Retas e Funções Lineares

Tamanho: px
Começar a partir da página:

Download "Retas e Funções Lineares"

Transcrição

1 Capítulo 1 Retas e Funções Lineares 1.1 A equação de uma reta Intuitivamente é fácil perceber que dois pontos distintos denem uma única reta. Na geometria analítica podemos determinar a equação de uma reta que passa por dois pontos distintos do plano cartesiano. Para tal, consideremos a reta denida pelos pontos A = ( 0, 0 ) e B = ( 1, 1 ) da Figura 1.1(a); um ponto qualquer P = (, ) também estará sobre esta reta desde que A, B e P sejam colineares (estejam alinhados) - Figura 1.1(b). P 1 0 B A 0 1 (a) Reta pelos pontos A e B 1 0 A... θ 0 1 B M N (b) Reta pelos pontos A, B e P Figura 1.1: Denindo a equação de uma reta Tal condição de alinhamento é satisfeita se os triângulos ABM e AP N forem semelhantes (neste caso uma semelhança do tipo ângulo-ângulo-ângulo); assim podemos escrever Simplicamos a equação (1.1) notando que a razão 0 0 = (1.1) é constante 1. Tal constante é chamada de coeciente angular da reta e doravante vamos denotá-la pela letra a. É útil observar que o coeciente angular de uma reta pode ser prontamente encontrado dividindo-se a variação das 1 Observe que ( 0, 0 ) e ( 1, 1 ) são as cordenadas de dois pontos conhecidos da reta, assim 0, 0, 1 e 1 são números conhecidos. Por outro lado a razão 0 0 não é constante, uma vez que e são as coordenadas de um ponto qualquer do plano cartesiano, logo e são valores incógnitos. 1

2 CAPÍTULO 1. RETAS E FUNÇÕES LINEARES 2 ordenadas dos pontos pela variação de suas as abcissas; assim a = = ou a = = (1.2) Substituindo o valor do coeciente angular dado em (1.2) na equação da reta (1.1) obtemos ou, mais apropriadamente, 0 0 = a, (1.3) 0 = a( 0 ), (1.4) chamada equação da reta na forma ponto-coeciente angular. Isolando nesta equação obtemos = a a 0 + 0, onde notamos que a é uma constante, denominada coeciente linear da reta e a qual denotaremos pela letra b. Podemos então reescrever a equação (1.4) como chamada equação da reta na forma reduzida. = a + b, (1.5) Eemplo 1.1 (Reta por dois pontos dados) Determine a equação da reta pelos pontos (1, 3) e (2, 5), mostrada na Figura Figura 1.2: Reta pelos pontos (1, 3) e (2, 5). Inicialmente calculamos seu coeciente angular a = = = = 2. A seguir, usando o ponto (1, 3), obtemos a equação da reta na forma ponto-coeciente 3 = 2( 1). Finalmente isolamos a variável para obter sua forma reduzida = Então, esta reta tem coeciente angular a = 2 e coeciente linear b = 1.

3 CAPÍTULO 1. RETAS E FUNÇÕES LINEARES 3 No eemplo anterior poderíamos obter a equação da reta usando o ponto (2, 5), ao invés do ponto (1, 3). Neste caso a equação da reta na forma ponto-coeciente seria e a forma reduzida 5 = 2( 2), = Observamos que a equação da reta na forma ponto-coeciente não é única: mudando-se o ponto usado muda-se a equação; por outro lado a forma reduzida é única, independente de qual ponto é usado para escrever sua equação O que queremos dizer com equação de uma reta? A geometria analítica estuda entes geométricos (retas, circunferências, parábolas, regiões etc) por meio de representações algébricas (equações e inequações). Dizer que = é a equação de uma dada reta signica que todo ponto da reta é dado por um par ordenado que satisfaz sua equação; reciprocamente, todo par ordenado que satisfaz sua equação é um ponto da reta. Eemplo 1.2 Ainda considerando a reta = e a Figura 1.2. O ponto (3, 7) pertence a esta reta pois as coordenadas (, ) = (3, 7) vericam sua equação. O ponto (3, 9) não pertence a esta reta pois as coordenadas (, ) = (3, 9) não vericam sua equação O coeciente angular e o coeciente linear 1 B A. 0. θ (0, b).. θ 1 0 a = = tg(θ) Figura 1.3: Coeciente angular e coeciente linear de uma reta Para entendermos os signicados geométricos dos coecientes angular e linear vamos observar a Figura 1.3, que ilustra novamente a reta pelos pontos A = ( 0, 0 ) e B = ( 1, 1 ). O ângulo θ que a reta forma com o eio das abscissas no sentido positivo denomina-se inclinação da reta; o leitor que tem conhecimentos de trigonometria pode observar que o coeciente angular da reta é o valor da tangente desta inclinação. Para entendermos o signicado do coeciente linear fazemos = 0 na equação (1.5) e obtemos = b; isto signica que a reta passa pelo ponto (0, b). Assim o coeciente linear é a ordenada do ponto em que a reta intercepta o eio Retas horizontais e retas verticais Se uma reta for horizontal - Figura 1.4(a) - então sua inclinação é nula; conseqüentemente seu coeciente angular é zero, pois tg(0) = 0. Neste caso a equação (1.5) se reduz a = b. Genericamente falando, toda equação da forma = constante é equação de uma reta horizontal. Se uma reta for vertical - Figura 1.4(b) - então sua inclinação é de 90 o ; conseqüentemente seu coeciente angular não eiste, pois tg(90). Neste caso sua equação é da forma = constante.

