PROBABILIDADE & ESTATÍSTICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "PROBABILIDADE & ESTATÍSTICA"

Transcrição

1 PROBABILIDADE & ESTATÍSTICA Lilian de Souza Vismara Mestre Eng. Elétrica ESSC / USP Licenciada em Matemática UFSCar

2 PROBABILIDADE & ESTATÍSTICA VARIÁVEIS ALEATÓRIAS DISTRIBUIÇÕES DE PROBABILIDADE Lilian de Souza Vismara Mestre Eng. Elétrica ESSC / USP Licenciada em Matemática UFSCar

3 Introdução O que é Variável Aleatória? Variável aleatória é uma função que relaciona os valores de uma variável com probabilidades. Podemos identificar dois tipos de variáveis aleatórias : discretas e contínuas. O que são Parâmetros? São informações que controlam o comportamento da variável aleatória. Exemplo: média. 3

4 Alguns modelos probabilísticos para variáveis aleatórias Algumas variáveis aleatórias adaptam-se muito bem a uma série de problemas práticos. Logo, um estudo pormenorizado dessas variáveis é de grande importância para a construção de modelos probabilísticos para situações reais e a consequente estimação de parâmetros. Para algumas dessa distribuições existem tabelas que facilitam o cálculo de probabilidades, em função de seus parâmetros. Nesta seção, iremos estudar alguns desses modelos, procurando enfatizar as condições em que eles são utilizados as funções de probabilidades (variáveis discretas ou de funções de densidade de probabilidade (variáveis contínuas, bem como calcular probabilidade de ocorrência de eventos. 4

5 Distribuição de Probabilidade? Em estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Ela é uma função cujo domínio são os valores da variável e cuja imagem são as probabilidades de a variável assumir cada valor do domínio. O conjunto imagem deste tipo de função está sempre restrito ao intervalo entre 0 e. Uma distribuição de probabilidade pode ser discreta (como em um jogo de dados ou contínua. É comum o uso de funções que se ajustem à distribuição de probabilidade. 5

6 Distribuições de Probabilidades para Variáveis Aleatórias Discretas Distribuição Uniforme Discreta Distribuição de Bernoulli Distribuição Binomial Distribuição de Poisson 6

7 Distribuição Uniforme Discreta 7

8 Distribuição de Bernoulli O que as perguntas têm em comum? Diminuirão os casos de dengue no próximo ano? Haverá uma alta do trigo este ano? Uma moeda lançada vai dar cara? O tipo de resposta: Sim ou não. 8

9 Distribuição de Bernoulli Variáveis aleatórias cuja resposta é sim/não seguem uma distribuição de Bernoulli. X ~ Ber ( p Sim ou não? Sim (X= Não (X=0 p p = q E ( V ( ( q X X p pq p

10 Distribuição Binomial Considere agora as seguintes perguntas: Quantas vezes vão ocorrer casos de dengue no próximo ano? Quantas vezes vai haver uma alta do trigo nos próximos 0 anos? Se lançarmos uma moeda 5 vezes, quantas vezes teremos cara? Muitas vezes, não queremos saber apenas se algo ocorre ou não. Queremos saber quantas vezes ela ocorre. 0

11 Distribuição Binomial Se lançarmos uma moeda 5 vezes, quantas vezes teremos cara? Com apenas 5 lançamentos o método da árvore se torna inviável. árvore das probabilidades Início cara (/ coroa (/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/ cara(/

12 Distribuição Binomial A distribuição binomial resolve problemas de contagem respondendo perguntas do tipo quantos em experimentos onde: ( há dois resultados possíveis, ( a probabilidade de sucesso é constante e (3 os eventos são independentes. X ~ Bin ( n, p E ( X np P ( X x x! n n! x! p x q n x Var ( X npq

