TRATAMENTO DE ÁGUA PARA GERAÇÃO DE VAPOR: CALDEIRAS

Tamanho: px
Começar a partir da página:

Download "TRATAMENTO DE ÁGUA PARA GERAÇÃO DE VAPOR: CALDEIRAS"

Transcrição

1 TRATAMENTO DE ÁGUA PARA GERAÇÃO DE VAPOR: CALDEIRAS Patrocínio: Elaborado por: Eng.º Joubert Trovati

2 SUMÁRIO 1. Conceitos Gerais 1.1 Calor e Temperatura Mecanismos de Transferência de Calor Condução Convecção Radiação 1.2 Vapor 1.3 Combustão e Combustíveis 2 Caldeiras 2.1 Breve Histórico 2.2 Tipos de Equipamento Caldeiras Fogotubulares (ou flamotubulares) Caldeiras Aquatubulares Equipamentos Periféricos Pré-Aquecedor de Ar Economizador Soprador de Fuligem Superaquecedor 3 Água para Geração de Vapor 3.1 Qualidade da Água Impurezas Encontradas na Água Retorno de Condensado 4 Tratamentos Preliminares da Água 4.1 Clarificação/Filtração 4.2 Processos de Troca Iônica Abrandamento Desmineralização 4.3 Processo de Osmose Reversa 4.4 Outros Processos de Abrandamento 4.5 Destilação 2

3 5 Objetivos do Tratamento de Água das Caldeiras 6 Prevenção das Incrustações 6.1 Incrustação - Causas e consequências 6.2 Tratamentos para Prevenção das Incrustações Tratamento Precipitante - Fosfato Tratamento Quelante Tratamentos Disperso-Solubilizantes (TDS) 7 Corrosão e Métodos de Controle 7.1 Fundamentos 7.2 Tipos de Corrosão em Caldeiras "Pittings" (ou pites) Corrosão Galvânica Corrosão por Tensão Ataque Cáustico ("Caustic Embrittlement") Fragilização por Hidrogênio 7.3 Remoção do Oxigênio da Água Desaeração Mecânica Desaeração Química - Sequestrantes de Oxigênio ("Oxygen Scavengers") Sulfito de Sódio Hidrazina Outros Sequestrantes de Oxigênio 7.4 Métodos Físicos de Prevenção da Corrosão 7.5 Corrosão em Linhas de Condensado - Aminas Fílmicas e Neutralizantes 8 Arrastes 9 Controle Analítico e Operacional do Tratamento 9.1 Aprovações Regulamentares 10 Referências Bibliográficas 3

4 1 - CONCEITOS GERAIS A geração de vapor é uma importante operação industrial, presente em uma infinidade de processos e segmentos. Como exemplo, podemos citar: Geração de energia elétrica nas usinas termelétricas e nucleares Papel e Celulose Açúcar e Álcool Indústrias químicas e petroquímicas em geral Refinarias de petróleo Indústrias de suco de laranja e derivados Frigoríficos, abatedouros e laticínios Indústrias têxteis e de tintas/ vernizes Cervejarias e bebidas em geral Indústrias de processamento de madeira e borracha Navegação marítima, fluvial e submarina Diversas indústrias alimentícias e farmacêuticas, entre muitos outros. Atualmente, o vapor constitui o modo mais econômico e prático de se transferir calor, até certo limite, em processos industriais. Além disso, é usado para geração de trabalho mecânico. Um ditado popular no âmbito industrial diz que: O vapor movimenta o mundo CALOR E TEMPERATURA É muito comum a confusão entre os termos calor e temperatura que normalmente empregamos. Da termodinâmica, ciência que estuda o calor e os processos que o envolvem, podemos estabelecer as seguintes definições: 4

5 Calor: É uma forma de energia térmica em trânsito, ou seja, está sempre se transferindo de um corpo com maior temperatura para um corpo de menor temperatura. O calor não pode ser armazenado; o que pode ser feito é apenas facilitar ou dificultar sua transferência. Temperatura: É uma medida da energia cinética, isto é, da vibração das moléculas que compõem um certo corpo. Quanto maior é a vibração das moléculas, maior será a temperatura do corpo em questão. É justamente a diferença de temperatura entre dois corpos que promove a transferência de calor. Uma analogia entre a transferência de calor, a corrente elétrica e o escoamento de fluidos pode ser feita: Fluxo Força Motriz Observações Calor Diferença de potencial térmico (Temperatura) Quanto maior a diferença de temperatura, maior é o fluxo de calor. Corrente Elétrica Diferença de potencial elétrico (Voltagem) Quanto maior é a diferença de voltagem, maior será a intensidade da corrente elétrica. Fluido (líquido ou gás) Diferença de potencial gravitacional (altura) ou de pressão Quanto maior é a diferença de altura e/ou de pressão entre dois pontos do fluido, maior será a vazão do mesmo Mecanismos de Transferência de Calor São três os mecanismos conhecidos de transferência de calor: condução, convecção e radiação. Resumidamente, apresentamos esses a 5