4 CAPÍTULO 1. RETAS E FUNÇÕES LINEARES 4 = k (0, k) = k (a) Reta horizontal a = 0 (k, 0) (b) Reta vertical a@ Figura 1.4: Reta horizontal e reta vertical Equação geral da reta Toda equação da forma A + B + C = 0, (1.6) onde A, B e C são constantes reais e A e B não são simultaneamente nulas, representa um reta. Para vericar esta armação consideramos as seguintes possibilidades: se B 0, então podemos isolar na equação (1.6), obtendo = A B C B, que é uma equação da forma (1.5); logo a equação de uma reta. Neste caso, se A = 0, a equação anterior se reduz a = C B, que é a equação de uma reta horizontal. se B = 0, então podemos isolar na equação (1.6), obtendo que é a equação de uma reta vertical. = C A, Retas paralelas e retas perpendiculares A condição de paralelismo entre duas retas é facilmente estabelecida: duas retas paralelas formam o mesmo ângulo com o eio das abscissas, logo seus coecientes angulares são iguais - Figura 1.5(a). A condição de perpendicularismo é um pouco mais sutil. Para estabelecê-la vamos recorrer à Figura 1.5(b), que nos mostra as retas perpendiculares r 1 : = a 1 + b 1 e r 2 : = a 2 + b 2 concorrentes no ponto P = ( 0, 0 ). Como P pertence a ambas as retas, suas coordenadas satisfazem tanto a equação de r 1 como a de r 2, isto é 0 = a b 1 e 0 = a b 2. Na reta r 1, um incremento de uma unidade na abscissa resulta a 1 ( 0 + 1) + b 1 = a a 1 + b 1 = a b 1 + a 1 = 0 + a 1 ; isto é, a ordenada é incrementada de a 1 unidades. Logo o segmento RQ da Figura 1.5(b) mede a 1 unidades. De modo análogo, na reta r 2, um incremento de uma unidade na abscissa resulta a 2 ( 0 + 1) + b 2 = a a 2 + b 2 = a b 2 + a 2 = 0 + a 2 ;

5 CAPÍTULO 1. RETAS E FUNÇÕES LINEARES 5 = a 1 + b θ θ.. (a) Retas paralelas = a 2 + b 2 a 1 = a 2 = tg(θ) 0 + a a 2 P r1 : = a 1 + b 1 Q R S RQ = a 1 SR = a 2 r 2 : = a 2 + b (b) Retas perpendiculares Figura 1.5: Paralelismo e perpendicularismo de retas isto é, a ordenada é decrementada de a 2 unidades 2. Logo o segmento SR da Figura 1.5(b) mede a 2 unidades. Finalmente, observando que os triângulos P RQ e P RS são semelhantes (ângulo-ângulo-ângulo), podemos escrever RQ RP = RP SR a 1 1 = 1 a 1 a 2 = 1, a 2 que é a condição de perpedicularismo entre duas retas. Assim, duas retas são perpendiculares quando o produto de seus coecientes angulares vale Funções lineares Funções lineares (ou funções polinomiais do 1 o grau) são funções 3 f : R R da forma = f() = a + b; (1.7) onde a e b são constantes reais. Comparando as equações (1.5) e (1.7) concluímos imediatamente que o gráco de uma função linear é uma reta no plano cartesiano. A raiz 4 é dada por = b/a Modelos lineares A despeito de sua simplicidade, várias situações importantes são modeladas por funções lineares. Por modelo linear queremos dizer que eistem duas quantidades que se relacionam algebricamente através de uma equação (ou função) linear. Os próimos eemplos ilustram alguns modelos lineares. Eemplo 1.3 (A pressão em um ponto submerso) Determine a relação entre a pressão p (medida em atm) e a profundidade h (medida em m) em um ponto submerso na água do mar, considerando que a pressão aumenta linearmente com a profundidade e que este aumento é de 1 atm a cada 10 m de descida. Inicialmente observamos que quando h = 0 m (na superfície) a pressão é p = 1 atm; assim nossa reta passa pelo ponto (h, p) = (0, 1). Quando h = 10 m de profundidade a pressão aumenta para p = 2 atm; assim nossa reta também passa pelo ponto (h, p) = (10, 2). De posse de dois pontos da reta determinamos seu coeciente angular a = p h = = Decrementada por que o valor numérico de a 2 é negativo. 3 Lembre-se que o símbolo R denota o conjunto de todos números reais. Assim f :R R indica que a função f tem como domínio (o R antes da echa) e contra-domínio (o R depois da echa) todos os números reais. 4 As raízes, ou zeros, de uma função são todos os valores do domínio que anulam sua imagem, ou seja, são todos os elementos do domínio que possuem imagem zero. Determinamos as raízes de uma função f resolvendo a equação f() = 0.