13 Distribuição de Poisson Muitas pessoas confundem a distribuição binomial com a de Poisson, já que ambas resolvem problemas de contagem. Uma diferença fácil de observar entre as duas é que a binomial tem um número máximo possível de ocorrências e a Poisson não tem. EXEMPLOS: Se lançarmos uma moeda 3 vezes, qual é o número máximo de caras que se poderá obter? Se lançarmos uma moeda 00 vezes, qual é o número máximo de caras que se poderá obter? Quantas pessoas estarão na fila no horário de pico? Quantos telefonemas por dia são registrados em um call center? Quantos acidentes vão acontecer este ano? Assim, uma pergunta como quantas pessoas estarão na fila no horário de pico não pode ser respondida por uma binomial. 3

14 Distribuição de Poisson Nestes exemplos, interessa contar quantas vezes alguma coisa acontece em um espaço contínuo de tempo. Quando isso acontece, podemos usar a distribuição de Poisson X ~ Poisson ( E ( X P ( X k e k! k Var ( X 4

15 Distribuições de Probabilidades para Variáveis Aleatórias Contínuas (f.d.p. Distribuição Uniforme Contínua Distribuição Normal Distribuição Exponencial Distribuição de Gama Distribuição Qui-Quadrado Distribuição t de Student Distribuição F de Snedecor 5

16 Distribuição Normal Quanto tempo vai demorar até o fornecedor entregar a encomenda que fizemos hoje? tempo de entrega semanas 6

17 Distribuição normal tempo de entrega Com base em dados, podemos construir um histograma. Já vimos que, tornando o tamanho dos blocos cada vez menores, chegamos a uma função que se ajusta aos dados. Que função é essa? Podemos propor um triângulo. Mas essa distribuição tem alguns problemas semanas Por exemplo, ela diz que o tempo de entrega tem um valor mínimo e um valor máximo que pode assumir (cerca de,45 e,98 semanas. É razoável pensar que é impossível o produto demorar menos do que,45 ou mais do que,98 semanas para ser entregue?

18 Distribuição normal tempo de entrega Diminuindo o tamanho dos intervalos, vemos surgir outros problemas. No topo da distribuição, a gente parece ter uma forma arredondada, não uma ponta. Mais ainda, a distribuição triângular não se ajusta muito bem aos dados nas caudas. semanas Precisamos então de uma distribuição ligeiramente arredondada, que não tenha limites e que tenha caudas. No momento em que a turma compreender isso, pode-se introduzir a distribuição normal 8

19 Distribuição normal tempo de entrega f ( x 0, e x, 7 0, Assim, se introduz a curva normal como uma sugestão para modelar os dados. semanas 9

20 Distribuição normal tempo de entrega f ( x 0, e x, 7 0, Desvio padrão = 0, Cotação média do dólar =,7 Tempo médio de entrega =,7 semanas Neste exemplo, a distribuição normal é expressa por: f ( x 0, e x, 7 0,

21 Distribuição normal tempo de entrega Desvio padrão = 0,,7 é o tempo médio de entrega, mostrado pelas linhas azuis no histograma e na fórmula. Já o desvio padrão, que dá o quanto o tempo de entrega varia em torno da média, é 0,, indicado pelas linhas laranjas e mostradas na fórmula. No próximo slide, mostraremos a curva normal genérica. Cotação média do dólar =,7 Tempo médio de entrega =,7 semanas Neste exemplo, a distribuição normal é expressa por: f ( x 0, e x, 7 0,

22 Distribuição normal ( ( ( ; ( ~ x e x f X V X E N X Note que a distribuição normal possui dois parâmetros: o valor esperado e a variância. O valor esperado é igual ao valor médio da variável aleatória normal. É importante ter uma noção intuitiva do que significam os parâmetros da normal, porque esta distribuição é muito útil.

23 Distribuição normal Qual a probabildiade do tempo de entrega ser acima de,80 semanas? tempo de entrega P ( X,80 e dx, 80 Impossível!!! x A probabilidade de X>,80 seria a área abaixo da curva normal e apontar o fato de que isso seria calculado pela fórmula mostrada. Com a matemática apresentada nos cursos de Cálculo, esta integral não pode ser resolvida. semanas Os matemáticos conseguiram calcular a integral acima para uma variável com =0 e =. Esta variável, Z~N(0,, segua o que se chama uma distribuição normal padrão.

