EXERCÍCIOS ADICIONAIS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "EXERCÍCIOS ADICIONAIS"

Transcrição

1 EXERCÍCIOS ADICIONAIS Capítulo Conjuntos numéricos e os números reais (x ) y Simplifique a expressão (assumindo que o denominador não é zero): 4 x y 6x A y 8x B y 8x C 4 y 6x D y Use a notação de intervalo para descrever o intervalo de números reais, mostrado na representação gráfica a seguir A ( 5, ) B (, 5] C [ 5, ] D [ 5, ) Qual das seguintes alternativas é um número irracional? A 4 B 7 C D Resposta: C

2 Capítulo Radiciação e potenciação Reescreva na forma exponencial, ou seja, na forma de potência utilizando um e expoente racional A e B C e e D e

3 Capítulo 4 Expressões fracionárias Combine e simplifique a expressão: x 7x A ( x )( x ) x 7x B x 5x x C x x 4x D (x )( x ) x x x

4 Capítulo 5 Equações Determine as soluções para a equação x² + 6x = 7: A x 4 B x =, x = 7 C x =, x = 7 D Essa equação não tem solução Resposta: C Determine a solução para a equação A x = ou x = 4 B Somente x = 4 C Somente x = D Não tem solução 4x 8 x : x x x Resolva a equação 4 : x A x 6 7 B x 6 C x D x Resposta: A

5 Capítulo 6 Inequações Resolva a inequação x³ <4x : A x 8 B 8 x 8 C x 8 D x 8 ou x 8 Qual das seguintes representações gráficas mostra o conjunto solução para a inequação (x ) + 5x + 6? A B C D Resposta: A Qual das opções abaixo é a solução para ( x 4)? A Todo x 4 B Todo x 4 C (4, ) D ( 4, ) Resposta: A 5( x )( x 7)( x 5) 4 Resolva a inequação x 8 A x =, x = 7, x = 5, x = 8 B ( 8, 5] U [ 5, 7] U [7, ] C (, 8) D ( 8, ) Resposta: C

6 Capítulo 7 Funções e suas propriedades A função f (x) = x é: A Ímpar B Par C Nem ímpar nem par D Par e ímpar Encontre as assíntotas verticais de A x =, x = B x = C y =, y = D x = x x 6 y : x 5x 6 x Determine as assíntotas de f ( x) : x A Vertical: x = ± Horizontal: x = B Vertical: x = Horizontal: x = ± C Não há vertical Horizontal: x = D Vertical: x = Não há horizontal Resposta: C 4 Qual das seguintes funções básicas são ímpares? A y = x e y = ln x B y = x e y = tg x C y = cos x e y = x² D y = x e y = int (x)

7 Capítulo 8 Funções do primeiro e do segundo graus Escreva a equação da reta que passa pelos pontos (, ) e (, ) A y = x + 5 B y = x 4 C y = x 5 D y = x Escreva a equação para a parábola com vértice em (, ), passando pelo ponto (, ) 5 A y = (x )² + 5 B y = (x + )² + C y = 5 (x + )² D y = 5 (x ) ² Resposta: A Encontre o vértice da parábola y = x² + cx 5, onde c é uma constante desconhecida: A (c, 5) B ( c, 5 c²) C (c, c² 5) D Nenhuma das alternativas anteriores 4 Escreva uma equação para a função quadrática cujo gráfico tem o vértice em (, ) e passa pelo ponto (, ): A y = (x + ) 4 B y = x⁴ x C y = (x + )² 4 D y + = (x )² 4 Resposta: C

8 Capítulo 9 Funções potência Qual das opções abaixo é uma função potência? x A f(x) = x 4 B f (x) = 8 x C f (x) = x D f (x) = sen x Resposta: C

9 Capítulo Funções polinomiais Encontre todas as raízes reais e suas multiplicidades para a função f(x) = x⁴ x³ + x² A x =, com multiplicidade B x =, com multiplicidade C x =, com multiplicidade, x = 5±, ambos com multiplicidade D x =, com multiplicidade, x = 5±, ambos com multiplicidade

10 Capítulo Funções exponenciais O domínio de y = x e é: A (, ) B (, ] C [, ) D Todos os números reais Resposta: A / Resolva a equação 8 x 4 x 8 : A x = 4 B x = C x = D x = 4 Determine uma fórmula algébrica para a função exponencial, passando pelos pontos dados conforme o gráfico: A B C cx y be y be c ln x b ( x) ln( c b) y be D Não pode ser determinada a partir dos dados apresentados