6 CAPÍTULO 1. RETAS E FUNÇÕES LINEARES 6 Finalmente, usando o ponto (h, p) = (0, 1), obtemos a equação da reta p 1 = 1 10 (h 0) p = 1 10 h + 1; que é o modelo linear que relaciona a pressão p e a pronfundidade h da situação descrita. Eemplo 1.4 (Escalas de temperaturas) Em muitos países, incluindo o Brasil, a temperatura é medida na escala Celsius. Nos países que adotam o arcaico sistema inglês de medidas, como Inglaterra e Estados Unidos, a temperatura é medida na escala Farenheit. A escala Celsius adota as seguintes convenções: a água congela a 0 o C e ferve a 100 o C. A escala Farenheit adota as seguintes convenções: a água congela a 32 F e ferve a 212 F. Determine uma equação de conversão Celsius-Farenheit, sabendo que trata-se de um modelo linear. Denotando por c a temperatura em Celsius e por f a temperatura em Farenheit observamos que a reta procurada passa pelos pontos (c, f) = (0, 32) (congelamento da água) e (c, f) = (100, 212) (ebulição da água). De posse de dois pontos da reta determinamos seu coeciente angular a = f c = = = 9 5. Finalmente, usando o ponto (c, f) = (0, 32), obtemos a equação da reta f 32 = 9 5 (c 0) f = 9 5 c + 32; que é o modelo linear que relaciona a temperatura Farenheit f e a temperatura Celsisus c. 1.3 Problemas Propostos Problema 1.1 Marque cada par de pontos no plano cartesiano; trace a reta que passa por eles e determine a equação desta reta. (a) (5, 0) e (1, 4) (b) ( 3, 0) e (1, 4) (c) ( 2, 3) e (1, 9) (d) ( 1, 1) e (1, 5) (e) ( 2, 4) e ( 1, 1) (f) (2, 4) e ( 1, 5) (g) ( 2, 4) e (1, 5) (h) (2, 4) e (1, 5) (i) ( 2, 4) e ( 1, 5) (j) ( 2, 4) e ( 1, 5) (k) (0, 3) e (4, 3) (l) (1, 1) e (3, 1) (m) (1, 1) e (1, 4) (n) (3, 2) e (3, 5) Analisando os resultados obtidos o que você pode inferir sobre a posição da reta quando seu coeciente angular é positivo? e quando é negativo? e quando é nulo? e quando não eiste? Problema 1.2 Esboce e determine a equação da reta que satisfaz as seguintes propriedades: (a) inclinação de 45 o e passa pelo ponto P = (2, 4); (b) inclinação de 60 o e passa pelo ponto P = (2, 4); (c) inclinação de 135 o e passa pelo ponto A = (3, 5); (d) inclinação de 45 o e passa pelo ponto médio dos pontos (3, 5) e (1, 1); (e) paralela à reta = 3 4 e passa pelo ponto P = (1, 2);

7 CAPÍTULO 1. RETAS E FUNÇÕES LINEARES 7 (f) perpendicular à reta = 3 4 e passa pelo ponto P = (1, 2); Problema 1.3 Determine se os três pontos dados são colineares (resolva este problema de dois modos: usando o coeciente angular e a fórmula da distância). (a) (1, 4); ( 2, 13) e (5, 8); (b) (1, 7); (4, 2) e (2, 1); (c) ( 1 2, 3 2 ); ( 1 4, 13 8 ) e ( 1 2, 2); Problema 1.4 Determine se os três pontos dados formam um triângulo retângulo (resolva este problema de dois modos: usando o coeciente angular e o Teorema de Pitágoras). (a) (1, 3); (2, 7) e ( 2, 5); (b) (1, 2); (0, 1) e ( 1, 2); (c) (0, 0); (3, 6) e ( 4, 2); Problema 1.5 Esboce cada par de retas no plano cartesiano e determine o ponto de interseção. (a) = 2 e = 2 + 4; (b) = 2 7 e = 2 + 1; (c) = 3 1 e = 5 + 2; Problema 1.6 Determine o(s) valor(es) da constante k para que a reta (a) seja paralela ao eio-; (b) seja paralela ao eio-; (c) passe pela origem. (k + 4) + (9 k 2 ) + (k 6) 2 = 0 Problema 1.7 O conjunto de todos os pontos eqüidistantes de dois pontos A e B dados é chamado reta mediatriz do segmento AB. Esboce e determine a equação da reta mediatriz do segmento AB, onde A = ( 1, 3) e B = (5, 1), de dois modos: (a) igualando a distância do ponto P = (, ) a A e B e simplicando a equação obtida; (b) usando o ponto médio do segmento AB e um coeciente angular adequado. Problema 1.8 Dada a função f : R R, tal que = f() = 2 10, (a) determine as coordenadas do ponto onde seu gráco corta o eio-; (b) determine as coordenadas do ponto onde seu gráco corta o eio-; (c) utilize as informações obtidas para esboçar seu gráco. Problema 1.9 Voltando ao Eemplo 1.3 (a) qual a unidade do coeciente angular da reta obtida? qual é o seu signicado? (b) qual a unidade do coeciente linear da reta obtida? qual é o seu signicado? Problema 1.10 Voltando ao Eemplo 1.4 (a) qual o signicado do coeciente angular da reta obtida?