6 seguir; em KERN (1987) o leitor pode encontrar uma extensa e detalhada explicação dos fundamentos de transferência de calor Condução É um método no qual o calor flui pelo contato direto, molécula a molécula, do corpo. Ocorre normalmente em corpos sólidos. Nas caldeiras, a condução ocorre no metal dos tubos e dispositivos de troca térmica, onde o calor flui da face de maior temperatura (em contato com os gases quentes ou fornalha) para a de menor temperatura (por onde circula a água). q ( T k. A. T l q f ) = Lei de Fourier: T q > T f k=condutividade térmica (W/h.m 2.ºC) T = Temperatura A = Área FIGURA 01: EXEMPLO ILUSTRATIVO DE TRANSFERÊNCIA DE CALOR POR CONDUÇÃO 6

7 Convecção É um processo que consiste basicamente na transferência de calor envolvendo corpos fluido (líquidos ou gases). A convecção é sinal de movimento, podendo ser natural ou forçada. Nas caldeiras, ocorre transferência de calor por convecção dos gases quentes para as superfícies dos tubos e das superfícies dos tubos para a água. q = h. A.( T Tp) Lei do Resfriamento de Newton T > Tp h = Coeficiente de transferência de calor por convecção (W/m 2.ºC) FIGURA 02: ILUSTRAÇÃO MOSTRANDO O PROCESSO DE TRANSMISSÃO DE CALOR POR CONVECÇÃO Radiação É um processo predominante em temperaturas mais elevadas (acima de 500 º C). O calor é transmitido através de ondas eletromagnéticas. Altamente dependente da diferença de temperatura. Numa caldeira, ocorre transferência por radiação do fogo para a área irradiada da fornalha. 7

8 4 4 q = σ. ε. A.( Tq Tf ) Lei de Radiação ε = Emissividade σ = Cte. Stefan-Boltzman (5, W/m 2.K 4 ) FIGURA 03: EXEMPLO DE TRANSFERÊNCIA DE CALOR POR RADIAÇÃO VAPOR O vapor, como sabemos, é a água no estado gasoso. Esta mudança de estado é proporcionada pelo efeito direto do calor e inverso da pressão. Em outras palavras: ao fornecermos calor para a água, a mesma tem sua temperatura elevada até um certo limite e, a partir daí, começa a passar para a fase gasosa. Para que isto ocorra, as moléculas de água no líquido têm que vencer a força que a pressão exerce sobre elas, ou seja, quanto maior a pressão, mais força as moléculas tem que fazer. Esta energia é fornecida justamente pelo aquecimento e resulta no aumento da temperatura de vaporização do líquido. Quanto maior for a pressão, mais energia o vapor transportará pelas moléculas de água que o constitui. Ao se condensar, a mesma energia que as moléculas absorveram para passar para fase vapor é liberada para o meio, resultando aí na transferência de energia na forma de calor. 8

9 Existem basicamente dois tipos de vapor: Vapor saturado: É um vapor úmido, contendo pequenas gotículas de água, sendo obtido da vaporização direta da mesma. Quando este tipo de vapor se condensa, cede calor latente. É usado para aquecimento direto ou indireto. Vapor superaquecido: É obtido através do aquecimento conveniente do vapor saturado, resultando em um vapor seco. É usado para transferência de energia cinética, ou seja, para geração de trabalho mecânico (turbinas). A necessidade do uso de vapor superaquecido em turbinas é decorrente das elevadas velocidades que são encontradas nestes dispositivos. Caso fosse usado o vapor saturado, qualquer gotícula de água que se formaria na tubulação provocaria um forte processo de abrasão na turbina COMBUSTÃO E COMBUSTÍVEIS A combustão é um fenômeno já bastante conhecido da humanidade há milênios. Desde a pré-história, o homem já domina (às vezes nem tanto!) as práticas de se fazer e controlar o fogo. Sem dúvida, esta tarefa permitiu um grande desenvolvimento da espécie, fazendo com que o homem se adaptasse às diferentes condições climáticas, melhor uso dos alimentos, etc. 9

