Paulo e os mais de 300 municípios operados pela Sabesp no interior e no litoral. Na prática, isso significa a busca efetiva por melhores resultados, permitindo à alta administração da Sabesp reconhecer oportunidades de melhoria dos indicadores de rentabilidade e de margem operacional, transformadas em estímulo para que os gerentes do negócio possam conquistar suas metas. "Com o Data Warehouse conseguimos identificar, por exemplo, variações significativas de consumo de água. O trabalho empreendido a partir deste indicador e das informações comparativas geradas pelo ACR, permitiu calcular um incremento anual R$ 2 milhões na receita da Sabesp", conta o CIO da companhia, Fernando Antonio Menezes.

9 Outros Casos: Uma rede varejista descobriu que a venda de colírios aumentava na véspera dos feriados. (Por quê? Mistério...) Passou a preparar seus estoques e promoções do produto com base nesse cenário. O Itaú costumava enviar mais de 1 milhão de malas diretas, para todos os correntistas. No máximo 2% deles respondiam às promoções. Hoje, o banco tem armazenada toda a movimentação financeira de seus 3 milhões de clientes nos últimos 18 meses. A análise desses dados permite que cartas sejam enviadas apenas a quem tem maior chance de responder. A taxa de retorno subiu para 30%. A conta do correio foi reduzida a um quinto. A Sprint, um dos líderes no mercado americano de telefonia de longa distância, desenvolveu, com base no seu armazém de dados, um método capaz de prever com 61% de segurança se um consumidor trocaria de companhia telefônica dentro de um período de dois meses. Com um marketing agressivo, conseguiu evitar a deserção de clientes e uma perda de 35 milhões de dólares em faturamento. Outra empresa de telefonia detectou, ao implantar seu armazém de dados, que quatro grandes clientes empresa-riais eram responsáveis por mais da metade das chamadas de manutenção. Um deles estava prestes a abandonar os serviços. A telefônica fez reparos imediatos, convenceu o cliente a ficar e manteve uma receita anual de 150 milhões de dólares. O governo de Massachusetts, nos Estados Unidos, compilava informações financeiras imprimindo telas e mais telas de terminais dos computadores de grande porte. Era preciso seis pessoas só para reunir os relatórios necessários ao orçamento anual. Com o armazém de dados, informações atualizadas estão disponíveis on-line para usuários. Só em papel, economizam-se dólares por ano. Em 1995, pela primeira vez em dez anos, o orçamento estadual foi assinado antes do início do ano fiscal. O Brasil quer a mesma agilidade. O Serpro, órgão responsável pelo processamento dos dados do governo federal, já investiu 2 milhões no seu projeto de data warehouse, desenvolvido com a Oracle. Só consolidou 5% de suas informações, mas já é possível fazer em cinco minutos cruzamentos de dados que antes demandavam quinze dias de trabalho.

10 Conclusão: Com a realização deste trabalho pudemos desenvolver melhor os conceitos de Data Warehouse e Data Mining, entre outros, e perceber um pouco melhor a realidade do mercado destas tecnologias. Assim percebemos que a crescente disponibilização de informações que tem surgido na medida em que mais e mais organizações utilizamse das ferramentas de Business Intelligence, esta a provocar também que apareçam novas necessidades de análise das informações disponibilizadas. Para atender essas novas necessidades, as ferramentas de SAD (Sistemas de Apoio à Decisão) têm sido incrementadas com sofisticadas funções de Data Warehouse, tais como, a analise OLAP, formatações de relatórios cada vez mais flexíveis, visualizações 3D, filtros, classificações, alertas, entre outros. De todas essas sofisticações a OLAP é sem duvida a melhor desenvolvida, na medida em que possibilitas aos usuários estudar os dados de maneira multidimensional, de forma que os mesmos podem perfurar os dados até aos seus detalhes (Drill Down), ou ainda ver porções sumariadas desses dados (Slice-and-Dice). Por sua vez, os sistemas de Data Mining apresentam um sistema alternativo e automático de descobrir padrões nos dados. O DM é extremamente adequado para analisar grupos grandes de dados, visto estes serem grandes demais para serem navegados, ou explorados manualmente, ou ainda porque contêm dados muito densos ou não intuitivos. Bibliografia:

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO @ribeirord FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO Rafael D. Ribeiro, M.Sc,PMP. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br Lembrando... Aula 4 1 Lembrando... Aula 4 Sistemas de apoio

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Warehouse - Conceitos Hoje em dia uma organização precisa utilizar toda informação disponível para criar e manter vantagem competitiva. Sai na

Leia mais

SISTEMAS DE APOIO À DECISÃO SAD

SISTEMAS DE APOIO À DECISÃO SAD SISTEMAS DE APOIO À DECISÃO SAD Conceitos introdutórios Decisão Escolha feita entre duas ou mais alternativas. Tomada de decisão típica em organizações: Solução de problemas Exploração de oportunidades

Leia mais

Professor: Disciplina:

Professor: Disciplina: Professor: Curso: Esp. Marcos Morais de Sousa marcosmoraisdesousa@gmail.com Sistemas de informação Disciplina: Introdução a SI Noções de sistemas de informação Turma: 01º semestre Prof. Esp. Marcos Morais