24 Distribuição normal Qual a probabilidade do tempo de entrega ser acima de,80 semanas? tempo de entrega P x ( X,80 e dx, 80 P ( Z z z e z dz Para esta integral, os matemáticos conseguiram encontrar uma solução. semanas 4

25 tempo de entrega P x ( X,80 e dx, 80 P ( Z z z e z dz Para esta integral, os matemáticos conseguiram encontrar uma solução. semanas Comparando as duas, deve-se conseguir observar que: Z ~ N(0, e que Z = (X / A distribuição N(0, é uma distribuição normal padrão e a variável Z é dita padronizada. 5

26 Distribuição normal padronizada Como podemos saber quanto é P(Z>? Para isso, precisamos de uma tabela da distribuição normal (padronizada A tabela ao lado nos dá a área à esquerda de um valor, ou seja, nos dá a probabilidade de Z ser menor do que um determinado valor. 6

27 Distribuição normal padronizada P(X<-,76=0,009 7

28 Distribuição normal padronizada Qual a probabildiade do tempo de entrega ser acima de,80 semanas? tempo de entrega P ( X,80 P X,80,70 P Z 0, P(Z > é conhecido e é igual a 5,86%. semanas COMO???? P(Z > = 5,86%? Vejamos como determinar P(Z >

29 Distribuição normal padronizada Como podemos saber quanto é P(Z>? P(Z> = P(Z< P(Z< pode ser obtido pela tabela... P(Z< = 0,843 P(Z> = 0,843 P(Z> = 0,586 P(Z> = 5,86% Agora, retornamos ao problema de como obtivemos P(Z>. Não temos P(Z> diretamente, mas temos P(Z<. Com esse resultado, calculamos P(Z> = P(Z< e chegamos a 586%, como tínhamos dito anteriormente.

30 Desvios da normalidade A distribuição normal é igual para ambos os lados. Ela é claramente simétrica. Nem todas as distribuições são assim. Elas são ditas assimétricas. A assimetria nos diz se a variável aleatória tende a se afastar da moda igualmente para os dois lados ou mais para um lado do que para outro. 30

31 Desvios da normalidade Assimetria Moda = Média = Mediana Moda Mediana 3

32 Moda = Média = Mediana Moda Mediana Em uma distribuição simétrica, como a normal, o valor máximo divide a distribuição em dias, partes idênticas. Portanto, a moda é igual à mediana. Como a média está sempre entre a moda e a mediana, as 3 são iguais. Isso não ocorre no caso de uma distribuição assimétrica. No caso da distribuição em azul, a moda está no início da distribuição e claramente não divide a amostra em duas partes iguais. A moda é, portanto, diferente da mediana. A assimetria, portanto, pode ser detectada olhando o gráfico da distribuição ou comparando a moda com a mediana e vendo se elas são iguais ou diferentes.

33 Distribuição exponencial Considere as seguintes perguntas: Quantas pessoas chegam na fila no horário de pico? X = número de pessoas que chegam na fila no horário de pico Qual é o tempo que demora entre a chegada de duas pessoas? T = tempo entre a chegada de duas pessoas 33

34 Distribuição exponencial Pode-se mostrar que, se X segue uma distribuição de Poisson, o tempo entre duas pessoas na fila seguirá uma distribuição exponencial, dada por: f ( t e t Qual é o valor esperado de T? 34

35 Distribuição exponencial A distribuição exponencial modela tempos entre eventos que seguem uma distribuição de Poisson. As distribuições exponencial e a de Poisson correspondentes possuem o mesmo parâmetro. f ( t e t E ( T Var ( T 35

36 Distribuição exponencial Significado Poisson Número de pessoas que chegam em média Valor esperado (média λ / λ Variância λ / λ Exponencial Tempo entre a chegada de duas pessoas 36

