Movimento Harmônico Simples e Amortecido

Tamanho: px
Começar a partir da página:

Download "Movimento Harmônico Simples e Amortecido"

Transcrição

1 Movimento Harmônico Simples e Amortecido INTRODUÇÃO Ana Arruda, Caio Monteiro, Lineu Parra, Vitor Rocha Professor: Marcelo Reyes, CMCC Campus Santo André Resumo O estudo dos Movimentos Harmônicos permite o entendimento de fenômenos que se repetem a intervalos regulares de tempo, como o pêndulo de um relógio antigo. Os cálculos do período e freqüência da oscilação são obtidos através de experimentos com os sistemas pêndulo simples e massa-mola, considerando os efeitos causados pela resistência do ar, da água, da constante k da mola, entre outros. As oscilações podem ser observadas através dos movimentos que se repetem como em um pêndulo de relógio antigo ou em barcos ancorados movimentando-se constantemente com as ondas. O estudo do Movimento Harmônico Simples possibilita o melhor entendimento das oscilações. Algumas propriedades são importantes para descrever tais movimentos: a freqüência f (número de oscilações completadas a cada segundo) e o período T, que está diretamente relacionado com a freqüência e é o tempo necessário para uma oscilação completa. A equação que descreve o período é: Qualquer movimento que se repete a intervalos regulares de tempo é denominado Movimento Harmônico. O pêndulo simples é um sistema formado por uma partícula de massa m, pendurada em uma extremidade por um fio inextensível e de massa desprezível que está preso a um suporte na outra extremidade. O sistema massa-mola, que consiste em um bloco de massa m, oscilando verticalmente, preso a uma mola com constante k. Mas com que tudo isso se relaciona no nosso dia a dia?

2 1 Figura 1. O Astronauta Alan L. Bean, durante 2ª uma Missão do Skylab, mede sua massa corporal através de um dispositivo composto por um assento preso a uma mola, oscilando para frente e para trás. O astronauta mede seu período de oscilação na cadeira; A massa é obtida a partir da equação para o período de um sistema massa-mola oscilante: Figura 2. O Edifício Citicorp em Nova York teve uma grande redução de oscilação com o sistema de amortecimento formado por um bloco conectado ao edifício por mola OBJETIVO Medir experimentalmente as oscilações do pêndulo simples e do sistema massa-mola em diferentes situações, para determinar coeficientes de amortecimento e os fatores que influenciam em seus períodos. Onde: T é o período de oscilação; K a constante da mola; m, a massa efetiva do sistema e M a massa do astronauta. Devido à presença de ventos fortes, a oscilação do Edifício Citicorp, em Nova York, é reduzida por um amortecedor bloco móvel conectado ao edifício por molas montado sobre o pavimento superior do edifício. A constante da mola é escolhida de modo que a freqüência natural do sistema bloco mola tenha o mesmo valor que a freqüência natural do edifício. METODOLOGIA Materiais Suporte para colocar o pêndulo Cronômetro Balança semi-analítica 2 pesos com massas diferente com gancho 1 mola de tamanho compatível Fio (nylon ou barbante) Transferidor em escala 1 Recipiente com água Métodos PARTE A Pêndulo Simples Durante a ação do vento, o edifício e o amortecedor oscilam 180 fora de fase um com o outro, resultando em uma significativa redução da oscilação do prédio.

3 b) Obtenção do coeficiente de amortecimento devido à resistência do ar em um pêndulo simples. A constante de amortecimento está relacionada com a amplitude A pela seguinte fórmula: F Figura 3. Montagem experimental do pêndulo simples. a) Fatores que influenciam o período de um pêndulo simples. Um objeto de massa m será suspenso por um fio de massa desprezível e comprimento L, com uma extremidade fixada em um suporte., onde 1/b é chamada de constante de amortecimento e representa, matematicamente, o tempo necessário para que a amplitude seja reduzida de um fator igual a 1/e em relação ao seu valor inicial. A amplitude será medida com o auxilio de um transferidor. Serão considerados intervalos regulares de tempo proporcionais ao período do pêndulo. Será analisada a constante de amortecimento para duas massas diferentes. PARTE B Sistema massa-mola Nessa parte do experimento será medido o período de oscilação em diferentes situações: 1. Diferentes comprimentos de L (L 1 = 20 cm, L 2 = 40 cm e L 3 = 80 cm). 2. Diferentes amplitudes θ (θ 1 = 5, θ 2 = 15 e θ 3 = 45 ). Para minimizar os erros que estariam presentes na medição de um único período, como tempo de reação para acionar o cronômetro, será medido o intervalo de tempo equivalente a 10 T, onde T é um único período. A medição de cada situação diferente será realizada 5 vezes para a determinação do desvio padrão de cada medida. Figura 4. Montagem experimental do sistema massa mola. a) Obtenção da Constante Elástica k de uma mola. A constante elástica k da mola será obtida pelo método estático onde um peso é colocado na extremidade da mola e é medida a variação x no comprimento da mola no estado de equilíbrio. Se a