10 A combustão nada mais é do que uma reação de oxidação de um material denominado combustível com o oxigênio (comburente), liberando calor. A equação genérica para o processo é: COMBUSTÍVEL + OXIGÊNIO CALOR + Produtos (CO 2, H 2 O, CO, etc.) Diversos combustíveis são usados para queima em caldeiras de produção de vapor. Entre eles destacam-se: lenha, óleos pesados, gasóleos, gás (natural e GLP), gases de alto forno ou de hulha, gases de escape de turbinas a gás, carvão mineral, bagaço de cana, palha de arroz, resíduos em geral, cavacos e cascas de madeira, licor negro (caldeira de recuperação de C&P), entre outros. Para a produção de vapor também podem ser usadas fontes não combustíveis de calor, tais como a energia elétrica (caldeiras de eletrodos submersos e de jatos d água), a energia nuclear (urânio, plutônio, etc.) e o calor de reações exotérmicas de processos químicos, tais como SO x resultantes da produção de ácido sulfúrico, etc.). Evidentemente, a escolha do tipo de combustível ou energia para a geração de vapor deve levar em conta a aplicação, o tipo de caldeira, a disponibilidade do combustível/ energia, o custo fixo e operacional do processo e o impacto ambiental provocado. Lembramos que existem atualmente sistemas eficientes no controle das emissões atmosféricas, permitindo o homem usufruir a combustão e suas aplicações sem provocar maiores alterações no meio ambiente. 10

11 2 - CALDEIRAS As caldeiras ( boilers do inglês) são equipamentos destinados basicamente à produção de vapor, seja ele saturado ou superaquecido. Existem outros equipamentos de aquecimento e transferência de calor sem produção de vapor que também são chamados de caldeiras, tais como aquecedores que empregam fluidos térmicos, geradores de água quente, etc. Neste texto e certamente na maioria das vezes que o termo caldeira for aplicado, é feita referência aos equipamentos para geração de vapor. Dentro de uma unidade de processo, a caldeira é um equipamento de elevado custo e responsabilidade, cujo projeto, operação e manutenção são padronizados e fiscalizados por uma série de normas, códigos e legislações. No Brasil, o Ministério do Trabalho é responsável pela aplicação da NR-13 1, que regulamenta todas as operações envolvendo caldeiras e vasos de pressão no território nacional. Para o projeto desses equipamentos, normalmente adotam-se códigos específicos; no Brasil, é comum o uso do código ASME (American Society of Mechanical Engineers BREVE HISTÓRICO Vários registros históricos e relatórios de missões de exploração submarina apontam o uso das primeiras caldeiras em navios, datados do final do século XIV. No entanto, após a revolução industrial iniciada na Inglaterra em meados do século XVIII, disseminou-se o uso de caldeiras nas mais variadas aplicações: fábricas, embarcações, locomotivas 2, veículos, etc. Nestes engenhos, o vapor era usado para aquecimento e, principalmente, para 1 Pode ser vista em: 2 Nas cidades de Campinas-SP, Tubarão-SC e Cruzeiro-MG é possível visitar locomotivas a vapor que ainda funcionam. Detalhes podem ser encontrados em 11

12 acionamento das máquinas e movimentação dos veículos, utilizando-se um sistema de cilindro e pistão desenvolvido pelo escocês James Watt por volta de FIGURA 04: FOTOGRAFIA DE UMA LOCOMOTIVA A VAPOR DO INÍCIO DO SÉCULO XX. Com o passar dos anos, as caldeiras foram se desenvolvendo e novas aplicações apareceram. O desenvolvimento da indústria metalúrgica e da ciência dos materiais, bem como o aprimoramento dos conhecimentos de engenharia, permitiram a construção de equipamentos mais leves, resistentes, seguros e muito mais eficientes. Nas páginas seguintes faremos uma breve descrição de suas características. 12