11 4 O gráfico de y = ab x, onde a < e < b <, tem qual forma? A B C D

12 Capítulo Funções logarítmicas Escreva 4log x 4log z + log x como um único logaritmo: 5 x A log 4 z B 4 log(x z) + x C log(x⁴ z⁴ + x) D log(5x 4z) Resposta: A a Reescreva a expressão ln = na forma exponencial: b A a = b ³ a B e ³ = b C e a/b = a D ³ = b

13 Capítulo Funções compostas Simplifique a expressão f(h ) quando f(x) = x x : A h + h B h h C h h D h h Considere g(x) = f: A [, ) B [, ] C [, ) U (, ) x em [, ] e f(x) = cos x em [, ] Especifique o domínio de g ⁰ D [, ] U [, ) f ( a h) f ( a) Se f(x) =, então x h é igual a: f ( h) f ( ) A x x h B ( ) a h a h h C a a h ( ) D h a a h

14 Capítulo 4 Funções inversas Encontre a função inversa de g(x) = ln(x³) A g ¹ (x) = e x/ ³ B g ¹ e x C g ¹(x) = ln(x ³) D g ¹(x) = e x Resposta: A A função inversa de f(x)= e sen x é: A f ¹ (x) = ln (arcsen x) B f ¹ (x) = arcsen (ln x) C f ¹ (x) = e sen x D f ¹ (x) = senx e A função inversa de f (x) = A f ¹ (x) = x B f ¹ (x) = x x é: C f ¹ (x) = x D f ¹ (x) = x Resposta: C 4 Elimine o parâmetro nas seguintes equações paramétricas para obter uma equação em x e y x = t² + t y = t A x = yt + t B x = y² + y C y = (x t²) 4y D x =

15 Capítulo 5 Noções de trigonometria e funções trigonométricas Determine qual das opções abaixo é uma identidade trigonométrica válida: A cos² + sen² = B tg² + = sec² C cos (x + y) = cos x sen x + cos y + sen y D sec² + = tg² Dê os comprimentos dos lados h e b do triângulo abaixo: 5 A h=, b = 5 tg 4⁰ sen4 5 B h =, b = tg 4⁰ cos C h =, b = sen4 cos D h =, b = cos 4 sen4 Um farol está em uma ilha a metros da costa, como mostra a imagem Quando o ângulo é = 6, qual a distância entre o farol e o ponto em que o feixe de luz atinge a costa? A 46,4 metros B 59,8 metros C 6 metros D 45 metros Resposta: A

16 4 Encontre os comprimentos de a, b e c no triângulo abaixo: A a = B a = C a = cos 48 cos 48 cos 48, b = tg (⁰), c =, b = cot (⁰), c =, b = sen (⁰), c = cos cos cos D a = cos 48, b = tg, c = cos 5 Encontre todas as possíveis soluções para a equação sen² x = : A x = ± B x = ⁰ n C x, n,,, D x 4 4 Resposta: C 6 Determine o ângulo, pertencente ao intervalo, que satisfaz as igualdades sen = e cos = : A 5 B C 6 D 6 Resposta: A

17 7 Determine quais das seguintes equações melhor se encaixa na descrição: O gráfico é uma senoide com período e amplitude 4: A y = sen ( ) + 4 x B y = 4 sen ( ) x C y = 4 ( ) x D y = 4 sen (6x) 8 Encontre o período e a amplitude da função y = cos (4x ): A Amplitude = 4, período = B Amplitude =, período = 4 C Amplitude =, período = D Amplitude =, período = 9 Encontre a solução para sen² x = no intervalo [, ]: A, 4 4 B 5 7, 4 4 C 4 D Não há solução para esse intervalo Um avião é visto por dois observadores a km de distância em um terreno plano e alinhado com o plano Cada observador mede o ângulo da elevação mostrado na figura abaixo Qual a altura do avião? A,45 km B, 996 km C, 78 km D, 87 km Resposta: A

18 Capítulo 6 Limites Qual das seguintes opções é o melhor modelo algébrico para o gráfico abaixo? x se x A f ( x) cos x se x ln( x) se x B f ( x) sen( x) se x x e se x C f ( x) sen( x) se x x se x D f ( x) sen( x) se x Resposta: C Para cos x y x x se se se x x qual das opções abaixo é verdadeira? x A y é contínuo em todos os lugares B y tem descontinuidades em x = e x = C y é descontínuo em = D y é descontínuo em x = O comportamento de um polinômio f (x) em que f (x) ou f (x) depende somente de: A O grau de f (x) B O coeficiente do termo de maior grau de f (x) C Tanto do grau de f (x) como do coeficiente do termo de maior grau D Nenhuma das alternativas anteriores Resposta: C