4 deformação obedece a lei de Hooke então temos que. b) Obtenção do coeficiente de amortecimento devido à resistência da água Teremos, nesse caso, um suporte rígido. Nele uma mola será presa em uma de suas extremidades, e um objeto de massa m 1 será acoplada à outra extremidade. A essa massa m 1 oscilará e seu movimento será amortecido devido a resistência do ar e posteriormente da água. O objetivo será analisar a como a freqüência de oscilação do sistema varia considerando-o amortecido pelo meio, fazendo uso da seguinte fórmula: Onde b é a constante de amortecimento que depende das características, tanto da massa como do líquido onde a mesma estará imersa. A freqüência angular é obtida a partir do período de oscilação. Os dados serão submetidos aos cálculos necessários, a fim de trazer resultados passíveis de interpretação e comparação entre os dois sistemas. RESULTADOS E DISCUSSÃO A. Fatores que influenciam o período do pêndulo simples. A única aceleração que atua em sentido do movimento no caso de um pêndulo simples é, onde θ é o ângulo inicial. Pela segunda lei de Newton,. Como a equação que representa o movimento harmônico é obtemos que o período para pequenas amplitudes em função do comprimento L do fio de massa desprezível é (considerando a aceleração da gravidade constante e igual a ). Para amplitudes maiores que 15 observamos o aparecimento de um fator que multiplica o período. Os dados obtidos são mostrados nas tabelas a seguir: Tabela I. Período de um pêndulo simples medido para diferentes comprimentos de L corrigidos com o centro de massa do peso utilizado (Amplitude de 15 ). Comprimento L 10 T (Média) Desvio Padrão L 1 =22,1 cm 9,60 s 0,10 L 2 =42,1 cm 13,49 s 0,13 L 3 =82,1 cm 18,68 s 0,23 Tabela II. Período de um pêndulo simples medido para diferentes amplitudes θ (Comprimento L = 82,1 cm). Período 10 T Amplitude θ (média) Desvio Padrão Θ 1 =5 18,54 0,17 Θ 2 =15 18,68 0,23 Θ 3 =45 19,04 0,09 Com os dados da tabela 1 fizemos um ajuste não linear e obtivemos a equação com um coeficiente de determinação confirmando que. Para os dados da segunda tabela observamos que os valores esperados eram da ordem de 0,46 s menores do que todos os valores obtidos experimentalmente (Os valores esperados eram 18,03 s, 18,10 s e 18,74 s, respectivamente). Para comparar esses dados teríamos que levar

5 em conta os erros envolvidos e a propagação de incertezas. B. Amortecimento de um pêndulo simples devido à resistência do ar. Apesar de pequena, a resistência do ar faz com que a quantidade de movimento de um pêndulo diminua. Para objetos com massa elevadas é esperado que demore mais para que suas oscilações reduzam até um patamar imperceptível. A amplitude de um oscilador amortecido decai exponencialmente, assim podemos escrever onde 1/b é o coeficiente de amortecimento que depende da resistência do meio, do formato e da massa do objeto. Medindo a amplitude de um pêndulo simples para duas massas diferentes obtivemos os dados que estão representados na forma de gráfico. O coeficiente de amortecimento foi calculado pelo ajuste do gráfico e vale 0,005 para a massa 1 e 0,002 para massa 2. Esses dados comprovam que o amortecimento é inversamente proporcional a massa utilizada, ou seja, quanto maior a massa menor será o amortecimento. Gráfico 2. Amplitude versus período para massa 2. C. Amortecimento de um sistema massamola devido à resistência do ar e da água. A amplitude de oscilação diminui devido à resistência do ar. O mesmo ocorre com a resistência da água, porém devido à diferença de viscosidade entre esses dois meios a amplitude diminui mais rapidamente se a massa estiver oscilando imersa em água. As equações do movimento harmônico amortecido podem ser escritas da seguinte forma: e é a freqüência natural de oscilação do sistema e vale. Duas massas foram utilizadas no experimento, m 1 = 0,056 Kg e m 2 = 0,112 Kg. A constante elástica da mola foi obtida a partir da deformação produzida por essas duas massas, x 1 = 0,255 m e x 2 = 0,325 m. Deste modo, k = 7,99 N/m. Os dados são mostrados na tabela abaixo. Também foi feita uma simulação para o movimento das duas massas. Gráfico 1. Amplitude versus período para massa 1. Tabela III. Período, freqüência e coeficiente de amortecimento obtidos experimentalmente para um sistema massa-mola.

6 Período (s) Frequência angular w Coeficient e 1/b m1 m2 m1 m2 m1 m2 Ar 1,19 1,52 5,29 4,14 0,83 0,61 Água 0,55 0,70 11,51 9,03 2,80 1,40 possível ao aumento da resistência se encontra na diferença de estados físicos (líquido e gasoso) e consequentemente na diferença entre as forças de interação entre as moléculas CONCLUSÕES Através dos cálculos dos amortecimentos do pêndulo simples e do sistema massamola foi possível compreender melhor a aplicação prática desses sistema no nosso cotidiano, como dos exemplos do edifício Citicorp e no cálculo da massa do astronauta em gravidade zero. Figura 5. Simulação do amortecimento esperado para a massa 1. Em azul a oscilação ocorre dentro da água e em verde no ar. REFERÊNCIAS BIBLIOGRÁFICAS [1]RESNICK, Robert; HALLIDAY, David; KRANE, Kenneth S. Física: 2. 5ª ed. Rio de Janeiro: LTC [2] d6_atividade3_c59479f5.pdf. [3] d3_atividade9_6eeef57c.pdf. AGRADECIMENTOS Agradecemos à Universidade Federal do ABC e ao professor Marcelo Reyes. FIGURA 6. Simulação do amortecimento esperado para a massa 2. Em azul (água) e em verde (ar). É possível observar que as oscilações reduzem mais rapidamente se ocorrerem em um meio que impõe mais resistência. Entretanto a freqüência angular aumenta significativamente. Uma explicação