13 2.2 - TIPOS DE EQUIPAMENTO Caldeiras Fogotubulares (ou flamotubulares) São equipamentos derivados das caldeiras antigas, onde o fogo e os gases quentes da combustão circulam no interior dos tubos e a água a ser vaporizada circula pelo lado de fora. Ambos são contidos por uma carcaça cilíndrica denominada casco. Nas extremidades do casco são fixados os espelhos, onde são mandrilhados os tubos da caldeira. Os tubos podem ser verticais ou horizontais, dependendo do modelo. Normalmente este tipo de caldeira tem produção de vapor limitada a cerca de 40 t/ h e pressão de operação máxima 3 de 16 Kgf/ cm 2. Um esquema de caldeira fogotubular com duas câmaras de combustão é mostrado na figura a seguir Caldeiras Aquatubulares Surgiram da necessidade de maiores produções de vapor e maior pressão de operação. Nestes modelos, a água ocupa o interior dos tubos, enquanto que o fogo e os gases quentes ficam por fora. Existem modelos com produção de vapor superiores a 200 t/ h e pressão de operação da ordem de 300 Kgf/ cm 2 (caldeiras supercríticas). Na figura subseqüente, é mostrado um sistema gerador de vapor aquatubular, com demais acessórios. 3 Algumas caldeiras de locomotivas a vapor operavam com pressão de até 21 Kgf/ cm 2. 13

14 FIGURA 05: ILUSTRAÇÕES MOSTRANDO UMA CALDEIRA FOGOTUBULAR HORIZONTAL 14

15 FIGURA 06: ESQUEMA DE UMA CALDEIRA AQUATUBULAR DE COMBUSTÍVEL SÓLIDO (SISTEMA COMPLETO). ABAIXO: PERSPETIVA DE UM MODELO MONTADO 15

16 Equipamentos Periféricos São empregados como auxiliares para um bom desempenho e eficiência na operação da caldeira. Devido ao pequeno tamanho e concepção de projeto das caldeiras fogotubulares, é difícil a instalação dos equipamentos periféricos neste tipo de caldeira, ficando assim restritos às caldeiras aquatubulares, na maioria das vezes. Os principais equipamentos usados com esta finalidade são: Pré-Aquecedor de Ar Tem por finalidade aquecer o ar que será alimentado na fornalha, de modo a conseguir um aumento na temperatura do fogo e melhorar a transferência de calor por radiação. Com isto também se consegue aumento na eficiência do equipamento e economia de combustível. 16

17 FIGURA 07: FOTOGRAFIA DE UMA CALDEIRA EXIBINDO UM PRÉ-AR Economizador Tem por objetivo pré-aquecer a água que alimentará a caldeira usando o calor dos gases de combustão que saem do equipamento. Consegue-se, assim, melhor rendimento na produção de vapor, respostas mais rápidas e economia de combustível. 17

18 FIGURA 08: FOTOGRAFIAS DE UM EQUIPAMENTO ECONOMIZADOR INSTALADO. OBSERVAR OS TUBOS ALETADOS NO INTERIOR DO EQUIPAMENTO (ABAIXO) Soprador de Fuligem Trata-se de um dispositivo que penetra no interior do feixe tubular, fazendo um jateamento de vapor na parte externa do feixe. Com isso, 18

19 consegue-se remover possíveis depósitos de fuligem aderidos aos tubos que podem prejudicar as operações de troca térmica Superaquecedor São equipamentos destinados a aquecer o vapor saturado produzido na caldeira e torná-lo seco, apropriado para ser usado em operações de geração de energia mecânica, como acionamento de turbinas. O superaquecedor normalmente é construído com vários conjuntos em paralelo de 2 a 4 tubos em forma U, formando uma serpentina colocada no alto da fornalha. Pelo fato de trabalhar somente com vapor, qualquer fluxo de água da caldeira que atinge o superaquecedor irá imediatamente vaporizar-se e, caso a mesma contenha certa quantidade de sais dissolvidos, os mesmos se incrustarão no equipamento. 19

20 3 - ÁGUA PARA GERAÇÃO DE VAPOR A operação segura e eficiente de uma caldeira é extremamente dependente da qualidade da água disponível para alimentação da mesma. De nada adianta a instalação de um equipamento ultra moderno, com todos os acessórios/ periféricos disponíveis e automatizado totalmente se não é levada em consideração a qualidade da água e o tratamento químico aplicado. Como sabemos, a água tem uma tendência a dissolver uma série de substâncias, tais como sais, óxidos/ hidróxidos, diversos materiais e inclusive gases, motivo pelo qual nunca é encontrada pura na natureza. Além das espécies dissolvidas, pode apresentar material em suspensão, tais como argila, material orgânico, óleos, etc. A presença de todas estas impurezas muitas vezes causa problemas no uso da água para geração de vapor, podendo formar incrustações e/ ou acelerar os processos corrosivos QUALIDADE DA ÁGUA Cientes de todos os detalhes mencionados, consideramos ideal para geração de vapor uma água com as seguintes características: Menor quantidade possível de sais e óxidos dissolvidos Ausência de oxigênio e outros gases dissolvidos Isenta de materiais em suspensão Ausência de materiais orgânicos Temperatura elevada ph adequado (faixa alcalina) A alimentação de água com boa qualidade elimina, antecipadamente, grande parte dos problemas que normalmente ocorrem em geradores de 20