8 CAPÍTULO 1. RETAS E FUNÇÕES LINEARES 8 (b) qual o signicado do coeciente linear da reta obtida? Problema 1.11 Dada a função f : R R, tal que f() = 3 4, determine as constantes a e b sabendo-se que f(a) = 2b e f(b) = 9a 28. Problema 1.12 Uma função linear é tal que f(3) = 2 e f(4) = 2f(2). Determine f. Problema 1.13 Uma função linear é tal que f(0) = 1 + f(1) e f( 1) = 2 f(0). Determine f(3). Problema 1.14 Um avião parte de um ponto P no instante t = 0 e viaja para o oeste a uma velocidade constante de 450 Km/h. (a) Escreva uma epressão para a distância d (em Km) percorrida pelo avião em função do tempo t (em horas). (b) Trace o gráco d t. (c) qual o signicado do coeciente angular da reta obtida? Problema 1.15 A equação da reta na forma (1.3) tem a vantagem da coneão direta com o raciocínio geométrico utilizado para obtê-la, ilustrado na Figura 1.1(b). Porém, rigorosamente falando, a equação de uma reta não pode ser deiada nesta forma. Por quê? 1.4 Respostas dos Problemas Propostos - Capítulo (página 6) (a) = + 5 (b) = + 3 (c) = (d) = (e) = (f) = (g) = 3 2 (h) = 9 14 (i) = 9 14 (j) = 6 (k) = 3 (l) = 1 (m) = 1 (n) = 3 Se a > 0, reta ascendente Se a < 0, reta descendente Se a = 0, reta horizontal Se a@, reta vertical 1.2 (página 6) (a) = + 2; (b) = ; (c) + 8; (d) = 5; (e) = 3 1; (f) = ; 1.3 (página 7) (a) sim (b) não (c) sim 1.4 (página 7) (a) não (b) sim (c) sim 1.5 (página 7) (a) (2, 0) (b) (2, 3) (c) ( 3 8, 1 8 ) 1.6 (página 7) (a) k = 4 (b) k = ±3 (c) k = (página 7) = (página 7) (a) (5, 0) (b) (0, 10) 1.9 (página 7) (a) Omitida! 1.10 (página 7) (a) Omitida! 1.11 (página 8) a = b = (página 8) f() = (página 8) f(3) = (página 8) (b) Omitida! (b) Omitida! (a) d = 450t. (b) Omitida! (c) o coeciente angular é a velocidade do avião (página 8) Omitida! Pense um pouco mais!

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19). Capítulo 1 Coordenadas cartesianas 1.1 Problemas Propostos 1.1 Dados A( 5) e B(11), determine: (a) AB (b) BA (c) AB (d) BA 1. Determine os pontos que distam 9 unidades do ponto A(). 1.3 Dados A( 1) e AB

Leia mais

UENP - Universidade Estadual do Norte do Paraná CLM - Campus Luiz Meneghel / CCT - Centro de Ciências Tecnológicas Disciplina de Matemática Discreta

UENP - Universidade Estadual do Norte do Paraná CLM - Campus Luiz Meneghel / CCT - Centro de Ciências Tecnológicas Disciplina de Matemática Discreta Termos Semelhantes(redução) a) + (não há termos semelhantes) b) ²+3-5 (não há termos semelhantes) c) +3+ => 5+ d) 5 + (3 ) - ( 9) 5 + 3 + 9 5 + 3 + 9 6 + 5 e) 8 [ - + ( + 3 7)] 8 [ - + +3 7] 8 + 3 + 7

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS

GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS GEOMETRIA ANALI TICA PONTO PLANO CARTESIANO Vamos representar os pontos A (-2, 3) e B (4, -3) num plano cartesiano. MEDIANA E BARICENTRO A mediana é o segmento que une o ponto médio de um dos lados do

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

Portal da OBMEP. Material Teórico - Módulo de Geometria Anaĺıtica 1. Terceiro Ano - Médio

Portal da OBMEP. Material Teórico - Módulo de Geometria Anaĺıtica 1. Terceiro Ano - Médio Material Teórico - Módulo de Geometria Anaĺıtica 1 Equação da Reta Terceiro Ano - Médio Autor: Prof Angelo Papa Neto Revisor: Prof Antonio Caminha M Neto 1 Condição de alinhamento de três pontos Consideremos

Leia mais

Material Teórico - Módulo de Geometria Anaĺıtica 1. Terceiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M.