19 4 Avalie 5x : x A B 5 C 5 D O limite não existe 5 Considere f(x) = de f (x)? x Qual das opções abaixo determina as assíntotas horizontais x A B C D Resposta: C 6 Qual das opções abaixo é verdadeira para a expressão? A = f (c) B O limite irá existir para cada número c do domínio de f C O número c deve estar no domínio de f DO limite, se existir, pode ser igual somente a um número

20 Capítulo 7 Derivada e integral de uma função Para a função f(x) representada graficamente abaixo, o quê pode-se dizer em relação a f (a)? A f (a) > B f (a) = C f (a) < D f (a) não existe Para dividir o intervalo [, 6] em 5 subintervalos iguais, cada subintervalo deve ser de comprimento: A B 5 7 C 5 D 5 6

21 Apêndice A Sistemas e matrizes Realize a operação elementar R + R para a matriz 4 5 A 4 6 B C D 4 5 Escreva a matriz para o sistema abaixo Não resolva o sistema x + y z = 5 y = z A B C 5 D 5

22 Encontre a matriz inversa de A A matriz inversa não existe B 7 C D 4 A redução para a forma escalonada da matriz é: A 4 6 B 5 86 / 5 6 / C 6 4 D 4 4 Resposta: A

23 Apêndice B Análise combinatória e teorema binomial O coeficiente de x²³ y¹⁹ na expressão (x + )⁴² é: 4 A B C 9 4 D Resposta: A 9 9 Quantas placas de automóveis começam com letras e são seguidas de 4 dígitos? Pense que nenhuma letra ou dígitos são repetidos: 6 A 4 6 B 4 C (6) (5) (4) () (9) (8) (7) D (6) (5) (4) + () (9) (8) (7) Resposta: C Quantas mãos diferentes de 5 cartas de um baralho incluem o Ás de copas e o Ás de ouros? A (5) (49) (48) 4 48 B 5 C 5 D Resposta: C

24 4 Quantas possíveis respostas podem ser feitas em um teste de perguntas de verdadeiro ou falso, se 4 das respostas são "Verdadeiro" e as outras 6 são "Falso? A 4 6 B C D () (9) (8) (7)

25 Apêndice C Seções cônicas Uma elipse, cujo eixo focal é x = h e possui o comprimento do semieixo maior igual a a, tem a equação: ( y k) ( x h) A a b ( y k) ( x h) B b a ( y k) ( x h) C a b ( y k) ( x h) D b a Resposta: A A equação para uma hipérbole com focos em (7, ) e ( 5, ) e comprimento do semieixo transverso 5 é: ( x ) ( y ) A 5 9 ( x ) ( y ) B 5 ( y ) ( x ) C 5 9 ( y ) ( x ) D 5 ( x ) ( y ) Encontre os focos da cônica de equação 9 8 A (, ) e (4, ) B (, ) e (, ) C (, ) e (6, ) D (,) e (, 5)

26 4 Qual das equações abaixo forma o gráfico a seguir? (entra gráfico) A y x 4 4 B y x 4 4 C y x 4 9 D x y 4 9

CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12

CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12 Sumário CAPÍTULO 1 Operações Fundamentais com Números 1 1.1 Quatro operações 1 1.2 O sistema dos números reais 1 1.3 Representação gráfica de números reais 2 1.4 Propriedades da adição e multiplicação

Leia mais

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

12 Qua 16 mar Coordenadas retangulares, representação Funções vetoriais paramétrica

12 Qua 16 mar Coordenadas retangulares, representação Funções vetoriais paramétrica Aula Data Aula Detalhes 1 Qua 3 fev Introdução Apresentação e avisos 2 Sex 5 fev Revisão Resumo dos pré-requisitos Qua 10 fev Feriado Carnaval 3 Sex 12 fev Soma de Riemann Área, soma superior e inferior

Leia mais

Matemática e suas tecnologias

Matemática e suas tecnologias Matemática e suas tecnologias Fascículo 1 Módulo 1 Teoria dos conjuntos e conjuntos numéricos Noção de conjuntos Conjuntos numéricos Módulo 2 Funções Definindo função Lei e domínio Gráficos de funções