Leia mais

Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1

Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1 Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1 SISTEMA DE APOIO À DECISÃO Grupo: Denilson Neves Diego Antônio Nelson Santiago Sabrina Dantas CONCEITO É UM SISTEMA QUE AUXILIA O PROCESSO DE DECISÃO

Leia mais

http://www.publicare.com.br/site/5,1,26,5480.asp

http://www.publicare.com.br/site/5,1,26,5480.asp Página 1 de 7 Terça-feira, 26 de Agosto de 2008 ok Home Direto da redação Última edição Edições anteriores Vitrine Cross-Docking Assine a Tecnologística Anuncie Cadastre-se Agenda Cursos de logística Dicionário

Leia mais

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES.

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 88 BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Andrios Robert Silva Pereira, Renato Zanutto

Leia mais

DATA WAREHOUSE. Introdução

DATA WAREHOUSE. Introdução DATA WAREHOUSE Introdução O grande crescimento do ambiente de negócios, médias e grandes empresas armazenam também um alto volume de informações, onde que juntamente com a tecnologia da informação, a correta

Leia mais

SUMÁRIO 1. INTRODUÇÃO... 2 2. O QUE É DATA WAREHOUSE?... 2 3. O QUE DATA WAREHOUSE NÃO É... 4 4. IMPORTANTE SABER SOBRE DATA WAREHOUSE... 5 4.

SUMÁRIO 1. INTRODUÇÃO... 2 2. O QUE É DATA WAREHOUSE?... 2 3. O QUE DATA WAREHOUSE NÃO É... 4 4. IMPORTANTE SABER SOBRE DATA WAREHOUSE... 5 4. SUMÁRIO 1. INTRODUÇÃO... 2 2. O QUE É DATA WAREHOUSE?... 2 3. O QUE DATA WAREHOUSE NÃO É... 4 4. IMPORTANTE SABER SOBRE DATA WAREHOUSE... 5 4.1 Armazenamento... 5 4.2 Modelagem... 6 4.3 Metadado... 6 4.4

Leia mais

A evolução da tecnologia da informação nos últimos 45 anos

A evolução da tecnologia da informação nos últimos 45 anos A evolução da tecnologia da informação nos últimos 45 anos Denis Alcides Rezende Do processamento de dados a TI Na década de 1960, o tema tecnológico que rondava as organizações era o processamento de

Leia mais

Business Intelligence e ferramentas de suporte

Business Intelligence e ferramentas de suporte O modelo apresentado na figura procura enfatizar dois aspectos: o primeiro é sobre os aplicativos que cobrem os sistemas que são executados baseados no conhecimento do negócio; sendo assim, o SCM faz o

Leia mais

Aplicação A. Aplicação B. Aplicação C. Aplicação D. Aplicação E. Aplicação F. Aplicação A REL 1 REL 2. Aplicação B REL 3.

Aplicação A. Aplicação B. Aplicação C. Aplicação D. Aplicação E. Aplicação F. Aplicação A REL 1 REL 2. Aplicação B REL 3. Sumário Data Warehouse Modelagem Multidimensional. Data Mining BI - Business Inteligence. 1 2 Introdução Aplicações do negócio: constituem as aplicações que dão suporte ao dia a dia do negócio da empresa,

Leia mais

Bloco Administrativo

Bloco Administrativo Bloco Administrativo BI Business Intelligence Objetivo O objetivo deste artigo é dar uma visão geral sobre o Módulo Business Intelligence, que se encontra no Bloco Administrativo. Todas informações aqui

Leia mais

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto OLPT x OLAP Roteiro OLTP Datawarehouse OLAP Operações OLAP Exemplo com Mondrian e Jpivot

Leia mais

Sobre o que falaremos nesta aula?

Sobre o que falaremos nesta aula? Business Intelligence - BI Inteligência de Negócios Prof. Ricardo José Pfitscher Elaborado com base no material de: José Luiz Mendes Gerson Volney Lagmman Introdução Sobre o que falaremos nesta aula? Ferramentas

Leia mais

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence É um conjunto de conceitos e metodologias que, fazem uso de acontecimentos e sistemas e apoiam a tomada de decisões. Utilização de várias fontes de informação para se definir estratégias de competividade

Leia mais

Data Warehouses Uma Introdução

Data Warehouses Uma Introdução Data Warehouses Uma Introdução Alex dos Santos Vieira, Renaldy Pereira Sousa, Ronaldo Ribeiro Goldschmidt 1. Motivação e Conceitos Básicos Com o advento da globalização, a competitividade entre as empresas

Leia mais

Criação e uso da Inteligência e Governança do BI

Criação e uso da Inteligência e Governança do BI Criação e uso da Inteligência e Governança do BI Criação e uso da Inteligência e Governança do BI Governança do BI O processo geral de criação de inteligência começa pela identificação e priorização de

Leia mais

Sistemas de Apoio à Decisão (SAD) - Senado

Sistemas de Apoio à Decisão (SAD) - Senado Sistemas de Apoio à Decisão (SAD) - Senado DW OLAP BI Ilka Kawashita Material preparado :Prof. Marcio Vitorino Sumário OLAP Data Warehouse (DW/ETL) Modelagem Multidimensional Data Mining BI - Business