21 vapor. Posteriormente, fica a cargo do tratamento químico interno a manutenção da qualidade da água no interior da caldeira. É errônea a associação da qualidade da água para consumo humano (potabilidade) com a água para geração de vapor. O padrão para potabilidade da água é baseado, principalmente, na presença de microrganismos. Assim, uma água boa para beber não implica, necessariamente, em uma água boa para gerar vapor. É comum ouvirmos a frase: Fulano de tal tem um poço e a água é ótima, nem precisa tratar... pode então usar na caldeira! ; procedimentos como esse podem ser catastróficos. Por outro lado, a água ideal para geração de vapor, ou seja, que não contém nenhuma substância dissolvida é, por isso mesmo, inadequada para bebermos Impurezas Encontradas na Água Geralmente, nas águas superficiais e subterrâneas que são usadas nos processos industriais, encontramos as seguintes substâncias dissolvidas: Dureza, representada basicamente pelos íons cálcio e magnésio (Ca 2+ e Mg 2+ ), principalmente os sulfatos (SO 2-4 ), carbonatos (CO 2-3 ) e bicarbonatos (HCO - 3 ). Sílica solúvel (SiO 2 ) e silicatos (SiO 2-3 ) associados a vários cátions. Óxidos metálicos (principalmente de ferro), originados de processos corrosivos. Diversas outras substâncias inorgânicas dissolvidas. Material orgânico, óleos, graxas, açúcares, material de processo, contaminantes de condensados, etc. Gases, como oxigênio, gás carbônico, amônia, óxidos de nitrogênio e enxofre. Materiais em suspensão, como areia, argila, lodo, etc. Para evitar que todas essas impurezas adentrem ao sistema gerador de vapor, deve-se proceder a um tratamento preliminar na água de reposição da 21

22 caldeira. Além disso, o uso de condensados como parte da alimentação também é recomendado e será discutido no item seguinte Retorno de Condensado O condensado é uma água originada da condensação de um vapor, ou seja, passagem do estado gasoso para o líquido. Justamente pelo fato de o vapor não levar consigo o material dissolvido quando é produzido (exceto quando há arraste), o condensado é uma água de altíssima pureza, praticamente isento de sais e materiais dissolvidos. Além disso, encontra-se em uma temperatura elevada, o que aumenta a eficiência do sistema gerador de vapor e contribui para um menor consumo de combustível. Devido a essas enormes vantagens, a recomendação é que seja feito todo esforço para utilização da maior quantidade possível de condensados como alimentação das caldeiras. Pode-se inclusive utilizar condensados de outras fontes, tais como originados de evaporadores e outros equipamentos, desde que não estejam contaminados. É justamente a contaminação do condensado que causa o maior inconveniente no seu reuso. Muitos equipamentos de troca de calor podem permitir o vazamento do material de processo para a linha de condensado, contaminando a caldeira. Além disso, a ocorrência de arrastes de material em condensados originados de evaporadores (tais como nas operações de concentração de caldo p/ produção de açúcar ou de suco de laranja) também ocasiona a contaminação. Para evitar este inconveniente e ter sucesso no reuso do condensado, é recomendado um controle eficiente e assíduo da qualidade dos mesmos, desviando-os da alimentação da caldeira ao primeiro sinal de contaminação. Um dos métodos mais usados para o monitoramento da qualidade dos condensados é através da instalação de condutivímetros na linha de retorno dos mesmos. Pelo fato de possuir baixíssima concentração de sais, a condutividade elétrica do condensado é baixa e, qualquer contaminação 22

23 provocará um aumento na condutividade, cuja medida serve para informar a contaminação. Além da possível contaminação, um outro problema está associado ao uso dos condensados na alimentação da caldeira: a corrosão nas linhas e equipamentos. No capítulo 7 este assunto será abordado com mais detalhes. 23