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

EXPERIMENTO V DETERMINAÇÃO DA CONSTANTE ELÁSTICA E DO PERÍODO PARA O OSCILADOR MASSA MOLA NA HORIZONTAL

EXPERIMENTO V DETERMINAÇÃO DA CONSTANTE ELÁSTICA E DO PERÍODO PARA O OSCILADOR MASSA MOLA NA HORIZONTAL EXPERIMENTO V DETERMINAÇÃO DA CONSTANTE ELÁSTICA E DO PERÍODO PARA O OSCILADOR MASSA MOLA NA HORIZONTAL Introdução Oscilações Estamos cercados por fenômenos que se repetem. Existem lustres que se balançam,

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

Oscilações II. Estudo: Pêndulo Simples Oscilador Forçado Ressonância

Oscilações II. Estudo: Pêndulo Simples Oscilador Forçado Ressonância Oscilações II Estudo: Pêndulo Simples Oscilador Forçado Ressonância Oscilações - Pêndulo Considere um corpo de massa m, presso a extremidade livre de um fio inextensível de comprimento L, como indicado

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

Física Geral e Experimental III

Física Geral e Experimental III Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola

Leia mais

Tópico 8. Aula Prática: Pêndulo Simples

Tópico 8. Aula Prática: Pêndulo Simples Tópico 8. Aula Prática: Pêndulo Simples 1. INTRODUÇÃO Um pêndulo é um sistema composto por uma massa acoplada a um pivô que permite sua movimentação livremente. A massa fica sujeita à força restauradora

Leia mais

Lista 14: Oscilações. Questões

Lista 14: Oscilações. Questões Lista 14: Oscilações NOME: Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para resolução

Leia mais

Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo - FEAU. Física Experimental I Prof. Dra. Ângela Cristina Krabbe

Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo - FEAU. Física Experimental I Prof. Dra. Ângela Cristina Krabbe Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo - FEAU Física Experimental I Prof. Dra. Ângela Cristina Krabbe 1. Qual o período de oscilação de um pêndulo simples de

Leia mais

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T. Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento

Leia mais

Noções Básicas de Física Arquitectura Paisagística LEI DE HOOKE (1)

Noções Básicas de Física Arquitectura Paisagística LEI DE HOOKE (1) LEI DE HOOKE INTRODUÇÃO A Figura 1 mostra uma mola de comprimento l 0, suspensa por uma das suas extremidades. Quando penduramos na outra extremidade da mola um corpo de massa m, a mola passa a ter um

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS FÍSICA GERAL E EXPERIMENTAL II-E

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS FÍSICA GERAL E EXPERIMENTAL II-E UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS 122 - FÍSICA GERAL E EXPERIMENTAL II-E www.fis.ufba.br/~fis122 LISTA DE EXERCÍCIOS: OSCILAÇÕES 2014.1 01)

Leia mais

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção.

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. Lista 14: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

Oscilações. Uma partícula material executa um MHS quando oscila periodicamente em torno de uma posição de equilíbrio, sobre uma trajetória reta.

Oscilações. Uma partícula material executa um MHS quando oscila periodicamente em torno de uma posição de equilíbrio, sobre uma trajetória reta. Oscilações Movimento Harmônico Simples Uma partícula material executa um MHS quando oscila periodicamente em torno de uma posição de equilíbrio, sobre uma trajetória reta. Dinâmica do MCU As oscilações

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência

Leia mais

Primeira Lista de Exercícios.

Primeira Lista de Exercícios. Figure 1: Diagrama esquemático do MHS da partícula do exercício 1. Primeira Lista de Exercícios. 1. Uma partícula que se move num movimento harmônico simples de período T como o da Figura 1 está em x m

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

(Versão 2014/2) (b) (d)

(Versão 2014/2) (b) (d) MOVIMENTO HARMÔNICO SIMPLES (Versão 2014/2) 1. INTRODUÇÃO Um dos movimentos mais importantes que observamos na natureza é o movimento oscilatório. Chamado também movimento periódico ou vibracional. Em

Leia mais

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 2 OSCILAÇÕES PROF.: KAIO DUTRA Movimento Harmônico Simples O movimento harmônico simples é um tipo básico de oscilação. Movimento Harmônico Simples Uma propriedade

Leia mais

EXPERIÊNCIA M003-3 PÊNDULO SIMPLES

EXPERIÊNCIA M003-3 PÊNDULO SIMPLES UFSC - CFM DEPTO. DE FÍSICA FÍSICA EXPERIMENTAL I - FSC 5122 1 - OBJETIVOS EXPERIÊNCIA M003-3 PÊNDULO SIMPLES a) Medir a aceleração da gravidade local. b) Identificar o equipamento e entender seu funcionamento.

Leia mais

Entender o funcionamento de um pêndulo, correlacioná-lo com o pêndulo simples, determinar a aceleração da gravidade e o momento de inércia do corpo.