Leia mais

TÉCNICAS DE INFORMÁTICA WILLIAN FERREIRA DOS SANTOS

TÉCNICAS DE INFORMÁTICA WILLIAN FERREIRA DOS SANTOS TÉCNICAS DE INFORMÁTICA WILLIAN FERREIRA DOS SANTOS Vimos em nossas aulas anteriores: COMPUTADOR Tipos de computadores Hardware Hardware Processadores (CPU) Memória e armazenamento Dispositivos de E/S

Leia mais

SAD orientado a DADOS

SAD orientado a DADOS Universidade do Contestado Campus Concórdia Curso de Sistemas de Informação Prof.: Maico Petry SAD orientado a DADOS DISCIPLINA: Sistemas de Apoio a Decisão SAD orientado a dados Utilizam grandes repositórios

Leia mais

BUSINESS INTELLIGENCE -Inteligência nos Negócios-

BUSINESS INTELLIGENCE -Inteligência nos Negócios- UNIVERSIDADE SÃO FRANCISCO CENTRO DE CIÊNCIAS JURÍDICAS, HUMANAS E SOCIAIS BUSINESS INTELLIGENCE -Inteligência nos Negócios- Curso: Administração Hab. Sistemas de Informações Disciplina: Gestão de Tecnologia

Leia mais

Aline França a de Abreu, Ph.D

Aline França a de Abreu, Ph.D Aline França a de Abreu, Ph.D igti.eps.ufsc.br 07 / 10/ 04 Núcleo de estudos Criado em 1997 - UFSC/EPS Equipe multidisciplinar, com aproximadamente 20 integrantes OBJETIVO Gerar uma competência e uma base

Leia mais

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de 1 Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de relatórios dos sistemas de informação gerencial. Descrever

Leia mais

MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD)

MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD) AULA 07 MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD) JAMES A. O BRIEN MÓDULO 01 Páginas 286 à 294 1 AULA 07 SISTEMAS DE APOIO ÀS DECISÕES 2 Sistemas de Apoio à Decisão (SAD)

Leia mais

Administração de Sistemas de Informação Gerenciais UNIDADE IV: Fundamentos da Inteligência de Negócios: Gestão da Informação e de Banco de Dados Um banco de dados é um conjunto de arquivos relacionados

Leia mais

5 Estudo de Caso. 5.1. Material selecionado para o estudo de caso

5 Estudo de Caso. 5.1. Material selecionado para o estudo de caso 5 Estudo de Caso De modo a ilustrar a estruturação e representação de conteúdos educacionais segundo a proposta apresentada nesta tese, neste capítulo apresentamos um estudo de caso que apresenta, para

Leia mais

Sistemas de Informação I

Sistemas de Informação I + Sistemas de Informação I Tipos de SI Ricardo de Sousa Britto rbritto@ufpi.edu.br + Introdução 2 n As organizações modernas competem entre si para satisfazer as necessidades dos seus clientes de um modo

Leia mais

Tópicos Avançados Business Intelligence. Banco de Dados Prof. Otacílio José Pereira. Unidade 10 Tópicos Avançados Business Inteligence.

Tópicos Avançados Business Intelligence. Banco de Dados Prof. Otacílio José Pereira. Unidade 10 Tópicos Avançados Business Inteligence. Tópicos Avançados Business Intelligence Banco de Dados Prof. Otacílio José Pereira Unidade 10 Tópicos Avançados Business Inteligence Roteiro Introdução Níveis organizacionais na empresa Visão Geral das

Leia mais

Data Warehouse - DW ADM. MARTÍN GLASS CRA/MT 4742

Data Warehouse - DW ADM. MARTÍN GLASS CRA/MT 4742 Data Warehouse - DW Data Warehouse (Armazém de Dados) é um depósito integrado de informações, disponíveis para análise e para a construção de filtros de busca; Centraliza informações localizadas em diferentes

Leia mais

Módulo 2. Definindo Soluções OLAP

Módulo 2. Definindo Soluções OLAP Módulo 2. Definindo Soluções OLAP Objetivos Ao finalizar este módulo o participante: Recordará os conceitos básicos de um sistema OLTP com seus exemplos. Compreenderá as características de um Data Warehouse

Leia mais

ERP Enterprise Resourse Planning Sistemas de Gestão Empresarial

ERP Enterprise Resourse Planning Sistemas de Gestão Empresarial ERP Enterprise Resourse Planning Sistemas de Gestão Empresarial Prof. Pedro Luiz de O. Costa Bisneto 14/09/2003 Sumário Introdução... 2 Enterprise Resourse Planning... 2 Business Inteligence... 3 Vantagens

Leia mais

Sistema. Atividades. Sistema de informações. Tipos de sistemas de informação. Everson Santos Araujo everson@everson.com.br

Sistema. Atividades. Sistema de informações. Tipos de sistemas de informação. Everson Santos Araujo everson@everson.com.br Sistema Tipos de sistemas de informação Everson Santos Araujo everson@everson.com.br Um sistema pode ser definido como um complexo de elementos em interação (Ludwig Von Bertalanffy) sistema é um conjunto