Material Teórico - Módulo de Geometria Anaĺıtica 1. Terceiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de Geometria Anaĺıtica 1 Equação da Reta Terceiro Ano - Médio Autor: Prof Angelo Papa Neto Revisor: Prof Antonio Caminha M Neto 1 Condição de alinhamento de três pontos Consideremos

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

Equações da reta no plano

Equações da reta no plano 3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,

Leia mais

Equação fundamental da reta

Equação fundamental da reta GEOMETRIA ANALÍTICA Equação fundamental da reta (Xo, Yo) (X, Y) (Xo, Yo) (X, Y) PARA PRATICAR: 1. Considere o triângulo ABC, cujos vértices são A (3, 4), B (1, 1) e C (2, 4). Determine a equação fundamental

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚLICO FEDERL Ministério da Educação Universidade Federal do Rio Grande Universidade berta do rasil dministração acharelado Matemática para Ciências Sociais plicadas I Rodrigo arbosa Soares Curso

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta 1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada

Leia mais

Capítulo 3 - Geometria Analítica

Capítulo 3 - Geometria Analítica 1. Gráficos de Equações Capítulo 3 - Geometria Analítica Conceito:O gráfico de uma equação é o conjunto de todos os pontos e somente estes pontos, cujas coordenadas satisfazem a equação. Assim, o gráfico

Leia mais

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil Plano Cartesiano e Retas Vitor Bruno Engenharia Civil Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é o

Leia mais

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1 Capítulo 2 Retas no plano O objetivo desta aula é determinar a equação algébrica que representa uma reta no plano. Para isso, vamos analisar separadamente dois tipos de reta: reta vertical e reta não-vertical.

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

( ) Assim, de 2013 a 2015 (2 anos) houve um aumento de 40 casos de dengue. Ou seja: = 600 casos em 2015.

( ) Assim, de 2013 a 2015 (2 anos) houve um aumento de 40 casos de dengue. Ou seja: = 600 casos em 2015. Resposta da questão : [B] É fácil ver que a equação da reta s é = 3. Desse modo, a abscissa do ponto de interseção das retas p e s é tal 8 que 3 = + 3 =. 7 8 7 8 7 Portanto, temos = 3 = e a resposta é,.

Leia mais

Matemática Básica Função polinomial do primeiro grau

Matemática Básica Função polinomial do primeiro grau Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 GRITO Matemática Etensivo V. 6 Eercícios 0) E 0) 0) omo essas retas são perpendiculares, temos que o coeficiente angular de uma das retas é o oposto e inverso da outra, ou seja, m reta. m reta a + a a

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOMETRIA ANALÍTICA ESTUDO DA RETA

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOMETRIA ANALÍTICA ESTUDO DA RETA EQUAÇÃO GERAL DA RETA... EQUAÇÃO REDUZIDA DA RETA... 8 EQUAÇÃO SEGMENTÁRIA DA RETA... 4 EQUAÇÃO PARAMÉTRICA... 5 POSIÇÕES RELATIVAS DE DUAS RETAS NO PLANO... 8 CONDIÇÃO DE PARALELISMO... 6 CONDIÇÃO DE

Leia mais

Notas de Aulas 2 - Retas e Circunferências Prof Carlos A S Soares

Notas de Aulas 2 - Retas e Circunferências Prof Carlos A S Soares Notas de Aulas - Retas e Circunferências Prof Carlos A S Soares Preliminares O Plano Cartesiano e o Ponto Você certamente está familiarizado com o plano cartesiano desde o término do seu ensino fundamental

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

Tecnologia em Construções de Edifícios

Tecnologia em Construções de Edifícios 1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até

Leia mais

Coordenadas e distância na reta e no plano

Coordenadas e distância na reta e no plano Capítulo 1 Coordenadas e distância na reta e no plano 1. Introdução A Geometria Analítica nos permite representar pontos da reta por números reais, pontos do plano por pares ordenados de números reais

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

Retas e círculos, posições relativas e distância de um ponto a uma reta

Retas e círculos, posições relativas e distância de um ponto a uma reta Capítulo 3 Retas e círculos, posições relativas e distância de um ponto a uma reta Nesta aula vamos caracterizar de forma algébrica a posição relativa de duas retas no plano e de uma reta e de um círculo

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 6 FUNÇÕES CRESCENTES OU DECRESCENTES... 7 SINAL DE UMA

Leia mais

Distância entre duas retas. Regiões no plano

Distância entre duas retas. Regiões no plano Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... 5 GRÁFICO DA FUNÇÃO DO º GRAU... 5 IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 7 FUNÇÕES CRESCENTES OU DECRESCENTES... 7 SINAL DE