Entender o funcionamento de um pêndulo, correlacioná-lo com o pêndulo simples, determinar a aceleração da gravidade e o momento de inércia do corpo. UNIVERSIDADE DE SÃO PAULO Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Departamento de Física Fone: (016) 3.3718/3693 Fax: (016) 3 949 USP EXPERIÊNCIA PÊNDULO Objetivos Entender o funcionamento

Leia mais

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009 Universidade de São Paulo Instituto de Física FEP11 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 9 Primeira Lista de Exercícios Oscilações 1) Duas molas idênticas, cada uma de constante, estão

Leia mais

Física I 2010/2011. Aula 10. Movimento Oscilatório II

Física I 2010/2011. Aula 10. Movimento Oscilatório II Física I 2010/2011 Aula 10 Movimento Oscilatório II Sumário Capítulo 15: Oscilações 15-3 A Energia no Movimento Harmónico Simples 15-4 Um Oscilador Harmónico Simples Angular 15-5 O Pêndulo simples 15-7

Leia mais

Laboratório de Física 2

Laboratório de Física 2 Prof. Dr. Sidney Alves Lourenço Curso: Engenharia de Materiais Laboratório de Física Grupo: --------------------------------------------------------------------------------------------------------- PÊNDULO

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II Movimentos Periódicos 1 Objetivos Gerais: Verificar experimentalmente o comportamento da força exercida por uma mola em função do alongamento da mola; Determinar a constante de rigidez k da mola; Determinar

Leia mais

LISTA DE EXERCÍCIOS 1

LISTA DE EXERCÍCIOS 1 LISTA DE EXERCÍCIOS Esta lista trata de vários conceitos associados ao movimento harmônico simples (MHS). Tais conceitos são abordados no capítulo 3 do livro-texto: Moysés Nussenzveig, Curso de Física

Leia mais

PRÁTICA 11: LEI DE HOOKE E OSCILADOR MASSA-MOLA MOLA

PRÁTICA 11: LEI DE HOOKE E OSCILADOR MASSA-MOLA MOLA PRÁTICA 11: LEI DE HOOKE E OSCILADOR MASSA-MOLA MOLA O entendimento de determinados tipos de forças, como a força de uma mola sobre um corpo, é a chave para a compreensão do mundo quântico. Por exemplo,

Leia mais

INSTITUTO FEDERAL DO PARANÁ CAMPUS FOZ DO IGUAÇU LICENCIATURA EM FÍSICA. Pêndulo Simples. Brunna Arrussul. Deborah Rezende.

INSTITUTO FEDERAL DO PARANÁ CAMPUS FOZ DO IGUAÇU LICENCIATURA EM FÍSICA. Pêndulo Simples. Brunna Arrussul. Deborah Rezende. INSTITUTO FEDERAL DO PARANÁ CAMPUS FOZ DO IGUAÇU LICENCIATURA EM FÍSICA Pêndulo Simples Brunna Arrussul Deborah Rezende Foz do Iguaçu, PR SUMÁRIO SUMÁRIO...2 INTRODUÇÃO...3 Objetivos...4 MATERIAL E MÉTODOS...5

Leia mais

Exercício 1. Exercício 2.

Exercício 1. Exercício 2. Exercício 1. Em um barbeador elétrico, a lâmina se move para frente e para trás ao longo de uma distância de 2,0 mm em movimento harmônico simples, com frequência de 120 Hz. Encontre: (a) a amplitude,

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrerem turbulência

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física

UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental II (MAF 2202) L I S T A I Capítulo 16 Oscilações 1. Um oscilador

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II 1 Objetivos Gerais: Movimento Harmônico Amortecido Determinar o período de oscilação do pêndulo T ; Determinar a constante de amortecimento. *Anote a incerteza dos instrumentos de medida utilizados: ap

Leia mais

ANALISANDO O MODELO DE FORÇA COM O PÊNDULO SIMPLES

ANALISANDO O MODELO DE FORÇA COM O PÊNDULO SIMPLES ANALISANDO O MODELO DE FORÇA COM O PÊNDULO SIMPLES Helder Antônio Barbosa matrícula 2017016592 Karyn Meyer matrícula 2016019562 Roberto Luiz Silva matricula 2016019830 Rogerio Ottoboni matrícula 2017017043

Leia mais

EMPREGO DE MÉTODOS MATEMÁTICOS PARA A OBTENÇÃO DO MÓDULO DE CISALHAMENTO EM SISTEMAS COMPLEXOS

EMPREGO DE MÉTODOS MATEMÁTICOS PARA A OBTENÇÃO DO MÓDULO DE CISALHAMENTO EM SISTEMAS COMPLEXOS EMPREGO DE MÉTODOS MATEMÁTICOS PARA A OBTENÇÃO DO MÓDULO DE CISALHAMENTO EM SISTEMAS COMPLEXOS Ellen C. Borin, Patrícia H. Yassue, Rafael L. S. Canevesi, Rodrigo A. Barella, Fernando R. Espinoza Quiñones

Leia mais

Ao atingir o ponto B pela quarta vez, temos 3,5 oscilações completas em 7 segundos; logo:

Ao atingir o ponto B pela quarta vez, temos 3,5 oscilações completas em 7 segundos; logo: 01 Ao atingir o ponto B pela quarta vez, temos 3,5 oscilações completas em 7 segundos; logo: 7 T = T = 2 s 3,5 Resposta: E 1 02 Sabemos que o período de uma oscilação é proporcional a L é o comprimento;

Leia mais

OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira

OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE FÍSICA DE JI-PARANÁ DEFIJI OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira

Leia mais

Força de interação entre qualquer corpo de massa m com um campo gravitacional e pode ser calculado com a equação:

Força de interação entre qualquer corpo de massa m com um campo gravitacional e pode ser calculado com a equação: Principais forças da dinâmica Resumo Após o estudo das Leis de Newton, podemos definir as principais forças que usamos na Dinâmica: força peso, força normal, força elástica, tração e força de atrito. Para

Leia mais

Soma das Corretas: Soma das Corretas:

Soma das Corretas: Soma das Corretas: 1. (UFRGS - 2012) Um determinado pêndulo oscila com pequena amplitude em um dado local da superfície terrestre, e seu período de oscilação é de 8 s. Reduzindo-se o comprimento desse pêndulo para 1/4 do

Leia mais

Verificar as equações para a constante de mola efetiva em um sistema com molas em série e outro com molas em paralelo.

Verificar as equações para a constante de mola efetiva em um sistema com molas em série e outro com molas em paralelo. 74 9.4 Experiência 4: Deformações Elásticas e Pêndulo Simples 9.4.1 Objetivos Interpretar o gráfico força x elongação; Enunciar e verificar a validade da lei de Hooke; Verificar as equações para a constante

Leia mais

O Sistema Massa-Mola

O Sistema Massa-Mola O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola

Leia mais

O Movimento Harmônico Simples

O Movimento Harmônico Simples O Movimento Harmônico Simples Bibliografia e Figuras: Halliday, Resnick e Walker, vol 2 8 a ed, Cap 15. Todo o movimento que se repete em intervalos regulares é chamado de movimento periódico ou movimento

Leia mais

Movimento harmônico simples (MHS)

Movimento harmônico simples (MHS) Movimento harmônico simples (MHS) Movimento periódico: movimento que se repete em intervalos de tempo sucessivos e iguais. Ex.: movimento circular uniforme (MCU). Período (T): menor intervalo de tempo

Leia mais

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) A CINEMÁTICA NO MHS 1.1.- (HALLIDAY, 4ª EDIÇÃO, CAP. 14, 1E) Um objeto sujeito a um movimento harmônico simples leva 0,25 s para

Leia mais

Exemplo. T 1 2g = -2a T 2 g = a. τ = I.α. T 1 T 2 g = - 3a a g = - 3a 4a = g a = g/4. τ = (T 1 T 2 )R. T 1 T 2 = Ma/2 T 1 T 2 = a.

Exemplo. T 1 2g = -2a T 2 g = a. τ = I.α. T 1 T 2 g = - 3a a g = - 3a 4a = g a = g/4. τ = (T 1 T 2 )R. T 1 T 2 = Ma/2 T 1 T 2 = a. Exercícios Petrobras 2008 eng. de petróleo Dois corpos de massa m 1 = 2 kg e m 2 = 1 kg estão fixados às pontas de uma corda com massa e elasticidade desprezíveis, a qual passa por uma polia presa ao

Leia mais

Centro Federal de Educação Tecnológica de Minas Gerais

Centro Federal de Educação Tecnológica de Minas Gerais Centro Federal de Educação ecnológica de Minas Gerais Graduação em Engenharia da Computação Prática 07 - Oscilação Sistema Massa-Mola Alunos: Egmon Pereira; Igor Otoni Ripardo de Assis Leandro de Oliveira

Leia mais

Primeira Lista de Exercícios.

Primeira Lista de Exercícios. Figure 1: Diagrama esquemático do MHS da partícula do exercício 1. Primeira Lista de Exercícios. 1. Uma partícula que se move num movimento harmônico simples de período T como o da Figura 1 está em x m

Leia mais

Lista de Exercícios - OSCILAÇÕES

Lista de Exercícios - OSCILAÇÕES UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - OSCILAÇÕES Perguntas: 1. O gráfico da figura 1 mostra a aceleração

Leia mais

Dinâ micâ de Mâ quinâs e Vibrâçõ es II

Dinâ micâ de Mâ quinâs e Vibrâçõ es II Dinâ micâ de Mâ quinâs e Vibrâçõ es II Aula 1 Revisão e princípios básicos: O objetivo desta aula é recapitular conceitos básicos utilizados em Dinâmica e Vibrações. MCU Movimento circular uniforme 1.

Leia mais

Experimento científico para a determinação da aceleração da gravidade local empregando materiais de baixo custo

Experimento científico para a determinação da aceleração da gravidade local empregando materiais de baixo custo Experimento científico para a determinação da aceleração da gravidade local empregando materiais de baixo custo Marcos Aurélio da Silva 1 1 Professor do Ensino Básico, Técnico e Tecnológico do Instituto

Leia mais

Figura 1. Ilustração de uma mola distendida por uma massa m.