Leia mais

Adriano Maranhão BUSINESS INTELLIGENCE (BI),

Adriano Maranhão BUSINESS INTELLIGENCE (BI), Adriano Maranhão BUSINESS INTELLIGENCE (BI), BUSINESS INTELLIGENCE (BI) O termo Business Intelligence (BI), popularizado por Howard Dresner do Gartner Group, é utilizado para definir sistemas orientados

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.5 2 1 BI BUSINESS INTELLIGENCE BI CARLOS BARBIERI

Leia mais

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br Data Warehousing Leonardo da Silva Leandro Agenda Conceito Elementos básicos de um DW Arquitetura do DW Top-Down Bottom-Up Distribuído Modelo de Dados Estrela Snowflake Aplicação Conceito Em português:

Leia mais

No mundo atual, globalizado e competitivo, as organizações têm buscado cada vez mais, meios de se destacar no mercado. Uma estratégia para o

No mundo atual, globalizado e competitivo, as organizações têm buscado cada vez mais, meios de se destacar no mercado. Uma estratégia para o DATABASE MARKETING No mundo atual, globalizado e competitivo, as organizações têm buscado cada vez mais, meios de se destacar no mercado. Uma estratégia para o empresário obter sucesso em seu negócio é

Leia mais

Gestão da Informação. Gestão da Informação. AULA 3 Data Mining

Gestão da Informação. Gestão da Informação. AULA 3 Data Mining Gestão da Informação AULA 3 Data Mining Prof. Edilberto M. Silva Gestão da Informação Agenda Unidade I - DM (Data Mining) Definição Objetivos Exemplos de Uso Técnicas Tarefas Unidade II DM Prático Exemplo

Leia mais

srbo@ufpa.br www.ufpa.br/srbo

srbo@ufpa.br www.ufpa.br/srbo CBSI Curso de Bacharelado em Sistemas de Informação BI Prof. Dr. Sandro Ronaldo Bezerra Oliveira srbo@ufpa.br www.ufpa.br/srbo Tópicos Especiais em Sistemas de Informação Faculdade de Computação Instituto

Leia mais

ADM041 / EPR806 Sistemas de Informação

ADM041 / EPR806 Sistemas de Informação ADM041 / EPR806 Sistemas de Informação UNIFEI Universidade Federal de Itajubá Prof. Dr. Alexandre Ferreira de Pinho 1 Sistemas de Apoio à Decisão (SAD) Tipos de SAD Orientados por modelos: Criação de diferentes

Leia mais

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse Definição escopo do projeto (departamental, empresarial) Grau de redundância dos dados(ods, data staging) Tipo de usuário alvo (executivos, unidades) Definição do ambiente (relatórios e consultas préestruturadas

Leia mais

Interatividade aliada a Análise de Negócios

Interatividade aliada a Análise de Negócios Interatividade aliada a Análise de Negócios Na era digital, a quase totalidade das organizações necessita da análise de seus negócios de forma ágil e segura - relatórios interativos, análise de gráficos,

Leia mais

Estudar os Sistemas de Processamento de Transação (SPT)

Estudar os Sistemas de Processamento de Transação (SPT) Estudar a Colaboração Empresarial. Objetivos do Capítulo Estudar os Sistemas de Processamento de Transação (SPT) Identificar o papel e alternativas de relatórios dos sistemas de informação gerencial. Estudar

Leia mais

e-business A IBM definiu e-business como: GLOSSÁRIO

e-business A IBM definiu e-business como: GLOSSÁRIO Através do estudo dos sistemas do tipo ERP, foi possível verificar a natureza integradora, abrangente e operacional desta modalidade de sistema. Contudo, faz-se necessário compreender que estas soluções

Leia mais

Data Warehouse. Diogo Matos da Silva 1. Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil. Banco de Dados II

Data Warehouse. Diogo Matos da Silva 1. Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil. Banco de Dados II Data Warehouse Diogo Matos da Silva 1 1 Departamento de Computação Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil Banco de Dados II Diogo Matos (DECOM - UFOP) Banco de Dados II Jun 2013 1 /

Leia mais

Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence

Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence Juntamente com o desenvolvimento desses aplicativos surgiram os problemas: & Data Warehouse July Any Rizzo Oswaldo Filho Década de 70: alguns produtos de BI Intensa e exaustiva programação Informação em

Leia mais

Gestão de TI. Aula 10 - Prof. Bruno Moreno 30/06/2011

Gestão de TI. Aula 10 - Prof. Bruno Moreno 30/06/2011 Gestão de TI Aula 10 - Prof. Bruno Moreno 30/06/2011 Aula passada... Gestão do Conhecimento 08:46 2 Aula de Hoje... BI Apresentação do artigo IT doesn t matter Debate 08:48 3 Caso da Toyota Toyota Motor

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani BI Business Intelligence A inteligência Empresarial, ou Business Intelligence, é um termo do Gartner Group. O conceito surgiu na década de 80 e descreve