Leia mais

1º ano. Capítulo 2 - Itens: todos (2º ano) Modelos matemáticos relacionados com a função logarítmica

1º ano. Capítulo 2 - Itens: todos (2º ano) Modelos matemáticos relacionados com a função logarítmica 1º ano Conjuntos Símbolos lógicos Operações com conjuntos Conjuntos numéricos Os Números Naturais Propriedades dos racionais Operações com naturais Os números Inteiros Propriedades dos inteiros Operações

Leia mais

Sumário. 1 CAPÍTULO 1 Revisão de álgebra

Sumário. 1 CAPÍTULO 1 Revisão de álgebra Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção

Leia mais

1. Polinómios e funções racionais

1. Polinómios e funções racionais Um catálogo de funções. Polinómios e funções racionais Polinómios e funções racionais são funções que se podem construir usando apenas as operações algébricas elementares. Recordemos a definição: Definição

Leia mais

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab. Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

CONTEÚDO PROGRAMÁTICO

CONTEÚDO PROGRAMÁTICO MATEMÁTICA 1) Teoria dos Conjuntos e Conjuntos Numéricos: Representação de conjuntos, subconjuntos, operações: união, interseção, diferença e complementar. Conjunto universo e conjunto vazio; - Conjunto

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas

Leia mais

SUMÁRIO. Unidade 1 Matemática Básica

SUMÁRIO. Unidade 1 Matemática Básica SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...

Leia mais

2ª série do Ensino Médio

2ª série do Ensino Médio 2ª série do Ensino Médio Geometria Plana Cálculo de Áreas e Relações na Circunferência. Polígonos Regulares, Polígonos Inscritos na Circunferência e Trigonometria. Relações Métricas no Triângulo Retângulo

Leia mais

DISCIPLINA DE MATEMÁTICA OBJETIVOS: 1ª Série

DISCIPLINA DE MATEMÁTICA OBJETIVOS: 1ª Série DISCIPLINA DE MATEMÁTICA OBJETIVOS: 1ª Série Compreender os conceitos, procedimentos e estratégias matemáticas que permitam a ele desenvolver estudos posteriores e adquirir uma formação científica geral.

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

Ordenar ou identificar a localização de números racionais na reta numérica.

Ordenar ou identificar a localização de números racionais na reta numérica. Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando

Leia mais

TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas.

TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas. TÓPICOS DE MATEMÁTICA II Roosevelt Imperiano da Silva Palavras iniciais Caros alunos, vamos iniciar o curso da disciplina Tópicos de Matemática II. Neste curso estudaremos os conjuntos numéricos e suas

Leia mais

TÓPICOS DE MATEMÁTICA I. O Curso está dividido em três unidades, temos que concluir todas.

TÓPICOS DE MATEMÁTICA I. O Curso está dividido em três unidades, temos que concluir todas. TÓPICOS DE MATEMÁTICA I Roosevelt Imperiano da Silva Palavras iniciais Caros alunos, vamos iniciar o curso da disciplina Tópicos de Matemática I. Neste curso estudaremos os sistemas de numeração, operações

Leia mais

Índice. Introdução Unidade 1 Probabilidades e Cálculo Combinatório

Índice. Introdução Unidade 1 Probabilidades e Cálculo Combinatório Índice Introdução... 9 Unidade 1 Probabilidades e Cálculo Combinatório Probabilidades Introdução ao cálculo das probabilidades...12 Experiência...13 Classificação para os acontecimentos. Espaço de acontecimentos...14

Leia mais

Planificação Anual Matemática 11º Ano

Planificação Anual Matemática 11º Ano ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL 402643 ESTREMOZ Planificação Anual Matemática 11º Ano Ano letivo 2016/2017 PERÍODO Nº de AULAS PREVISTAS (45 min) 1º 78 2º 72 3º 36 Total: 186 1º Período Total de

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

Pre-calculo 2013/2014

Pre-calculo 2013/2014 . Números reais, regras básicas de cálculo com fracções, expoentes e radicais Sumário: Número reais, regras básicas de cálculo com fracções, expoentes e radicais. Ler secções. e. do livro adoptado.. Pre-calculo

Leia mais

UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Terceira Etapa do Processo Seletivo Estendido 2011 PLANO DE ENSINO

UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Terceira Etapa do Processo Seletivo Estendido 2011 PLANO DE ENSINO UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Terceira Etapa do Processo Seletivo Estendido 2011 PLANO DE ENSINO Disciplina: Introdução ao Cálculo Ementa Conjuntos numéricos: números

Leia mais

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO DISCIPLINA: 030152 Matemática Fundamental I DURAÇÃO: Semestral CARGA HORÁRIA TOTAL: 90 horas CARGA

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 26 de junho de 2013 (a confirmar).