24 4 - TRATAMENTOS PRELIMINARES DA ÁGUA São procedimentos recomendados para execução na água de reposição das caldeiras, visando retirar as impurezas e evitar as conseqüências de sua presença. O tratamento preliminar atua primeiramente sobre as impurezas mais grosseiras, tais como turbidez, sólidos em suspensão e material orgânico. Depois, dependendo da necessidade, são feitos tratamentos mais sofisticados para eliminação do material dissolvido. Apesar do toda tecnologia disponível, muitos usuários de caldeiras não fazem pré-tratamento de água, o que é extremamente desaconselhável e dificulta enormemente o trabalho do tratamento químico interno (quando é feito). Não é raro encontrarmos caldeiras alimentadas com água bruta, diretamente de fontes como rios, represas e poços. Um tratamento preliminar que também deve ser executado é a remoção de oxigênio e outros gases dissolvidos na água, através de uma desaeração. Este fato será abordado mais adiante, no capítulo referente à corrosão. Prosseguindo, os métodos mais empregados para tratamento preliminar da água são: CLARIFICAÇÃO/ FILTRAÇÃO Operação realizada normalmente em uma estação de tratamento de água (ETA), responsável pela eliminação de material suspenso na água. A clarificação é feita por um processo de coagulação / floculação 4 das impurezas, mediante a adição de um ou mais produtos específicos (tais como o sulfato de 4 Consideramos o conceito de coagulação como sendo a neutralização das cargas elétricas das partículas presentes na água. A floculação é o aglutinamento dessas partículas, formando um floco grande o suficiente para ser removido por decantação (ou flotação). Um mesmo produto pode fazer a função de floculante e coagulante. 24

25 alumínio, cloreto férrico, polímeros de acrilamida, policloretos de alumínio (PACs), taninos modificados, etc.). O produto aglutina as impurezas da água através de interações eletrostáticas e promove a formação de flocos, maiores e mais densos que se sedimentam e são eliminados (vide figura). A água clarificada é então submetida a uma filtração, normalmente em leito de areia, através dos filtros que operam por gravidade ou pressão. Ao término deste processo a água é submetida aos tratamentos complementares, quando for o caso. Eventualmente, pode-se fazer uma desinfecção da água antes, durante e/ou após o processo de clarificação/ filtração, tarefa comumente efetuada por uma cloração. FIGURA 09: REPRESENTAÇÃO DAS ETAPAS DE CLARIFICAÇÃO DA ÁGUA PROCESSOS DE TROCA IÔNICA É um tratamento complementar que visa a remoção dos íons dissolvidos na água causadores de problemas, tais como cálcio, magnésio, sílica, etc. Este processo faz uso das chamadas resinas de troca iônica, que são pequenas esferas porosas de material plástico em cuja superfície estão ligados os íons que serão usados na troca. Assim, existem dois tipos básicos de resina: as 25

26 catiônicas, que trocam íons positivos (tais como Ca 2+, Mg 2+, Na 2+, H +, Ba 2+, etc.) e as aniônicas, que trocam íons negativos (Cl-, OH-, SiO 2-3,...). O processo consiste em fazer a água a ser tratada passar por um ou mais leitos dessas resinas, as quais retém os íons de interesse. Chegará um momento em que o leito estará saturado e deverá ser regenerado adequadamente. Deve haver um rígido controle na qualidade da água antes de passar pelos vasos de troca iônica. Residuais de cloro livre, íons de ferro, sólidos suspensos, óleos e graxas são os maiores inimigos desta classe de resinas. Como desvantagem, o processo de troca iônica tem um fixo relativamente elevado (principalmente o custo das resinas) e a necessidade do uso e manuseio de produtos químicos perigosos (ácidos e soda cáustica) para regeneração dos leitos. Dependendo da finalidade a que se propõem, os processos de troca iônica para água são: Abrandamento Consiste na remoção de cálcio e magnésio da água. Faz uso de resinas que trocam íons sódio (Na + ) ou hidrogênio (H + ). Após saturação do leito, a regeneração é feita com cloreto de sódio ou ácido clorídrico (as vezes sulfúrico). Um esquema do processo de abrandamento é mostrado na figura a seguir: 26

27 FIGURA 10: ILUSTRAÇÃO DE UM PROCESSO DE ABRANDAMENTO POR TROCA IÔNICA (CICLO HIDROGÊNIO) Desmineralização Trata-se de um processo completo, removendo os íons positivos e negativos da água e deixando-a praticamente isenta de materiais dissolvidos. Consiste em fazer a água passar por um abrandador operando com resina de ciclo hidrogênio e, após, passar por um leito de resina aniônica, que troca íons hidroxila (OH - ), conforme no esquema a seguir. Este procedimento é capaz de remover a sílica e silicatos solúveis, além de carbonatos, sulfatos e até cloretos. Após saturação do leito, normalmente é feita regeneração com soda cáustica (NaOH). Eventualmente, após o leito aniônico, a água poderá ainda passar por um leito misto de resinas, garantindo maior pureza da mesma. É também comum a passagem da água por uma coluna de descarbonatação logo após o abrandamento, fazendo a retirada do CO 2 porventura dissolvido na água. 27