37 Distribuição exponencial t t t t s t s e t T P e t T P t T P t T P e e ds e t T P ( ( ( ( ( ( 0 0 Função de distribuição acumulada da exponencial. 37

38 Distribuição exponencial A duração de vida de uma lâmpada tem distribuição exponencial com duração esperada de.000h. Qual é a probabilidade de ela durar mais do que.000h? E ( T P ( T t e t P ( T.000 e e 37 % 38

39 Referências *BATISTA, J. L. F. Notas para acompanhar as aulas da disciplina Introdução à Bioestatística Florestal. Piracicaba, 997. *BUSSAB, W. de O.; MORETTIN, P. A. Estatística básica. 5. ed. São Paulo: Saraiva, 00. *LEVINE, D. M.; BERENSON, M. L; STEPHAN, D. Estatística: teoria e aplicações. 5. ed. Rio de Janeiro: Livros Técnicos e Científicos, 008. *VISMARA, Edgar de Souza. Notas das aulas de Estatística ministradas no Câmpus Dois Vizinhos. 04.

40 Referências básicas: VISMARA, Edgar de Souza. Notas das aulas de Estatística ministradas no Câmpus Dois Vizinhos. 04. BATISTA, J. L. F. Notas para acompanhar as aulas da disciplina Introdução à Bioestatística Florestal. Piracicaba, 997. BUSSAB, Wilton O. Estatística Básica. 6.Ed.São Paulo, SP: Saraiva, 00. CAMPOS, Celso Ribeiro; WODEWOTZKI, Maria Lúcia Lorenzetti; JACOBINI, Otávio Roberto. Educação Estatística: Teoria e Prática em Ambientes de Modelagem Matemática.. Ed. Belo Horizonte: Autêntica, 0. CRESPO, A. A. Estatística Fácil. 9. ed. São Paulo: Saraiva, 009. MORETTIN, L. G. Estatística básica: probabilidade e interferência. São Paulo: Pearson Education Prentice Hall, 00. VIEIRA, S. Elementos de estatística. 4. ed. São Paulo: Atlas, 003. Referências complementares: DOWNING, D. Estatística aplicada. 3. ed. São Paulo: Saraiva, 00. FONSECA, J. S. da. Curso de Estatística. 6. ed. São Paulo: Atlas, 996. LEVINE, D. M.; BERENSON, M. L; STEPHAN, D. Estatística: teoria e aplicações. 5. ed. Rio de Janeiro: Livros Técnicos e Científicos, 008. MAGNUSSON, W.; MOURÃO, G. Estatística sem matemática: a ligação entre as questões e análise. Londrina: Editora Planta, 005. PETERNELLI, L. A.; MELLO, M. P. Conhecendo o R: uma visão estatística.. ed. São Paulo: UFV, 0. VIEIRA, S. Elementos de estatística. 4. ed. São Paulo: Atlas,

41

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

1 Distribuição de Bernoulli

1 Distribuição de Bernoulli Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Modelos de distribuição Para utilizar a teoria

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições de Probabilidade 2007/2008 1 / 31 Introdução Introdução Já vimos como caracterizar

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

HEP-5800 BIOESTATÍSTICA. Capitulo 2

HEP-5800 BIOESTATÍSTICA. Capitulo 2 HEP-5800 BIOESTATÍSTICA Capitulo 2 NOÇÕES DE PROBABILIDADE, DISTRIBUIÇÃO BINOMIAL, DISTRIBUIÇÃO NORMAL Nilza Nunes da Silva Regina T. I. Bernal MARÇO DE 2012 2 1. NOÇÕES DE PROBABILIDADE 1. DEFINIÇÃO Considere

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

PLANO DE ENSINO. Disciplina: Estatística e Probabilidade Carga Horária: 40h Período: 1º. Ementa

PLANO DE ENSINO. Disciplina: Estatística e Probabilidade Carga Horária: 40h Período: 1º. Ementa Disciplina: Estatística e Probabilidade Carga Horária: 40h Período: 1º PLANO DE ENSINO Ementa Classificação de variáveis, Levantamento de Dados: Coleta; Apuração; Apresentação e Análise de resultados.