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 26 de junho de 2013 (a confirmar). Divisibilidade - Regras de divisibilidade por 2, 3, 4, 5, 6, 8, 9 e 10. - Divisores de um número natural. - Múltiplos de um número natural. - Números primos. - Reconhecimento de um número primo. - Decomposição

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática

MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática Conteúdos I - Conjuntos:. Representação e relação de pertinência;. Tipos de conjuntos;. Subconjuntos;. Inclusão;. Operações com conjuntos;.

Leia mais

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57 Aula 2 p.1/57 Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE Definição e representação Aula 2 p.2/57 Aula 2 p.3/57 Função Definição: Uma função de um conjunto em um conjunto, é uma correspondência

Leia mais

Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE:

Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE: Matemática Básica Como construir um Gráfico Unidade 5. Gráficos de Funções Reais RANILDO LOPES Slides disponíveis no nosso SITE: https://ueedgartito.wordpress.com x y = f(x) x y x x 3 y x 4 y 3 y 4 x 5

Leia mais

Programa Anual MATEMÁTICA EXTENSIVO

Programa Anual MATEMÁTICA EXTENSIVO Programa Anual MATEMÁTICA EXTENSIVO Os conteúdos conceituais de Matemática estão distribuídos em 5 frentes. A) Equações do 1º e 2º graus; Estudo das funções; Polinômios; Números complexos; Equações algébricas.

Leia mais

PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências Habilidades Conteúdos. I Etapa

PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências Habilidades Conteúdos. I Etapa PLANO DE ENSINO 2015 Disciplina: Matemática 8 a série Professor: Fábio Girão I Etapa Competências Habilidades Conteúdos Construir significados e ampliar os já existentes para os números naturais, inteiros,

Leia mais

Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013

Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013 Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013 1ª série - volume 1 1. Conjuntos - Conceito de conjunto - Pertinência - Representação de um conjunto - Subconjuntos - União de conjuntos

Leia mais

MATÉRIAS SOBRE QUE INCIDIRÁ CADA UMA DAS PROVAS DE CONHECIMENTOS ESPECÍFICOS. (a) Expressões algébricas. Polinómios. ii. Operações com polinómios.

MATÉRIAS SOBRE QUE INCIDIRÁ CADA UMA DAS PROVAS DE CONHECIMENTOS ESPECÍFICOS. (a) Expressões algébricas. Polinómios. ii. Operações com polinómios. MATÉRIAS SOBRE QUE INCIDIRÁ CADA UMA DAS PROVAS DE CONHECIMENTOS ESPECÍFICOS Prova de: MATEMÁTICA Conteúdos 1. Cálculo algébrico (a) Expressões algébricas. Polinómios. i. Definições. ii. Operações com

Leia mais

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas

Leia mais

P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. NOTAÇÕES N = f; ; 3; : : :g i : unidade imaginária: i = R : conjunto dos números reais jzj : módulo do número z C C : conjunto dos números complexos Re z : parte real do número z C [a; b] = fx R; a x bg

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 2015-2016 DISCIPLINA / ANO: Matemática A 10ºano de escolaridade MANUAL ADOTADO: NOVO ESPAÇO 10 GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA:

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (11 de setembro a 15 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

Programa Anual MATEMÁTICA

Programa Anual MATEMÁTICA Programa Anual MATEMÁTICA A proposta A compreensão de ensino, presente no Material Didático Positivo, empenha-se com o valor formativo e instrumental desta área de conhecimento. Assim, concentra seus esforços

Leia mais

Métodos Matemáticos para Engenharia de Informação

Métodos Matemáticos para Engenharia de Informação Métodos Matemáticos para Engenharia de Informação Gustavo Sousa Pavani Universidade Federal do ABC (UFABC) 3º Trimestre - 2009 Aulas 1 e 2 Sobre o curso Bibliografia: James Stewart, Cálculo, volume I,

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com

Leia mais

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y. LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente

Leia mais

Quadro de conteúdos MATEMÁTICA

Quadro de conteúdos MATEMÁTICA Quadro de conteúdos MATEMÁTICA 1 Apresentamos a seguir um resumo dos conteúdos trabalhados ao longo dos quatro volumes do Ensino Fundamental II, ou seja, um panorama dos temas abordados na disciplina de

Leia mais

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, = Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU MATEMÁTICA-PROF. CARLINHOS/KOBA-3º ENSINO MÉDIO

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU MATEMÁTICA-PROF. CARLINHOS/KOBA-3º ENSINO MÉDIO ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU MATEMÁTICA-PROF. CARLINHOS/KOBA-3º ENSINO MÉDIO EXERCÍCIOS PARA ESTUDO DE RECUPERAÇÃO DO 1º SEMESTRE MATEMÁTICA I 1) Um ponto P pertence ao eixo das ordenadas

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

Datas de Avaliações 2016

Datas de Avaliações 2016 ROTEIRO DE ESTUDOS MATEMÁTICA (6ºB, 7ºA, 8ºA e 9ºA) SÉRIE 6º ANO B Conteúdo - Sucessor e Antecessor; - Representação de Conjuntos e as relações entre eles: pertinência e inclusão ( ). - Estudo da Geometria:

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (13 de setembro a 15 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas. Lógica e Teoria dos conjuntos: Introdução à lógica bivalente e à Teoria dos conjuntos

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas. Lógica e Teoria dos conjuntos: Introdução à lógica bivalente e à Teoria dos conjuntos DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (15 de setembro a 16 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Planificação Anual da Disciplina de Matemática 10.º ano Ano Letivo de 2015/2016 Manual adotado: Máximo 10 Matemática A 10.º ano Maria Augusta Ferreira

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (15 de setembro a 16 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

PCNA - Matemática AULA 1

PCNA - Matemática AULA 1 PCNA - Matemática AULA 1 PCNA - Matemática Aritmética: Operações básicas com frações Potenciação Radiciação Módulo Necessário para o Cálculo 1: Polinômios Operações com expressões algébricas Intervalos,

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão

Leia mais

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2 NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,

Leia mais

Nome: Nº. Página 1 de 9

Nome: Nº. Página 1 de 9 Nome: Nº Página 1 de 9 Página 2 de 9 1. Uma urna contém 5 bolas, numeradas de 1 a 5 e indistinguíveis ao tato. Retiram-se sucessivamente 3 bolas com reposição e em cada extração anota-se o número obtido.

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

Instituto Nacional de Matemática Pura e Aplicada Atualizado em 16/06/2011. Resumo Geral dos Vídeos do PAPMEM por ASSUNTO

Instituto Nacional de Matemática Pura e Aplicada Atualizado em 16/06/2011. Resumo Geral dos Vídeos do PAPMEM por ASSUNTO Instituto Nacional de Matemática Pura e Aplicada Atualizado em 16/06/2011 Resumo Geral dos Vídeos do PAPMEM por ASSUNTO ANO MÊS DIA PROFESSOR ASSUNTO 2008 JULHO 22 Prof. Eduardo Wagner Aplicações da Geometria

Leia mais

Instituto Nacional de Matemática Pura e Aplicada Atualizado em 16/06/2011. Resumo Geral dos Vídeos do PAPMEM por PROFESSOR

Instituto Nacional de Matemática Pura e Aplicada Atualizado em 16/06/2011. Resumo Geral dos Vídeos do PAPMEM por PROFESSOR Instituto Nacional de Matemática Pura e Aplicada Atualizado em 16/06/2011 Resumo Geral dos Vídeos do PAPMEM por PROFESSOR ANO MÊS DIA PROFESSOR ASSUNTO 2007 JANEIRO 25 Homenagem ao Prof. Morgado Matemática

Leia mais

MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00

MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00 MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde

Leia mais

MATEMÁTICA. Questões de 01 a 04

MATEMÁTICA. Questões de 01 a 04 GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,

Leia mais

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

UNIVERSIDADE FEDERAL DO OESTE DO PARÁ PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO INSTITUTO DE ENGENHARIA E GEOCIENCIAS-IEG PROGRAMA DE COMPUTAÇÃO

UNIVERSIDADE FEDERAL DO OESTE DO PARÁ PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO INSTITUTO DE ENGENHARIA E GEOCIENCIAS-IEG PROGRAMA DE COMPUTAÇÃO 1 UNIVERSIDADE FEDERAL DO OESTE DO PARÁ PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO INSTITUTO DE ENGENHARIA E GEOCIENCIAS-IEG PROGRAMA DE COMPUTAÇÃO NOTAS DE AULA DA DISCIPLINA DE CÁLCULO 1 MATERIAL EM CONSTRUÇÃO