Leia mais

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0. Eemplos: f() = 3, onde a = e b = 3 (função afim) f() = 6, onde a = 6 e b = 0 (função linear)

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 76 Capítulo 4 Distâncias no plano e regiões no plano 1. Distância de um ponto a uma reta Dados um ponto P e uma reta r no plano, já sabemos calcular a distância de P a cada ponto P r. Definição 1 Definimos

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

Notas de Aulas 2 - Retas e Circunferências Prof Carlos A S Soares

Notas de Aulas 2 - Retas e Circunferências Prof Carlos A S Soares Notas de Aulas - Retas e Circunferências Prof Carlos A S Soares 1 Preliminares 11 Alguns fatos básicos Para iniciarmos o estudo da gemetria analítica é comveniente relembrarmos alguns fatos básicos de

Leia mais

Módulo de Geometria Anaĺıtica 1. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Equação da Reta. 3 a série E.M. Geometria Analítica 1 Equação da Reta. 1 Exercícios Introdutórios Exercício 1. Determine a equação da reta cujo gráfico está representado

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

Análise Vetorial na Engenharia Elétrica

Análise Vetorial na Engenharia Elétrica nálise Vetorial na Engenharia Elétrica ula 13/03/09 1.3 - Medida algébrica de um segmento Segmento: um segmento é determinado por um par ordenado d de pontos. figura 1.8 apresenta um segmento Figura 1.8

Leia mais

Utilizando a Geometria analítica para fazer desenhos no GrafEq

Utilizando a Geometria analítica para fazer desenhos no GrafEq Utilizando a Geometria analítica para fazer desenhos no GrafEq O problema é traçar estes 3 objetos no GrafEq, representado pela figura abaio, par tanto vamos iniciar traçando o quadrilátero vermelho. Primeiramente

Leia mais

Exercícios de Aprofundamento Matemática Geometria Analítica

Exercícios de Aprofundamento Matemática Geometria Analítica 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta

Leia mais

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5). GEOMETRIA ANALÍTICA Distância entre Dois Pontos Sejam os pontos A(xA, ya) e B(xB, yb) e sendo d(a, B) a distância entre eles, temos: Aplicando o teorema de Pitágoras ao triângulo retângulo ABC, vem: [d

Leia mais

Título do Livro. Capítulo 5

Título do Livro. Capítulo 5 Capítulo 5 5. Geometria Analítica A Geometria Analítica tornou possível o estudo da Geometria através da Álgebra. Além de proporcionar a interpretação geométrica de diversas equações algébricas. 5.1. Sistema

Leia mais

MATEMÁTICA A - 10o Ano Geometria Propostas de resolução

MATEMÁTICA A - 10o Ano Geometria Propostas de resolução MATEMÁTIA A - 10o Ano Geometria Propostas de resolução Eercícios de eames e testes intermédios 1. omo os pontos A, B e têm abcissa 1, todos pertencem ao plano de equação = 1. Assim a secção produida no

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

Passeio pelo Rio. Dinâmica 6. 3º Série 3º Bimestre. DISCIPLINA Ano CAMPO CONCEITO. Matemática 3ª do Ensino Médio Geométrico Geometria analítica.

Passeio pelo Rio. Dinâmica 6. 3º Série 3º Bimestre. DISCIPLINA Ano CAMPO CONCEITO. Matemática 3ª do Ensino Médio Geométrico Geometria analítica. Reforço escolar M ate mática Passeio pelo Rio Dinâmica 6 3º Série 3º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 3ª do Ensino Médio Geométrico Geometria analítica. Primeira Etapa Compartilhar ideias

Leia mais

Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é

Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é QUESTÕES-AULA 17 1. A equação x 2 + y 2 12x + 8y + 0 = 0 representa uma circunferência de centro C = (a, b) e de raio R. Determinar o valor de a + b + R. Solução Completamos quadrados na expressão dada.

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A

Leia mais

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos. Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano

Leia mais

A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas).

A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas). MAT 105- Lista de Exercícios 1. Prolongue o segmento com extremos em (1, -5) e (3, 1) de um comprimento de (10) unidades. Determine as coordenadas dos novos extremos. 2. Determine o centro e o raio da

Leia mais

6.1 equações canônicas de círculos e esferas

6.1 equações canônicas de círculos e esferas 6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que

Leia mais

QUESTÃO 04. GEOMETRIA ANALÍTICA QUESTÃO 01 Adotando, convenientemente, um sistema de coordenadas cartesianas, com origem no vértice inferior

QUESTÃO 04. GEOMETRIA ANALÍTICA QUESTÃO 01 Adotando, convenientemente, um sistema de coordenadas cartesianas, com origem no vértice inferior GEOMETRIA ANALÍTICA QUESTÃO 01 Adotando, convenientemente, um sistema de coordenadas cartesianas, com origem no vértice inferior esquerdo do quadrado O1, tem-se B (1, 5; 13, 5), B1 (13, 5; 13, 5) e M3

Leia mais

Movimento Uniformemente Variado (M.U.V.)