Leia mais

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA Curso: CST em Sistemas de Telecomunicações, Tecnologia Nome da disciplina: Teoria da Estatística Código: TEL026 Carga horária: 83 horas Semestre previsto: 3º

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

Distribuição de frequências. Prof. Dr. Alberto Franke

Distribuição de frequências. Prof. Dr. Alberto Franke Distribuição de frequências Prof. Dr. Alberto Franke E-mail: alberto.franke@ufsc.br 1 Distribuição de frequências Há necessidade de distinguir entre: Distribuição observada Distribuição verdadeira Distribuição

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

Variáveis Aleatórias Discretas - Esperança e Variância

Variáveis Aleatórias Discretas - Esperança e Variância Exemplo Um empresário pretende estabelecer uma firma para montagem de um componente mecânico. Cada peça é composta de duas partes, A e B, cada uma com uma chance específica de ser defeituosa. Só é possível

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

DISCIPLINA: EPIDEMIOLOGIA E BIOESTATÍSTICA LICENCIATURA: ENFERMAGEM; FISIOTERAPIA

DISCIPLINA: EPIDEMIOLOGIA E BIOESTATÍSTICA LICENCIATURA: ENFERMAGEM; FISIOTERAPIA Aula nº 1 Data: 3 de Outubro de 2002 1. INTRODUÇÃO: POPULAÇÕES, AMOSTRAS, VARIÁVEIS E OBSERVAÇÕES Conceito de Bioestatística e importância da disciplina no âmbito da investigação biológica. Limitações

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

Filho, não é um bicho: chama-se Estatística!

Filho, não é um bicho: chama-se Estatística! Paulo Jorge Silveira Ferreira Filho, não é um bicho: chama-se Estatística! Estatística aplicada uma abordagem prática FICHA TÉCNICA EDIÇÃO: Paulo Ferreira TÍTULO: Filho, não é um bicho: chama-se Estatística!

Leia mais

P R O G R A M A TERCEIRA FASE. DISCIPLINA: Estatística Aplicada à Pesquisa Educacional Código: 3EAPE Carga Horária: 54h/a (crédito 03)

P R O G R A M A TERCEIRA FASE. DISCIPLINA: Estatística Aplicada à Pesquisa Educacional Código: 3EAPE Carga Horária: 54h/a (crédito 03) UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC CENTRO DE CIÊNCIAS DA SAÚDE E DO ESPORTE - CEFID DEPARTAMENTO DE EDUCAÇÃO FÍSICA - DEF CURSO: LICENCIATURA EM EDUCAÇÃO FÍSICA CURRÍCULO: 2008/2 P R O G

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

Estatística e Probabilidade Aula 7 Cap 04

Estatística e Probabilidade Aula 7 Cap 04 Aula 7 Cap 04 Um estatístico é aquele que, se está com a cabeça em um forno e os pés enterrados no gelo, ainda diz que na média está tudo bem. Na aula anterior vimos... Variáveis aleatórias Distribuições

Leia mais

Estatística Básica MEDIDAS RESUMO

Estatística Básica MEDIDAS RESUMO Estatística Básica MEDIDAS RESUMO Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Motivação Básica Se você estivesse num ponto de ônibus e alguém perguntasse sobre

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

FICHA DE TRABALHO N. O 9

FICHA DE TRABALHO N. O 9 FICHA DE TRABALHO N. O 9 ASSUNTO: Modelos de probabilidade: probabilidade condicional 1. Sejam A e B dois acontecimentos tais que: P (A) = 0,3 e P (B ) = 0,7 Determine P (A B ), sabendo que: 1.1 Os acontecimentos

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades

Leia mais

Modelos de Distribuições

Modelos de Distribuições 4/05/014 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Tucuruí CTUC Curso de Engenharia Mecânica 4/05/014 06:56 ESTATÍSTICA

Leia mais

Discutir e relatar os resultados obtidos a partir de pesquisas de campo.