28 FIGURA 11: PRINCÍPIO DE FUNCINAMENTO DE UMA RESINA ANIÔNICA. FIGURA 12: CONJUNTO DE VASOS DE UM SISTEMA DE DESMINERALIZAÇÃO DE ÁGUA PARA CALDEIRA. 28

29 4.3 - PROCESSO DE OSMOSE REVERSA Consiste em fazer a água previamente filtrada passar por dispositivo normalmente cilíndrico denominado permeador, onde os sais presentes na água são retidos por membranas seletivas especialmente fabricadas. A água pura é eliminada radialmente pelo permeador, enquanto que a parcela de água não permeada é descartada a uma concentração mais elevada de sais. Este fato constitui uma das desvantagens do sistema, além do alto custo e da necessidade de se operar com vários permeadores em paralelo para obtenção de uma vazão razoável. FIGURA 13: ESQUEMA DE FUNCIONAMENTO DE UM SISTEMA DE TRATAMENTO DE ÁGUA POR OSMOSE REVERSA OUTROS PROCESSOS DE ABRANDAMENTO A água também pode ser abrandada (remoção de Ca 2+ e Mg 2+ ) embora não totalmente, por outros processos químicos através de tratamento com cal, cal e soda (também chamado cal sodada ), barrilha (Na 2 CO 3 ) ou fosfatos; alguns deles são também capazes de remover parte da sílica dissolvida na água. Estes processos são usados quando a dureza da água é excessivamente elevada e não se encontra nenhuma outra fonte de água de melhor qualidade. 29

30 Maiores detalhes podem ser vistos na literatura especializada, entre elas MAGUIRE (1980) e KEMMER (1988) DESTILAÇÃO Consiste em vaporizar a água e condensá-la em seguida para produção de água pura e, assim, alimentar a caldeira. Devido ao alto custo operacional, este processo somente é empregado em locais com elevada disponibilidade de energia (combustível barato ou abundante) e em instalações marítimas 5, para utilização da água do mar. 5 Ver detalhes em DREW (1984) 30

31 5 - OBJETIVOS DO TRATAMENTO DE ÁGUA DAS CALDEIRAS O tratamento químico interno de água das caldeiras e também as operações de tratamento preliminar visam atender os seguintes objetivos: Evitar a formação de incrustações Evitar os processos corrosivos Eliminar as ocorrências de arrastes de água seguintes. Cada um destes itens será comentado detalhadamente nos capítulos 31

32 6 - PREVENÇÃO DAS INCRUSTAÇÕES Neste capítulo serão mostradas as origens, conseqüências e formas de se evitar e corrigir este grande problema encontrado nos geradores de vapor INCRUSTAÇÃO CAUSAS E CONSEQÜÊNCIAS A água encontrada na natureza nunca é pura, apresentando uma vasta gama de substâncias dissolvidas. Muitas destas substâncias são sais e óxidos apresentando solubilidades diferentes e influenciadas basicamente pela temperatura, concentração e ph. Com a vaporização de água na caldeira, há um aumento na concentração das substâncias dissolvidas que permaneceram na fase líquida. Se forem ultrapassados os limites de solubilidade destas substâncias, as mesmas podem se precipitar de forma aderente nas superfícies de troca térmica (tubos do feixe de convecção, tubos de parede d água, tubo da fornalha, tubulões, etc.) constituindo as incrustações. Outras substâncias também podem se incrustar ou depositar na caldeira, tais como produtos de corrosão na seção pré e pós-caldeira, sólidos em suspensão, material orgânico advindo de contaminações e produtos insolúveis originados de reações químicas na água (incluindo excesso de produtos para condicionamento químico). Normalmente esta precipitação ocorre sob a forma de cristais bem ordenados, capazes de se fixarem firmemente às superfícies internas da caldeira. A ordenação existente na estrutura cristalina permite um rápido desenvolvimento da incrustação, aumentando a intensidade e o risco dos problemas associados. As principais conseqüências da presença de incrustações em caldeiras são: 32