Figura 1. Ilustração de uma mola distendida por uma massa m. Lei de Hooke 1. Introdução A Lei de Hooke é uma lei da física que descreve a força restauradora que existe em vários sistemas quando comprimidos ou distendidos. Por exemplo, uma mola esticada tende a voltar

Leia mais

MHS Movimento Harmônico Simples

MHS Movimento Harmônico Simples 2010 ESCOLA ALUNO MHS Movimento Harmônico Simples 1. (Mackenzie) Uma partícula descreve um movimento harmônico simples segundo a equação X = 0,3. cos (π /3 + 2.t), no S.I.. O módulo da máxima velocidade

Leia mais

Por outro lado, sabemos que o módulo e o sentido da força que atua sobre uma partícula em MHS são dados, genericamente, por:

Por outro lado, sabemos que o módulo e o sentido da força que atua sobre uma partícula em MHS são dados, genericamente, por: Sistema Corpo-Mola Um corpo de massa m se apóia sobre uma superfície horizontal sem atrito e está preso a uma mola (de massa desprezível) de constante elástica k (Fig.18). Se o corpo é abandonado com a

Leia mais

Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 6

Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 6 Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental EXPERIMENTO 6 Condições de equilíbrio estático utilizando o plano inclinado por fuso Disciplina: Física Experimental

Leia mais

Aula do cap. 16 MHS e Oscilações

Aula do cap. 16 MHS e Oscilações Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento

Leia mais

O pêndulo simples é constituído por uma partícula de massa

O pêndulo simples é constituído por uma partícula de massa AULA 42 APLICAÇÕES DO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: APLICAR A TEORIA DO MOVIMENTO HARMÔNICO SIMPLES A PÊNDULOS 42.1 PÊNDULO SIMPLES: O pêndulo simples é constituído por uma partícula de massa

Leia mais

As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho:

As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho: EXPERIÊNCIA 1: Pesa-espíritos EXEMPLO DE RESOLUÇÃO: Esquema da montagem: H 0 h 0 M As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho: M = massa do tubo + massa adicionada

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

Lei de Hooke. 1 Objetivo. 2 Introdução Teórica

Lei de Hooke. 1 Objetivo. 2 Introdução Teórica Lei de Hooke 1 Objetivo Comprovação experimental da lei de Hooke. Determinação das constantes elásticas de uma mola, de duas molas em série e de duas molas em paralelo. 2 Introdução Teórica A lei de Hooke

Leia mais

EXPERIÊNCIA M018-TE CONSTANTE ELÁSTICA DA MOLA

EXPERIÊNCIA M018-TE CONSTANTE ELÁSTICA DA MOLA UFSC CFM DEPARTAMENTO DE FÍSICA LABORATÓRIO DE MECÂNICA, ACÚSTICA E TERMODINÂMICA EXPERIÊNCIA M018-TE CONSTANTE ELÁSTICA DA MOLA 1 OBJETIVOS Determinar experimentalmente o valor da constante elástica k

Leia mais

BC 0205 Fenômenos Térmicos

BC 0205 Fenômenos Térmicos BC 0205 Fenômenos Térmicos Experimento 2 Roteiro Dilatação dos metais Professor: Data: / /2016 Turma: Turno: Proposta Compreender o efeito de dilatação (contração) térmica em metais e determinar o coeficiente

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

Lista Básica Aulas 22 e 23 Frente 3

Lista Básica Aulas 22 e 23 Frente 3 TEXTO PARA A PRÓXIMA QUESTÃO: Considere os dados abaixo para resolver a(s) questão(ões), quando for necessário. Constantes físicas Aceleração da gravidade próximo à superfície da Terra: Aceleração da gravidade

Leia mais

Laboratório de Física

Laboratório de Física Laboratório de Física Experimento 06: Oscilações Disciplina: Laboratório de Física Experimental I Professor: Turma: Data: / /20 Alunos: 1: 2: 3: 4: 5: 1/11 06 Oscilações 1.1. Objetivos Determinar as constantes

Leia mais

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais

Leia mais

Lista 12: Oscilações NOME:

Lista 12: Oscilações NOME: Lista 12: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

DETERMINAÇÃO DAS CONSTANTES ELASTICAS DE MOLAS E ESTUDO DEOSCILAÇÕES HARMÓNICAS

DETERMINAÇÃO DAS CONSTANTES ELASTICAS DE MOLAS E ESTUDO DEOSCILAÇÕES HARMÓNICAS Faculdade de Ciências e Tecnologias da Universidade de Coimbra Departamento de Física DETERMINAÇÃO DAS CONSTANTES ELASTICAS DE MOLAS E ESTUDO DEOSCILAÇÕES HARMÓNICAS Mestrado Integrado em Engenharia Física

Leia mais

Laboratório de Física

Laboratório de Física Laboratório de Física Experimento 06: Oscilações Disciplina: Laboratório de Física Experimental I Professor: Turma: Data: / /0 Alunos: : : : : : /0 06 Oscilações.. Objetivos Determinar as constantes elásticas

Leia mais

Oscilações, Coerência e Ressonância

Oscilações, Coerência e Ressonância , Coerência e Ressonância 1. Por que alguns sistemas físicos oscilam e outros não?. O que caracteriza um sistema oscilatório? 3. Como se mede o período de um pêndulo? parâmetros internos Oscilaç A determinação

Leia mais

Análise Experimental do Sistema Massa-Mola através da Lei de Hooke Experimental Analysis of the Mass-Spring System by Hooke s Law