Discutir e relatar os resultados obtidos a partir de pesquisas de campo. Página: 1/5 PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA Introdução à Estatística; Dados Estatísticos; Distribuição de Frequências; Medidas de posição Medidas de dispersão; Probabilidades; Distribuições

Leia mais

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36 1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico

Leia mais

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20 SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17

Leia mais

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17)

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17) Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 016/17) 1- Modelos de probabilidade(136) 1.1) Introdução.(36) (Vídeo: 33) 1.) Fenómenos aleatórios(138) Experiência determinística-produz

Leia mais

Professor Mauricio Lutz DISTRIBUIÇÃO NORMAL

Professor Mauricio Lutz DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL Entre as distribuições teóricas de variável contínua, uma das mais empregadas é a distribuição normal. O aspecto gráfico de uma distribuição normal é o da figura abaio. Para uma perfeita

Leia mais

PROCESSOS ESTOCÁSTICOS

PROCESSOS ESTOCÁSTICOS PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos e Científicos

Leia mais

Probabilidade: aula 2, 3 e 4

Probabilidade: aula 2, 3 e 4 Probabilidade: aula 2, 3 e 4 Regras de contagem e combinatória Permutação Simples: Exemplo: De quantas maneiras 5 pessoas podem viajar em um automóvel com 5 lugares, se apenas uma delas sabe dirigir? Atividade:

Leia mais

Medidas de Dispersão 1

Medidas de Dispersão 1 Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES 1 Os modelos lineares generalizados, propostos originalmente em Nelder e Wedderburn (1972), configuram etensões dos modelos lineares clássicos e permitem analisar a

Leia mais

Um conceito importante em Probabilidades e Estatística é o de

Um conceito importante em Probabilidades e Estatística é o de Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.

Leia mais

Coeficiente de Assimetria

Coeficiente de Assimetria Coeficiente de Assimetria Rinaldo Artes Insper Nesta etapa do curso estudaremos medidas associadas à forma de uma distribuição de dados, em particular, os coeficientes de assimetria e curtose. Tais medidas

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

NÍVEL DE ENSINO: CARGA HORÁRIA: PROBABILIDADE EST PROFESSOR-AUTOR:

NÍVEL DE ENSINO: CARGA HORÁRIA: PROBABILIDADE EST PROFESSOR-AUTOR: ESTATÍSTICA E PROBABILIDADE NÍVEL DE ENSINO: Graduação CARGA HORÁRIA: 80h PROFESSOR-AUTOR: Bráulio Roberto Gonçalves Marinho Couto Janaína Giovani Noronha de Oliveira Octávio Alcântara Torres Reinaldo

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

Avaliação. Diagnóstico. Gerente Apuração de dados. Sistema integrado. Tudo que você precisa está a sua disposição no ambiente virtual.

Avaliação. Diagnóstico. Gerente Apuração de dados. Sistema integrado. Tudo que você precisa está a sua disposição no ambiente virtual. NÍVEL DE ENSINO: Graduação Tecnológica CARGA HORÁRIA: 40h PROFESSOR-AUTOR: Ricardo Saraiva Diniz DE DADOS ANÁLISE E INTERPRETAÇÃO APRESENTAÇÃO Desempenho Olá! Seja muito bem-vindo à disciplina Análise

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA DOCENTE: CIRA SOUZA PITOMBO UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA ENG J21 Ajustamentos de observações geodésicas A AULA 9 TESTES ESTATÍSTICOS DE

Leia mais

CURSO DE ENFERMAGEM Reconhecido pela Portaria nº 270 de 13/12/12 DOU Nº 242 de 17/12/12 Seção 1. Pág. 20

CURSO DE ENFERMAGEM Reconhecido pela Portaria nº 270 de 13/12/12 DOU Nº 242 de 17/12/12 Seção 1. Pág. 20 CURSO DE ENFERMAGEM Reconhecido pela Portaria nº 270 de 13/12/12 DOU Nº 242 de 17/12/12 Seção 1. Pág. 20 COMPONENTE CURRICULAR: BIOESTATÍSTICA CÓDIGO: ENF - 308 PRÉ-REQUISITO: Nenhum PERÍODO LETIVO: 2016.2

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Cálculo da probabilidade de se encontrar uma (ou mais) vaga de zona azul desocupada.