Leia mais

UNIVERSIDADE FEDERAL DE MINAS GERAIS BACHARELADO EM SISTEMAS DE INFORMAÇÃO

UNIVERSIDADE FEDERAL DE MINAS GERAIS BACHARELADO EM SISTEMAS DE INFORMAÇÃO UNIVERSIDADE FEDERAL DE MINAS GERAIS BACHARELADO EM SISTEMAS DE INFORMAÇÃO Proposta de Formação Complementar: BUSINESS INTELLIGENCE E SUA APLICAÇÃO À GESTÃO Aluno: Yussif Tadeu de Barcelos Solange Teixeira

Leia mais

CAPÍTULO 7. SISTEMAS DE APOIO À DECISÃO (SAD) SISTEMAS DE SUPORTE À DECISÃO (SSD)

CAPÍTULO 7. SISTEMAS DE APOIO À DECISÃO (SAD) SISTEMAS DE SUPORTE À DECISÃO (SSD) 1 CAPÍTULO 7. SISTEMAS DE APOIO À DECISÃO (SAD) SISTEMAS DE SUPORTE À DECISÃO (SSD) A necessidade dos SAD surgiu em decorrência de diversos fatores, como, por exemplo: Competição cada vez maior entre as

Leia mais

Banco de Dados - Senado

Banco de Dados - Senado Banco de Dados - Senado Exercícios OLAP - CESPE Material preparado: Prof. Marcio Vitorino OLAP Material preparado: Prof. Marcio Vitorino Soluções MOLAP promovem maior independência de fornecedores de SGBDs

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.2 2 1 BI BUSINESS INTELLIGENCE BI CARLOS BARBIERI

Leia mais

Chapter 3. Análise de Negócios e Visualização de Dados

Chapter 3. Análise de Negócios e Visualização de Dados Chapter 3 Análise de Negócios e Visualização de Dados Objetivos de Aprendizado Descrever a análise de negócios (BA) e sua importância par as organizações Listar e descrever brevemente os principais métodos

Leia mais

ASSUNTO DA APOSTILA: SISTEMAS DE INFORMAÇÃO E AS DECISÕES GERENCIAIS NA ERA DA INTERNET

ASSUNTO DA APOSTILA: SISTEMAS DE INFORMAÇÃO E AS DECISÕES GERENCIAIS NA ERA DA INTERNET AULA 06 ASSUNTO DA APOSTILA: SISTEMAS DE INFORMAÇÃO E AS DECISÕES GERENCIAIS NA ERA DA INTERNET JAMES A. O BRIEN MÓDULO 01 Páginas 278 à 285 1 AULA 06 APOIO ÀS DECISÕES DE E BUSINESS 2 E business e Apoio

Leia mais

Gerenciamento de Dados e Gestão do Conhecimento

Gerenciamento de Dados e Gestão do Conhecimento ELC1075 Introdução a Sistemas de Informação Gerenciamento de Dados e Gestão do Conhecimento Raul Ceretta Nunes CSI/UFSM Introdução Gerenciando dados A abordagem de banco de dados Sistemas de gerenciamento

Leia mais

Business Intelligence Um enfoque gerencial para a Inteligência do Negócio.Efrain Turban e outros.tradução. Bookman, 2009.

Business Intelligence Um enfoque gerencial para a Inteligência do Negócio.Efrain Turban e outros.tradução. Bookman, 2009. REFERÊNCIAS o o Business Intelligence Um enfoque gerencial para a Inteligência do Negócio.Efrain Turban e outros.tradução. Bookman, 2009. Competição Analítica - Vencendo Através da Nova Ciência Davenport,

Leia mais

INSTITUTO DE PÓS GRADUAÇÃO ICPG GESTÃO DA TECNOLOGIA DA INFORMAÇÃO

INSTITUTO DE PÓS GRADUAÇÃO ICPG GESTÃO DA TECNOLOGIA DA INFORMAÇÃO INSTITUTO DE PÓS GRADUAÇÃO ICPG GESTÃO DA TECNOLOGIA DA INFORMAÇÃO Prof. Msc. Saulo Popov Zambiasi (saulopz@gmail.com) 11/07/08 10:25 Informação - ICPG - Criciuma - SC 1 Informação - ICPG - Criciuma -

Leia mais

Modelagem de Sistemas de Informação

Modelagem de Sistemas de Informação Modelagem de Sistemas de Informação Professora conteudista: Gislaine Stachissini Sumário Modelagem de Sistemas de Informação Unidade I 1 SISTEMAS DE INFORMAÇÃO...1 1.1 Conceitos...2 1.2 Objetivo...3 1.3

Leia mais

Inteligência de Negócio. Brian Cowhig

Inteligência de Negócio. Brian Cowhig Inteligência de Negócio Brian Cowhig Inteligência de Negócio O Que é Inteligência de Negócio? Três Níveis de Inteligência de Negócio Database Query OLAP Data Mining Produtos de Inteligência de Negócio

Leia mais

Business Intelligence. BI CEOsoftware Partner YellowFin

Business Intelligence. BI CEOsoftware Partner YellowFin Business Intelligence BI CEOsoftware Partner YellowFin O que é Business Intelligence Business Intelligence (BI) é a utilização de uma série de ferramentas para coletar, analisar e extrair informações,