Movimento Uniformemente Variado (M.U.V.) Movimento Uniformemente Variado (M.U.V.) A principal característica do movimento uniformemente variado é a aceleração escalar constante. Quando um móvel qualquer se movimenta com aceleração escalar constante,

Leia mais

Exemplo: As retas r: 2x 3y = 1 e s: 10x 15y = 18 são paralelas?

Exemplo: As retas r: 2x 3y = 1 e s: 10x 15y = 18 são paralelas? 4.13. Condição de Paralelismo. Analisando as retas com equação na forma geral, facilmente sabemos, pela resolução do sistema de equações, qual é a posição relativa entre as retas. Agora, se as equações

Leia mais

x = 3 1 = 2 y = 5 2 = 3 Aula Teórica 3 ATIVIDADE 1 Professor Responsável: Profa. Maria Helena S. S. Bizelli

x = 3 1 = 2 y = 5 2 = 3 Aula Teórica 3 ATIVIDADE 1 Professor Responsável: Profa. Maria Helena S. S. Bizelli Aula Teórica 3 ATIVIDADE. Represente, no plano cartesiano xy descrito abaixo, os dois pontos (x 0,y 0) = (,) e (x,y ) = (3,5).. Trace a reta r que passa pelos pontos e, no plano cartesiano acima. 3. Determine

Leia mais

Material Teórico - Módulo Função Quadrática. Funcão Quadrática: Exercícios. Primeiro Ano do Ensino Médio

Material Teórico - Módulo Função Quadrática. Funcão Quadrática: Exercícios. Primeiro Ano do Ensino Médio Material Teórico - Módulo Função Quadrática Funcão Quadrática: Eercícios Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Eercícios f() Eemplo

Leia mais

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência.

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. GEOMETRIA ANALÍTICA CONTEÚDOS Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. AMPLIANDO SEUS CONHECIMENTOS Neste capítulo, estudaremos a Geometria Analítica.

Leia mais

Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos.

Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. Aula 1 Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações - continuação Exemplo 8 Considere o plano π : x + y + z = 3 e a reta r paralela ao vetor v =

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas GEOMETRIA ANALÍTICA Coordenadas Cartesianas EIXO DAS ORDENADAS OU EIXO DOS Y EIXO DAS ABSCISSAS OU EIXO DOS X EIXO DAS ORDENADAS OU EIXO DOS Y ORIGEM EIXO DAS ABSCISSAS OU EIXO DOS X COORDENADAS DE UM

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o 15: Taxa de Variação. Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação no cálculo de

Leia mais

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse

Leia mais

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES 47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,

Leia mais

EQUAÇÕES DE RETAS E PLANOS

EQUAÇÕES DE RETAS E PLANOS UNIVERSIDADE FEDERAL DO RIO GRANDE - FURG INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E FÍSICA - IMEF FABÍOLA AIUB SPEROTTO DAIANE SILVA DE FREITAS EQUAÇÕES DE RETAS E PLANOS NO ESPAÇO 1 Edição Rio Grande 2018

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 16: Máximos e Mínimos - 2 a Parte Objetivos da Aula Denir e discutir a concavidade de uma função em um intervalo do domínio; Denir e calcular

Leia mais

CÁLCULO I. Lista Semanal 01 - Gabarito

CÁLCULO I. Lista Semanal 01 - Gabarito CÁLCULO I Prof. Márcio Nascimento Prof. Marcos Diniz Questão 1. Nos itens abaixo, diga se o problema pode ser resolvido com seus conhecimentos de ensino médio (vamos chamar de pré-cálculo) ou se são necessários

Leia mais

Matemática Régis Cortes GEOMETRIA ANALÍTICA

Matemática Régis Cortes GEOMETRIA ANALÍTICA GEOMETRI NLÍTIC 1 GEOMETRI NLÍTIC Foi com o francês René Descartes, filósofo e matemático que surgiu a geometria analítica. issetriz dos quadrantes pares º QUDRNTE ( -, + ) Y ( eio das ORDENDS ) 1º QUDRNTE

Leia mais

Apostila de Geometria Analítica Prof. Luciano Soares Pedroso 1º período de Agronomia e Engenharia Ambiental

Apostila de Geometria Analítica Prof. Luciano Soares Pedroso 1º período de Agronomia e Engenharia Ambiental postila de Geometria nalítica º período de gronomia e Engenharia mbiental luno(a): data: / /0 GEOMETRII NLÍÍTIIC.. O PLNO CRTESIINO Y ( eio das ORDENDS ) issetriz dos quadrantes pares issetriz dos quadrantes

Leia mais

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante?