Análise Experimental do Sistema Massa-Mola através da Lei de Hooke Experimental Analysis of the Mass-Spring System by Hooke s Law Análise Experimental do Sistema Massa-Mola através da Lei de Hooke Experimental Analysis of the Mass-Spring System by Hooke s Law Luciano Nascimento Doutor em Engenharia Química e de Materiais luciano.ufpe@gmail.com

Leia mais

Pêndulo Físico. Cientistas e Engenheiros, Vol. 2, Tradução da 8ª edição norte-americana, Cengage Learning, 2011) 1. Introdução

Pêndulo Físico. Cientistas e Engenheiros, Vol. 2, Tradução da 8ª edição norte-americana, Cengage Learning, 2011) 1. Introdução Pêndulo Físico 1. Introdução Nesta experiência estudaremos o movimento periódico executado por um corpo rígido que oscila em torno de um eixo que passa pelo corpo, o que é denominado de pêndulo físico,

Leia mais

ENGENHOCAS. Pêndulo de torção

ENGENHOCAS. Pêndulo de torção ENGENHOCAS Pêndulo de torção Ana Carolina Malatesta 1370404 Beatriz Barcellos Mattos 137041 Eduarda Mihara 137038 Sabrini Oliveira 1370668 Profª. Drª. Maria Lúcia Pereira Antunes Laboratório de Física

Leia mais

FORÇA ELÁSTICA. Onde: F: intensidade da força aplicada (N); k: constante elástica da mola (N/m); x: deformação da mola (m).

FORÇA ELÁSTICA. Onde: F: intensidade da força aplicada (N); k: constante elástica da mola (N/m); x: deformação da mola (m). FORÇA ELÁSTICA Imagine uma mola presa em uma das extremidades a um suporte, e em estado de repouso (sem ação de nenhuma força). Quando aplicamos uma força F na outra extremidade, a mola tende a deformar

Leia mais

As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho:

As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho: EXPERIÊNCIA : Pesa-espíritos EXEPO DE RESOUÇÃO: Esquema da montagem: H 0 h 0 As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho: = massa do tubo + massa adicionada necessária

Leia mais

MODELAGEM MATEMÁTICA DAS OSCILAÇÕES DE UM PÊNDULO

MODELAGEM MATEMÁTICA DAS OSCILAÇÕES DE UM PÊNDULO MODELAGEM MATEMÁTICA DAS OSCILAÇÕES DE UM PÊNDULO ROSSATO, Jéssica Helisa Hautrive; BISOGNIN, Eleni. Trabalho de Iniciação Científica, BIC- FAPERGS Curso de Engenharia de Materiais do Centro Universitário

Leia mais

Relatório da Prática nº5 Molas

Relatório da Prática nº5 Molas UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO Campus Maracanã Engenharia Turma 3 Professor: Eduardo Relatório da Prática nº5 Molas 1º PERÍODO CAROLINA TRINDADE RUFINO DOS SANTOS DIEGO HUTTER SOBREIRA CATALÃO

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II Pêndulos

Departamento de Física - ICE/UFJF Laboratório de Física II Pêndulos Pêndulos Pêndulo 1 Pêndulo Simples e Pêndulo Físico 1 Objetivos Gerais: Determinar experimentalmente o período de oscilação de um pêndulo físico e de um pêndulo simples; Determinar experimentalmente o

Leia mais

Física para Engenharia II - Prova P a (cm/s 2 ) -10

Física para Engenharia II - Prova P a (cm/s 2 ) -10 4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis

Leia mais

Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 7

Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 7 Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental EXPERIMENTO 7 Determinação da constante elástica de uma mola utilizando o plano inclinado por fuso Disciplina:

Leia mais

Prova Experimental. (em português)

Prova Experimental. (em português) E-2 INTRODUÇÃO: As oscilações dos sólidos (pêndulos, molas, acoplamentos entre pêndulos e molas) permitem analizar as diversas propriedades destes sólidos: massa, momentos de inércia, frequências próprias,

Leia mais

Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 3

Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 3 Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental: EXPERIMENTO 3 Determinação da aceleração da gravidade local utilizando o plano inclinado por fuso Disciplina:

Leia mais

RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS Física Experimental II ONDAS DA CORDA AO SOM

RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS Física Experimental II ONDAS DA CORDA AO SOM UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE FÍSICA RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS01260 - Física Experimental II ONDAS DA CORDA AO SOM Porto Alegre, 28 de Maio de 2015. Nome: Vítor de

Leia mais

Lista de revisão para a prova

Lista de revisão para a prova Turma: Licenciatura em Física Período: 1º Disciplina: Introdução à Física Experimental Profª Marcia Saito Lista de revisão para a prova I) Leitura de equipamentos 1) Fazer a leitura dos seguintes instrumentos:

Leia mais

Prof. Márcio Marinho LEIS DE NEWTON

Prof. Márcio Marinho LEIS DE NEWTON 1º ano FÍSICA Prof. Márcio Marinho 1 2 3 4 1º ano FÍSICA Prof. Márcio Marinho APLICAÇÕES DAS 5 6 MAIS QUESTÕES 01-(UFB) Determine a intensidade, direção e sentido do vetor aceleração de cada corpo a seguir,