Leia mais

Sistemas de Informações

Sistemas de Informações Sistemas de Informações Prof. Marco Pozam- mpozam@gmail.com A U L A 0 3 Ementa da disciplina Sistemas de Informações Gerenciais: Conceitos e Operacionalização. Suporte ao processo decisório. ERP Sistemas

Leia mais

AULAS 11 e 12 BUSINESS INTELLIGENCE INTELIGÊNCIA NOS NEGÓCIOS

AULAS 11 e 12 BUSINESS INTELLIGENCE INTELIGÊNCIA NOS NEGÓCIOS AULAS 11 e 12 BUSINESS INTELLIGENCE INTELIGÊNCIA NOS NEGÓCIOS CONCEITO Business (negócio): Quer dizer a intermediação de uma atividade comercial com fins lucrativos. Intelligence (inteligência): Faculdade

Leia mais

IBM Cognos Business Intelligence Scorecarding

IBM Cognos Business Intelligence Scorecarding IBM Cognos Business Intelligence Scorecarding Unindo a estratégia às operações com sucesso Visão Geral O Scorecarding oferece uma abordagem comprovada para comunicar a estratégia de negócios por toda a

Leia mais

Thalita Moraes PPGI Novembro 2007

Thalita Moraes PPGI Novembro 2007 Thalita Moraes PPGI Novembro 2007 A capacidade dos portais corporativos em capturar, organizar e compartilhar informação e conhecimento explícito é interessante especialmente para empresas intensivas

Leia mais

Sistemas de Informação James A. O Brien Editora Saraiva Capítulo 5

Sistemas de Informação James A. O Brien Editora Saraiva Capítulo 5 Para entender bancos de dados, é útil ter em mente que os elementos de dados que os compõem são divididos em níveis hierárquicos. Esses elementos de dados lógicos constituem os conceitos de dados básicos

Leia mais

Como melhorar a tomada de decisão. slide 1

Como melhorar a tomada de decisão. slide 1 Como melhorar a tomada de decisão slide 1 P&G vai do papel ao pixel em busca da gestão do conhecimento Problema: grande volume de documentos em papel atrasavam a pesquisa e o desenvolvimento. Solução:

Leia mais

Apresentação da Empresa

Apresentação da Empresa Apresentação da Empresa Somos uma empresa especializada em desenvolver e implementar soluções de alto impacto na gestão e competitividade empresarial. Nossa missão é agregar valor aos negócios de nossos

Leia mais

PÓS-GRADUAÇÃO Lato Sensu. Gestão e Tecnologia da Informação

PÓS-GRADUAÇÃO Lato Sensu. Gestão e Tecnologia da Informação IETEC - INSTITUTO DE EDUCAÇÃO TECNOLÓGICA PÓS-GRADUAÇÃO Lato Sensu Gestão e Tecnologia da Informação BAM: Analisando Negócios e Serviços em Tempo Real Daniel Leôncio Domingos Fernando Silva Guimarães Resumo

Leia mais

Administração de Sistemas de Informação I

Administração de Sistemas de Informação I Administração de Sistemas de Informação I Prof. Farinha Aula 04 Conceito Sistema de Informação é uma série de elementos ou componentes inter-relacionados que coletam (entrada), manipulam e armazenam (processo),

Leia mais

Data Warehouse Processos e Arquitetura

Data Warehouse Processos e Arquitetura Data Warehouse - definições: Coleção de dados orientada a assunto, integrada, não volátil e variável em relação ao tempo, que tem por objetivo dar apoio aos processos de tomada de decisão (Inmon, 1997)

Leia mais

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados slide 1 1 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall Objetivos de estudo Como um banco de dados

Leia mais

Palavras-chave: On-line Analytical Processing, Data Warehouse, Web mining.

Palavras-chave: On-line Analytical Processing, Data Warehouse, Web mining. BUSINESS INTELLIGENCE COM DADOS EXTRAÍDOS DO FACEBOOK UTILIZANDO A SUÍTE PENTAHO Francy H. Silva de Almeida 1 ; Maycon Henrique Trindade 2 ; Everton Castelão Tetila 3 UFGD/FACET Caixa Postal 364, 79.804-970

Leia mais

Uma Ferramenta Web para BI focada no Gestor de Informação

Uma Ferramenta Web para BI focada no Gestor de Informação Uma Ferramenta Web para BI focada no Gestor de Informação Mikael de Souza Fernandes 1, Gustavo Zanini Kantorski 12 mikael@cpd.ufsm.br, gustavoz@cpd.ufsm.br 1 Curso de Sistemas de Informação, Universidade

Leia mais

KDD E MINERAÇÃO DE DADOS:

KDD E MINERAÇÃO DE DADOS: KDD E MINERAÇÃO DE DADOS: Revisão em Data Warehouses Prof. Ronaldo R. Goldschmidt ronaldo@de9.ime.eb.br rribeiro@univercidade.br geocities.yahoo.com.br/ronaldo_goldschmidt 1 DATA WAREHOUSES UMA VISÃO GERAL

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Mining Os métodos tradicionais de Data Mining são: Classificação Associa ou classifica um item a uma ou várias classes categóricas pré-definidas.