Leia mais

Calendarização da Componente Letiva

Calendarização da Componente Letiva Calendarização da Componente Letiva 2015/2016 7º Ano Matemática s 1º 2º 3º Número de aulas previstas (45 minutos) 61 50 48 Apresentação e Diagnóstico 2 Avaliação (preparação, fichas de avaliação e correção)

Leia mais

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL I INTERAGINDO COM OS NÚMEROS E FUNÇÕES D1 Reconhecer e utilizar características do sistema de numeração decimal. Utilizar procedimentos de cálculo para obtenção

Leia mais

Matriz de Referência da área de Matemática Ensino Médio

Matriz de Referência da área de Matemática Ensino Médio Matriz de Referência da área de Matemática Ensino Médio C1 Utilizar o conhecimento sobre números e suas representações em situações relacionadas a operações matemáticas, grandezas e unidades de medidas.

Leia mais

Provas Seletivas 2018

Provas Seletivas  2018 Provas Seletivas 2018 Fundamental I Fundamental I 1 ano Escrita de numerais e quantificação; Ideia aditiva e subtrativa; Sequência Numérica. Escrita de palavra e frases a partir da visualização de imagem;

Leia mais

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial

Leia mais

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5 Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO (Aprovados em Conselho Pedagógico de 27 de outubro de 2015) AGRUPAMENTO DE CLARA DE RESENDE CÓD. 152 870 No caso específico

Leia mais

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Teste de Avaliação 9 o D 30/05/017 Parte I - 30 minutos - É permitido o uso de calculadora Na resposta aos itens de escolha múltipla, seleciona

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação Disciplina: Matemática A _ 10º ano _ CCH 2015/2016 AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação Início

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Escolas João de Araújo Correia ORGANIZAÇÃO DO ANO LETIVO 16 17 GESTÃO CURRICULAR DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA A 11º ANO 1º PERÍODO ---------------------------------------------------------------------------------------------------------------------

Leia mais

ESCOLA DE ENSINO MÉDIO PLÁCIDO ADERALDO CASTELO. Disciplina: Matemática - Nível de Ensino: Ensino Médio - Série: 1ª Série 1º BIMESTRE

ESCOLA DE ENSINO MÉDIO PLÁCIDO ADERALDO CASTELO. Disciplina: Matemática - Nível de Ensino: Ensino Médio - Série: 1ª Série 1º BIMESTRE ESCOLA DE ENSINO MÉDIO PLÁCIDO ADERALDO CASTELO Disciplina: Matemática - Nível de Ensino: Ensino Médio - Série: 1ª Série 1º BIMESTRE COMPETÊNCIAS/HABILIDADES CONTEÚDO DETALHAMENTO DE CONTEÚDO 1. Desenvolver

Leia mais

TEMA I: Interagindo com os números e funções

TEMA I: Interagindo com os números e funções 31 TEMA I: Interagindo com os números e funções D1 Reconhecer e utilizar característictas do sistema de numeração decimal. D2 Utilizar procedimentos de cálculo para obtenção de resultados na resolução

Leia mais

Matemática. Sistema Positivo de Ensino 102

Matemática. Sistema Positivo de Ensino 102 A proposta A compreensão de ensino, presente no Material Didático Positivo, empenha-se com o valor formativo e ins tru men tal desta área de conhecimento. Assim, concentra seus es for ços para ajudar a

Leia mais

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75 MATEMÁTICA 3 17. Sejam f() sen() e g() /2. Associe cada função abaio ao gráfico que melhor a representa. Para cada associação feita, calcule i k, onde i é o número entre parênteses à direita da função,

Leia mais

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.