Cálculo da probabilidade de se encontrar uma (ou mais) vaga de zona azul desocupada. NT 207 Cálculo da probabilidade de se encontrar uma (ou mais) vaga de zona azul desocupada. Engº Sun Hsien Ming 1. Introdução Este trabalho foi extraído do estudo desenvolvido e encaminhado à GER para

Leia mais

IFF FLUMINENSE CST EM MANUTENÇÃO INDUSTRIAL

IFF FLUMINENSE CST EM MANUTENÇÃO INDUSTRIAL IFF FLUMINENSE CST EM MANUTENÇÃO INDUSTRIAL Estatística e Probabilidade CH: 40 h/a Classificação de variáveis, Levantamento de Dados: Coleta; Apuração; Apresentação; e Análise de resultados. Séries Estatísticas.

Leia mais

Aproximação normal para as distribuições binomial e Poisson

Aproximação normal para as distribuições binomial e Poisson Aproximação normal para as distribuições binomial e Poisson Distribuição normal: aproximação para uma variável aleatória com um grande número de amostras. Distribuição binomial n Distribuição normal Difícil

Leia mais

)$&8/'$'('((1*(1+$5,$'(5(&856261$785$,6 7$%(/$6(67$7Ì67,&$6. -~OLR$3GD&XQKD2VyULR )$52

)$&8/'$'('((1*(1+$5,$'(5(&856261$785$,6 7$%(/$6(67$7Ì67,&$6. -~OLR$3GD&XQKD2VyULR )$52 )$&8/'$'('((1*(1+$5,$'(5(&856261$785$,6 7$%(/$6(67$7Ì67,&$6 -~OLR$3GD&XQKD2VyULR )$52 1RWDVH[SOLFDWLYDV TABELAS ESTATÍSTICAS Notas explicativas Fontes x As tabelas das distribuições binomiais, de Poisson,

Leia mais

Distribuição Normal. Prof. Herondino

Distribuição Normal. Prof. Herondino Distribuição Normal Prof. Herondino Distribuição Normal A mais importante distribuição de probabilidade contínua em todo o domínio da estatística é a distribuição normal. Seu gráfico, chamado de curva

Leia mais

Modelos Binomial e Poisson

Modelos Binomial e Poisson Modelos Binomial e Poisson Cristian Villegas clobos@usp.br http://www.lce.esalq.usp.br/arquivos/aulas/2014/lce0216/ 1 Distribuição Bernoulli Se um experimento possui dois possíveis resultados, sucesso

Leia mais

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC 4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais

Leia mais

Distribuições de Probabilidade. Distribuição Normal

Distribuições de Probabilidade. Distribuição Normal Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus

Leia mais

Aula 2. ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos

Aula 2. ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos Aula 2 ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos 1. DEFINIÇÕES FENÔMENO Toda modificação que se processa nos corpos pela ação de agentes físicos ou químicos. 2. Tudo o que pode ser percebido

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 11/2014 Distribuição Normal Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas.