Leia mais

Uma estrutura (framework) para o Business Intelligence (BI)

Uma estrutura (framework) para o Business Intelligence (BI) Uma estrutura conceitural para suporteà decisão que combina arquitetura, bancos de dados (ou data warehouse), ferramentas analíticas e aplicações Principais objetivos: Permitir o acesso interativo aos

Leia mais

Microsoft Innovation Center

Microsoft Innovation Center Microsoft Innovation Center Mineração de Dados (Data Mining) André Montevecchi andre@montevecchi.com.br Introdução Objetivo BI e Mineração de Dados Aplicações Exemplos e Cases Algoritmos para Mineração

Leia mais

Unidade III PRINCÍPIOS DE SISTEMAS DE. Prof. Luís Rodolfo

Unidade III PRINCÍPIOS DE SISTEMAS DE. Prof. Luís Rodolfo Unidade III PRINCÍPIOS DE SISTEMAS DE INFORMAÇÃO Prof. Luís Rodolfo Vantagens e desvantagens de uma rede para a organização Maior agilidade com o uso intenso de redes de computadores; Grandes interações

Leia mais

SAD. Paulo Silva, Rodolfo Ribeiro, Vinicius Tavares

SAD. Paulo Silva, Rodolfo Ribeiro, Vinicius Tavares SAD Paulo Silva, Rodolfo Ribeiro, Vinicius Tavares DataWarehouse Armazena informações relativas a uma organização em BD Facilita tomada de decisões Dados são coletados de OLTP(séries históricas) Dados

Leia mais

SISTEMAS INTELIGENTES DE APOIO À DECISÃO

SISTEMAS INTELIGENTES DE APOIO À DECISÃO SISTEMAS INTELIGENTES DE APOIO À DECISÃO As organizações estão ampliando significativamente suas tentativas para auxiliar a inteligência e a produtividade de seus trabalhadores do conhecimento com ferramentas

Leia mais

Prof. Ronaldo R. Goldschmidt. ronaldo.rgold@gmail.com

Prof. Ronaldo R. Goldschmidt. ronaldo.rgold@gmail.com DATA WAREHOUSES UMA INTRODUÇÃO Prof. Ronaldo R. Goldschmidt ronaldo.rgold@gmail.com 1 DATA WAREHOUSES UMA INTRODUÇÃO Considerações Iniciais Conceitos Básicos Modelagem Multidimensional Projeto de Data

Leia mais

Fornecendo Inteligência, para todo o mundo, a mais de 20 anos.

Fornecendo Inteligência, para todo o mundo, a mais de 20 anos. Fornecendo Inteligência, para todo o mundo, a mais de 20 anos. Fundada em 1989, a MicroStrategy é fornecedora líder Mundial de plataformas de software empresarial. A missão é fornecer as plataformas mais

Leia mais

01/12/2009 BUSINESS INTELLIGENCE. Agenda. Conceito. Segurança da Informação. Histórico Conceito Diferencial Competitivo Investimento.

01/12/2009 BUSINESS INTELLIGENCE. Agenda. Conceito. Segurança da Informação. Histórico Conceito Diferencial Competitivo Investimento. BUSINESS INTELLIGENCE Agenda BI Histórico Conceito Diferencial Competitivo Investimento Segurança da Objetivo Áreas Conceito O conceito de Business Intelligencenão é recente: Fenícios, persas, egípcios

Leia mais

A importância da. nas Organizações de Saúde

A importância da. nas Organizações de Saúde A importância da Gestão por Informações nas Organizações de Saúde Jorge Antônio Pinheiro Machado Filho Consultor de Negócios www.bmpro.com.br jorge@bmpro.com.br 1. Situação nas Empresas 2. A Importância

Leia mais

Sistemas de Informações Gerenciais Prof. Esp. André Luís Belini Bacharel em Sistemas de Informações MBA em Gestão Estratégica de Negócios

Sistemas de Informações Gerenciais Prof. Esp. André Luís Belini Bacharel em Sistemas de Informações MBA em Gestão Estratégica de Negócios Sistemas de Informações Gerenciais Prof. Esp. André Luís Belini Bacharel em Sistemas de Informações MBA em Gestão Estratégica de Negócios Como Melhorar a Tomada de Decisão e a Gestão do Conhecimento Capítulo

Leia mais

Estratégias em Tecnologia da Informação

Estratégias em Tecnologia da Informação Estratégias em Tecnologia da Informação Capítulo 6 Sistemas de Informações Estratégicas Sistemas integrados e sistemas legados Sistemas de Gerenciamento de Banco de Dados Material de apoio 2 Esclarecimentos

Leia mais

ADM041 / EPR806 Sistemas de Informação

ADM041 / EPR806 Sistemas de Informação ADM041 / EPR806 Sistemas de Informação UNIFEI Universidade Federal de Itajubá Prof. Dr. Alexandre Ferreira de Pinho 1 Componentes de uma empresa Organizando uma empresa: funções empresariais básicas Funções

Leia mais

Trata-se de uma estratégia de negócio, em primeira linha, que posteriormente se consubstancia em soluções tecnológicas.