Leia mais

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática A 11º ano Ano Letivo

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO. 062 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Créditos/horas-aula Semestre Nome 01062 Fundamentos de Matemática

Leia mais

Aulas n o 22: A Função Logaritmo Natural

Aulas n o 22: A Função Logaritmo Natural CÁLCULO I Aulas n o 22: A Função Logaritmo Natural Prof. Edilson Neri Júnior Prof. André Almeida 1 A Função Logaritmo Natural 2 Derivadas e Integral Propriedades dos Logaritmos 3 Gráfico Seja x > 0. Definimos

Leia mais

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 02: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Listar as

Leia mais

Planificação Anual Matemática 10º Ano

Planificação Anual Matemática 10º Ano ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL 402643 ESTREMOZ Planificação Anual Matemática 10º Ano Ano letivo 2016/2017 PERÍODO Nº de AULAS PREVISTAS (45 min) 1º 72 2º 72 3º 42 Total: 186 Total de aulas previstas

Leia mais

UFBA / UFRB a fase Matemática RESOLUÇÃO: PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

UFBA / UFRB a fase Matemática RESOLUÇÃO: PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA UFBA / UFRB 007 a fase Matemática PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÕES de 0 a 06 LEIA CUIDADOSAMENTE O ENUNCIADO DE CADA QUESTÃO, FORMULE SUAS RESPOSTAS COM OBJETIVIDADE E CORREÇÃO DE LINGUAGEM

Leia mais

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!.

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!. 0. (UFRGS/00) Se n é um número natural qualquer maior que, então n! + n é divisível por n. n. n +. n! -. n!. 0. (UFRGS/00) Se num determinado período o dólar sofrer uma alta de 00% em relação ao real,

Leia mais

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998 PROVA DE MATEMÁTICA 998 Se a seqüência de inteiros positivos (,, y) é uma Progressão Geométrica e (+, y, ) uma Progressão Aritmética, então, o valor de + y é a) b) c) d) A soma das raízes da equação log

Leia mais

Matemática Básica. Capítulo Conjuntos

Matemática Básica. Capítulo Conjuntos Capítulo 1 Matemática Básica Neste capítulo, faremos uma breve revisão de alguns tópicos de Matemática Básica necessários nas disciplinas de cálculo diferencial e integral. Os tópicos revisados neste capítulo

Leia mais

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor

Leia mais

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento

Leia mais

Conteúdo para concurso de bolsa 9º ano

Conteúdo para concurso de bolsa 9º ano Conteúdo para concurso de bolsa 9º ano Língua Portuguesa: - Interpretação de texto; - Revisão Análise morfossintática; - Revisão de período composto por subordinação (subordinadas substantivas); - Período

Leia mais

Notas de Aulas 3 - Cônicas Prof Carlos A S Soares

Notas de Aulas 3 - Cônicas Prof Carlos A S Soares Notas de Aulas 3 - Cônicas Prof Carlos A S Soares 1 Parábolas 11 Conceito e Elementos Definição 1 Sejam l uma reta e F um ponto não pertencente a l Chamamos parábola de diretriz l e foco F o conjunto dos

Leia mais

ISOLADA DE MATEMÁTICA

ISOLADA DE MATEMÁTICA ISOLADA DE MATEMÁTICA ISOLADA DE MATEMÁTICA Nessa isolada de Matemática você terá acesso à 73 videoaulas, 100% on-line, com duração média de 30 minutos, cada, contendo material de acompanhamento e simulados

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

ESCOLA SECUNDÁRIA FERREIRA DIAS, AGUALVA SINTRA ENSINO RECORRENTE DE NÍVEL SECUNDÁRIO POR MÓDULOS CAPITALIZÁVEIS CURSO DE CIÊNCIAS E TECNOLOGIAS

ESCOLA SECUNDÁRIA FERREIRA DIAS, AGUALVA SINTRA ENSINO RECORRENTE DE NÍVEL SECUNDÁRIO POR MÓDULOS CAPITALIZÁVEIS CURSO DE CIÊNCIAS E TECNOLOGIAS DEPARTAMENTO: MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS ANO: 10.º - MÓDULO: 1+2+3 ESCOLA SECUNDÁRIA FERREIRA DIAS, AGUALVA SINTRA ENSINO RECORRENTE DE NÍVEL SECUNDÁRIO POR MÓDULOS CAPITALIZÁVEIS CURSO DE CIÊNCIAS

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

» Potenciação e Radiciação

» Potenciação e Radiciação -* Nome: nº Ano: 9º Ano/EF Data: 30/06/2013 Exercícios de Matemática Professor: Hélio N. Informações Importantes: Não é permitido o uso de calculadora ou qualquer material eletrônico; Esta lista não tem

Leia mais

Funções UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA

Funções UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA Funções UTILIZAR COMO UMA DIRETRIZ OS CAPÍTULOS DE 0 A 3 DO LIVRO CÁLCULO DIFERENCIAL E INTEGRAL DE ROBERTO ROMANO. ENTRETANTO, ESSE LIVRO PECA

Leia mais