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante? Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - Geometria Analítica e Cálculo Vetorial Professora: Monique Rafaella Anunciação de Oliveira Lista de Exercícios 1 1. Dados os pontos:

Leia mais

MATEMÁTICA ELEMENTAR II:

MATEMÁTICA ELEMENTAR II: Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 009 009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer

Leia mais

Manual de Matemática. Trigonometria na Circunferência. A área de um triângulo qualquer pode ser definida por:

Manual de Matemática. Trigonometria na Circunferência. A área de um triângulo qualquer pode ser definida por: A área de um triângulo qualquer pode ser definida por: a b sen C a c sen B b c sen A A = ou A = ou A = Eemplo: Determine a área do triângulo ABC. B c = cm 60º A a = 6 cm C a csenb A = 6 A = A = 6 cm Trigonometria

Leia mais

Matemática B Extensivo v. 8

Matemática B Extensivo v. 8 Etensivo v. 8 Eercícios 0) 9 6 = ; e = 3 centro Note que C = (0, 0). Também, c = e a = 3. Então, da equação c = b + a temos = b + 3 b = 4. Assim, a equação dessa hipérbole fica: = = 3 4 9 6 A ecentricidade

Leia mais

Matemática B Semi-Extensivo V. 3

Matemática B Semi-Extensivo V. 3 GRITO Matemática Semi-Etensivo V. (, e (, M, Então: M = M = M = M = Eercícios D Substituindo em I, temos: = =. = = Então, = ( = 8 M(, (, (, M = M = 8 M = M = D Sabendo que o eio é o da abcissa e que o

Leia mais

MATEMÁTICA ELEMENTAR II:

MATEMÁTICA ELEMENTAR II: Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 009 009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer

Leia mais

GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu

GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu GGM0016 Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 0/1/01- GGM - UFF Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

Fundação CECIERJ/ Consórcio CEDERJ. Matemática 3º Ano - 3º Bimestre / Plano de Trabalho. Geometria Analítica. Tarefa 2

Fundação CECIERJ/ Consórcio CEDERJ. Matemática 3º Ano - 3º Bimestre / Plano de Trabalho. Geometria Analítica. Tarefa 2 Fundação CECIERJ/ Consórcio CEDERJ Matemática 3º Ano - 3º Bimestre / 2014 Plano de Trabalho Geometria Analítica Tarefa 2 Cursista: Jocimar de Avila Tutora: Danúbia 1 S u m á r i o Introdução.....................................

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com três variáveis - Parte 1. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com três variáveis - Parte 1. Terceiro Ano do Ensino Médio Material Teórico - Sistemas Lineares e Geometria Anaĺıtica Sistemas com três variáveis - Parte 1 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

Curvas Planas em Coordenadas Polares

Curvas Planas em Coordenadas Polares Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................

Leia mais

Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações

Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações 1 Sistema Unidimensional de Coordenadas Cartesianas Conceito: Neste sistema, também chamado de Sistema Linear, um ponto pode se mover livremente

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 Matemática Etensivo V. 7 Eercícios ) D ) ) 6 Temos que: 6 e 6 Logo, C (, ) (, ). 6 Completando quadrado, temos: ( ) ( 6) ( ) ( 6 9) 9 ( ) ( ) 9 ( ) ( ) 6 ( ) ( ) 6 ( ) ( ) Logo, C (, ) e r. Portanto, (

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

Formação Continuada em MATEMÁTICA. Fundação CECIERJ/Consórcio CEDERJ. Matemática 3º Ano - 4º Bimestre/2013 Plano de Trabalho Geometria Analítica

Formação Continuada em MATEMÁTICA. Fundação CECIERJ/Consórcio CEDERJ. Matemática 3º Ano - 4º Bimestre/2013 Plano de Trabalho Geometria Analítica Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 3º Ano - 4º Bimestre/2013 Plano de Trabalho Geometria Analítica Tarefa 2 Cursista: Rogério Galeazzi Galvagni Tutura: Maria

Leia mais

1 Cônicas Não Degeneradas

1 Cônicas Não Degeneradas Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de dezembro de 2001 Estudaremos as (seções) cônicas,

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Professor (a) : César Lopes de Assis. Lista de exercícios - Geometria Analítica Ponto e Reta.

Professor (a) : César Lopes de Assis. Lista de exercícios - Geometria Analítica Ponto e Reta. Disciplina: Matemática/Geometria Turma: 3º Aluno: Escola SESI - Jundiaí Professor (a) : César Lopes de Assis Lista de exercícios - Geometria Analítica Ponto e Reta. 1. (Pucrj 2018) Considere os pontos

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV. Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

O Plano no Espaço. Sumário

O Plano no Espaço. Sumário 17 Sumário 17.1 Introdução....................... 2 17.2 Equações paramétricas do plano no espaço..... 2 17.3 Equação cartesiana do plano............. 15 17.4 Exercícios........................ 21 1 Unidade

Leia mais