Trata-se de uma estratégia de negócio, em primeira linha, que posteriormente se consubstancia em soluções tecnológicas. CUSTOMER RELATIONSHIP MANAGEMENT Customer Relationship Management CRM ou Gestão de Relacionamento com o Cliente é uma abordagem que coloca o cliente no centro dos processos do negócio, sendo desenhado

Leia mais

TECNOLOGIAS SAD E CRM

TECNOLOGIAS SAD E CRM 1 FACULDADE DE CIÊNCIAS APLICADAS SAGRADO CORAÇÃO DIRETORIA DE ENSINO SUPERIOR COLEGIADO DE SISTEMAS DE INFORMAÇÃO ANDRÉ GOMES SANTANA RODRIGO SILVA DE SOUZA TECNOLOGIAS SAD E CRM LINHARES 2007 2 ANDRÉ

Leia mais

SISTEMAS DE INFORMAÇÃO GERENCIAIS

SISTEMAS DE INFORMAÇÃO GERENCIAIS SISTEMAS DE INFORMAÇÃO GERENCIAIS O PODER DA INFORMAÇÃO Tem PODER quem toma DECISÃO Toma DECISÃO correta quem tem SABEDORIA Tem SABEDORIA quem usa CONHECIMENTO Tem CONHECIMENTO quem possui INFORMAÇÃO (Sem

Leia mais

Conceitos. - Sistema de Informação, Estruturas e Classificação. - Dados x Informações. Edson Almeida Junior www.edsonalmeidajunior.com.

Conceitos. - Sistema de Informação, Estruturas e Classificação. - Dados x Informações. Edson Almeida Junior www.edsonalmeidajunior.com. Conceitos - Sistema de Informação, Estruturas e Classificação - Dados x Informações Edson Almeida Junior www.edsonalmeidajunior.com.br Definição de Sistema Uma coleção de objetos unidos por alguma forma

Leia mais

Inteligência Empresarial. BI Business Intelligence. Business Intelligence 22/2/2011. Prof. Luiz A. Nascimento

Inteligência Empresarial. BI Business Intelligence. Business Intelligence 22/2/2011. Prof. Luiz A. Nascimento Inteligência Empresarial Prof. Luiz A. Nascimento BI Pode-se traduzir informalmente Business Intelligence como o uso de sistemas inteligentes em negócios. É uma forma de agregar a inteligência humana à

Leia mais

Tecnologias e Sistemas de Informação

Tecnologias e Sistemas de Informação Universidade Federal do Vale do São Francisco Curso de Administração Tecnologia e Sistemas de Informação - 02 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti

Leia mais

Business Intelligence

Business Intelligence e-book Senior Business Intelligence 1 Índice 03 05 08 14 17 20 22 Introdução Agilize a tomada de decisão e saia à frente da concorrência Capítulo 1 O que é Business Intelligence? Capítulo 2 Quatro grandes

Leia mais

OqueéBI? QualéoobjetivodeBI? 15/03/2009

OqueéBI? QualéoobjetivodeBI? 15/03/2009 Profª. Kelly Business Intelligence (BI) OqueéBI? É um conjunto de conceitos e metodologias que, fazendo uso de acontecimentos (fatos) e sistemas baseados nos mesmos, apóia a tomada de decisões em negócios;

Leia mais

Business Intelligence para todos

Business Intelligence para todos Business Intelligence para todos CCFB - Rio de Janeiro DeciLogic - 2008 Eric Sarzana Diretor eric.sarzana@decilogic.com Agenda DeciLogic O que é o Business Intelligence? Porquê o Business Intelligence?

Leia mais

E-Business global e colaboração

E-Business global e colaboração E-Business global e colaboração slide 1 2011 Pearson Prentice Hall. Todos os direitos reservados. 2.1 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall Objetivos de estudo Quais as principais

Leia mais

Open Source BI Opção para o Mercado Brasileiro

Open Source BI Opção para o Mercado Brasileiro Augusto Belfort novembro/2008 Open Source BI Opção para o Mercado Brasileiro O Caso da ANS Agencia Nacional de Saúde Suplementar 2 Agenda Business Inteligence - Introdução Custos de Avaliar uma solução

Leia mais

APLICATIVOS CORPORATIVOS

APLICATIVOS CORPORATIVOS Sistema de Informação e Tecnologia FEQ 0411 Prof Luciel Henrique de Oliveira luciel@uol.com.br Capítulo 3 APLICATIVOS CORPORATIVOS PRADO, Edmir P.V.; SOUZA, Cesar A. de. (org). Fundamentos de Sistemas

Leia mais

Requisitos de business intelligence para TI: O que todo gerente de TI deve saber sobre as necessidades reais de usuários comerciais para BI

Requisitos de business intelligence para TI: O que todo gerente de TI deve saber sobre as necessidades reais de usuários comerciais para BI Requisitos de business intelligence para TI: O que todo gerente de TI deve saber sobre as necessidades reais de usuários comerciais para BI Janeiro de 2011 p2 Usuários comerciais e organizações precisam

Leia mais