Leia mais

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade Probabilidade Variáveis Aleatórias Distribuição de Probabilidade Variáveis Aleatórias Variável Aleatória Indica o valor correspondente ao resultado de um experimento A palavra aleatória indica que, em

Leia mais

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para

Leia mais

Variáveis aleatórias

Variáveis aleatórias Variáveis aleatórias Joaquim Neto joaquim.neto@ufjf.edu.br www.ufjf.br/joaquim_neto Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF

Leia mais

Distribuição de Probabilidade

Distribuição de Probabilidade Distribuição de Probabilidade ENG09004 2014/2 Prof. Alexandre Pedott pedott@producao.ufrgs.br Introdução O histograma é usado para apresentar dados amostrais extraídas de uma população. Por exemplo, os

Leia mais

MEEMF-2010 Aula 01. Noções de inferência estatística: Diferença entre máxima verossimilhança e abordagem bayesiana

MEEMF-2010 Aula 01. Noções de inferência estatística: Diferença entre máxima verossimilhança e abordagem bayesiana MEEMF-2010 Aula 01 Noções de inferência estatística: Diferença entre máxima verossimilhança e abordagem bayesiana O que é inferência estatística? Inferência estatística é o importante ramo da Estatística

Leia mais

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria-PPGEAB Prova de Conhecimentos Específicos

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria-PPGEAB Prova de Conhecimentos Específicos -PPGEAB Dados que podem ser necessários na resolução de algumas questões: Quantis de distribuições P (t > t α ) = α P (F > F 0,05 ) = 0, 05 ν 1 ν 0,05 0,025 ν 2 42 43 56 57 89 1,66 1,99 42 1,67 1,67 1,63

Leia mais

Padronização. Momentos. Coeficiente de Assimetria

Padronização. Momentos. Coeficiente de Assimetria Padronização Seja X 1,..., X n uma amostra de uma variável com com média e desvio-padrão S. Então a variável Z, definida como, tem as seguintes propriedades: a) b) ( ) c) é uma variável adimensional. Dizemos

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

Distribuições Discretas: Hipergeométrica, Binomial e Poisson

Distribuições Discretas: Hipergeométrica, Binomial e Poisson CAP3: Distribuições Discretas e Contínuas Distribuições Discretas: Hipergeométrica, Binomial e Poisson Uma distribuição de probabilidade é um modelo matemático que relaciona o valor da variável com a probabilidade

Leia mais

6ª Lista de Probabilidade I Professor: Spencer

6ª Lista de Probabilidade I Professor: Spencer 6ª Lista de Probabilidade I Professor: Spencer 1) Em um determinado processo de fabricação, 10% das peças são consideradas defeituosas. As peças são acondicionadas em caixas com 5 unidades cada uma, Pergunta-se:

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) 2a AULA 02/03/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 2a aula (02/03/2015) MAE229 1 / 16

Leia mais

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS Prof. Érica Polycarpo Bibliografia: Data reduction and error analysis for the physica sciences (Philip R. Bevington and D. Keith Robinson) A practical

Leia mais

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB Licenciatura em Ciências Biológicas Universidade Federal de Goiás Bioestatística Prof. Thiago Rangel - Dep. Ecologia ICB rangel.ufg@gmail.com Página do curso: http://www.ecologia.ufrgs.br/~adrimelo/bioestat

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES 0 1 INTRODUÇÃO A teoria das probabilidades é utilizada para determinar as chances de um experimento aleatório acontecer. 1.1

Leia mais

Métodos Quantitativos em Medicina

Métodos Quantitativos em Medicina Métodos Quantitativos em Medicina Comparação de Duas Médias Terceira Aula 009 Teste de Hipóteses - Estatística do teste A estatística do teste de hipótese depende da distribuição da variável na população

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

Variável Aleatória Poisson. Número de erros de impressão em uma

Variável Aleatória Poisson. Número de erros de impressão em uma EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento

Leia mais

NT 206. Distribuições Estatísticas aplicadas ao tráfego. Engº: Sun Hsien Ming. a) f(x) 0 (1) 1. Introdução

NT 206. Distribuições Estatísticas aplicadas ao tráfego. Engº: Sun Hsien Ming. a) f(x) 0 (1) 1. Introdução NT 206 Distribuições Estatísticas aplicadas ao tráfego Engº: Sun Hsien Ming 1. Introdução Durante os trabalhos para desenvolver o Manual de Critérios de Implantação de Semáforos, houve a necessidade de

Leia mais