Leia mais

Fís. Semana. Leonardo Gomes (Guilherme Brigagão)

Fís. Semana. Leonardo Gomes (Guilherme Brigagão) Semana 8 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA

Leia mais

Capí tulo 6 Movimento Oscilato rio Harmo nico

Capí tulo 6 Movimento Oscilato rio Harmo nico Capí tulo 6 Movimento Oscilato rio Harmo nico 1. O Movimento Harmónico Simples Vamos estudar o movimento de um corpo sujeito a uma força elástica. Consideramos o sistema como constituído por um corpo de

Leia mais

Física 1. 3 a prova 09/12/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 3 a prova 09/12/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 3 a prova 09/12/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise a

Leia mais

ANÁLISE EXPERIMENTAL DO SISTEMA MASSA-MOLA ATRAVÉS DA LEI DE HOOKE

ANÁLISE EXPERIMENTAL DO SISTEMA MASSA-MOLA ATRAVÉS DA LEI DE HOOKE ANÁLISE EXPERIMENTAL DO SISTEMA MASSA-MOLA ATRAVÉS DA LEI DE HOOKE Resumo: Nascimento, L. 1 ; Melnyk, A. 2 Neste artigo, apresentamos as medidas efetuadas e as análises verificando a Lei de Hooke num sistema

Leia mais

Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I /08 FORÇA GRAVÍTICA

Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I /08 FORÇA GRAVÍTICA Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I - 2007/08 1. Objectivo FORÇA GRAVÍTICA Comparar a precisão de diferentes processos de medida; Linearizar

Leia mais

Em outras palavras, no regime elástico há uma dependência linear entre F e a deformação x. Este é o comportamento descrito pela lei de Hooke: F = k x

Em outras palavras, no regime elástico há uma dependência linear entre F e a deformação x. Este é o comportamento descrito pela lei de Hooke: F = k x Aula 6: Lei de Hooke 1 Introdução A lei de Hooke descreve a força restauradora que existe em diversos sistemas quando comprimidos ou distendidos. Qualquer material sobre o qual exercermos uma força sofrerá

Leia mais

DETERMINAÇÃO EXPERIMENTAL DA VELOCIDADE DE UM PROJÉTIL UTILIZANDO UM PÊNDULO BALÍSTICO

DETERMINAÇÃO EXPERIMENTAL DA VELOCIDADE DE UM PROJÉTIL UTILIZANDO UM PÊNDULO BALÍSTICO DETERMINAÇÃO EXPERIMENTAL DA VELOCIDADE DE UM PROJÉTIL UTILIZANDO UM PÊNDULO BALÍSTICO Cezar Eduardo Pereira Picanço 1, Jane Rosa 2 RESUMO Este trabalho apresenta os resultados e procedimentos utilizados

Leia mais

Força de atrito e as leis de Newton. Isaac Newton

Força de atrito e as leis de Newton. Isaac Newton Força de atrito e as leis de Newton Isaac Newton o Causadas pelo movimento de um corpo em relação a outro ou em relação ao ambiente o Sempre apontam na direção contrária ao movimento (frenagem) o Força

Leia mais

PROGRAD / COSEAC Padrão de Respostas Física Grupo 04

PROGRAD / COSEAC Padrão de Respostas Física Grupo 04 1 a QUESTÃO: Dois blocos estão em contato sobre uma mesa horizontal. Não há atrito entre os blocos e a mesa. Uma força horizontal é aplicada a um dos blocos, como mostra a figura. a) Qual é a aceleração

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/14 2/14 Introdução Conforme mencionado anteriormente, um sistema com n graus de liberdade necessita de n coordenadas independentes para descrever sua configuração e movimento. Normalmente essas coordenadas

Leia mais

MODELAGEM DE UM OSCILADOR NÃO LINEAR OBSERVADO NOS CURSOS DE FÍSICA BÁSICA.

MODELAGEM DE UM OSCILADOR NÃO LINEAR OBSERVADO NOS CURSOS DE FÍSICA BÁSICA. MODELAGEM DE UM OSCILADOR NÃO LINEAR OBSERVADO NOS CURSOS DE FÍSICA BÁSICA. 1 IFBA, campus Salvador. e-mail: rnaziazeno@ifba.edu.br 2 IFBA, campus Salvador. e-mail: nielsfl@ifba.edu.br 3 IFBA, campus Salvador.

Leia mais

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples

Leia mais

Massa: uma abordagem experimental

Massa: uma abordagem experimental P21-1 Massa: uma abordagem experimental Phillip A. B. Galli e Radamés A. Silva Instituto de Física da USP (Data: 14 de Fevereiro de 2006) A experiência teve como objetivo determinar qual dos métodos de

Leia mais

Física I VS 18/07/2015

Física I VS 18/07/2015 Física I VS 18/07/2015 NOME MATRÍCULA TURMA PROF. Lembrete: 20 questões de múltipla escolha. Cada questão vale 0,5 ponto Utilize: g = 9,80 m/s 2, exceto se houver alguma indicação em contrário. Nota 1.

Leia mais

Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular.

Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular. Oscilações amortecidas Lista de exercícios Exercício 1 harmônica? Qualitativamente, o que é que distingue uma oscilação amortecida de uma oscilação Exercício 2 um deles? Quais são os três possíveis regimes

Leia mais