33 Diminuição das taxas de troca térmica na caldeira, devido ao efeito isolante que a incrustação proporciona ao fluxo de calor (tem baixa condutividade térmica). Aumento do consumo de combustível, decorrente do item anterior. Diminuição da produção de vapor, também decorrente do primeiro item. Devido à restrição ao fluxo de calor, a presença de incrustações pode causar superaquecimento de um tubo e sua ruptura, parando a funcionamento do equipamento e podendo até causar acidentes fatais. Obstrução de tubos, válvulas, descargas e coletores da caldeira, comprometendo o fluxo de água e acentuando ainda mais a formação das incrustações. Possibilidade de ruptura de tubos, carcaça e danificação na estrutura da caldeira, comprometendo sua integridade e podendo até inutilizar o equipamento. Incrustações em instrumentos e dispositivos de controle (pressostatos, visores e controles de nível, etc.) podem comprometer o funcionamento adequado e seguro do equipamento, aumentando o risco de acidentes. Aumento dos processos corrosivos que ocorrem sob os depósitos/ incrustações. Para a remoção de incrustações já consolidadas, despende-se um grande esforço, muitas vezes através de limpezas químicas (normalmente com soluções de álcalis e/ou ácidos apropriados, devidamente inibidos) ou limpezas mecânicas de grande intensidade, tais como hidrojateamento a altas pressões, marteletes, impactos diretos com ferramentas, etc. Os principais responsáveis pela formação de incrustações em caldeiras são: Sais de cálcio e magnésio (dureza), principalmente o carbonato de cálcio (CaCO 3 ) e o sulfato de cálcio (CaSO 4 ). 33

34 Sílica solúvel (SiO 2 ) e silicatos (SiO 2-3 ) de vários cátions. A sílica solúvel é oriunda da dissolução de parte da própria areia e rochas com as quais a água mantém contato. Óxidos de ferro, tais como o Fe 2 O 3 e de outros metais (cobre, zinco) originado principalmente de processos corrosivos nas linhas de condensado e seção pré-caldeira. Materiais orgânicos contaminantes, tais como fluidos envolvidos no processo (sucos, licor, caldo, xaropes, etc.). Muitas vezes a contaminação se dá pelos condensados. Pela coloração resultante e o peso da incrustação formada, podemos grosseiramente estimar sua origem e composição química. Assim, compostos esbranquiçados/ levemente acinzentados são normalmente formados por cálcio e magnésio (e seus respectivos ânions); incrustações esverdeadas ou cinzentas e pesadas indicam ocorrência de sílica; depósitos negros leves apontam a presença de material orgânico, enquanto que os pesados indicam a presença de produtos de corrosão (ferro (Fe 3 O 4 ), sendo possível sua detecção através de um imã). Material de coloração marrom claro pode indicar argila e sólidos suspensos, ou também produtos de corrosão (Fe 2 O 3 ). Depósitos de coloração verde ou azul intensa indicam presença de cobre. Tal como nos sistemas de resfriamento, costuma-se fazer uma distinção entre os termos depósito e incrustação normalmente empregados: Depósitos: São acúmulos de materiais sobre determinada superfície que podem ser removidos manualmente com facilidade. Embora menos aderidos que as incrustações, os depósitos algumas vezes podem prejudicar a troca térmica e o escoamento da água. Geralmente, os depósitos são provenientes de materiais suspensos na água, sais condicionados não expurgados pelas descargas ou carbonizações de material orgânico contaminante. Incrustações: Caracterizam-se por um acúmulo de material fortemente aderido sobre a superfície da caldeira, necessitando de esforços consideráveis para sua remoção (limpezas mecânicas 34

35 ou químicas). Muitas incrustações são formadas por precipitação de sais e/ou óxidos na forma cristalina, gerando incrustações altamente coesas e aderidas. Nas figuras a seguir são mostrados inúmeros casos de incrustação em geradores de vapor. FIGURA 14: TUBULÃO SUPERIOR DE CALDEIRA AQUATUBULAR CONTENDO ELEVADA QUANTIDADE DE LAMA DE ORIGEM ARGILOSA (ÁGUA BRUTA) 35

36 FIGURA 15: PARTE INFERIOR DE CALDEIRA FOGOTUBULAR MOSTRANDO TUBOS INCRUSTADOS (DUREZA) E ACÚMULO DE LAMA E DEPÓSITOS NO FUNDO FIGURA 16: TUBO DE CALDEIRA AQUATUBULAR INCRUSTADO COM PRODUTOS DE CORROSÃO (ÓXIDO FÉRRICO) 36

37 FIGURA 17: INCRUSTAÇÕES RETIRADAS DE CALDEIRA FOGOTUBULAR INCRUSTADA APÓS INÍCIO DE TRATAMENTO QUÍMICO FIGURA 18: FOTOGRAFIA DE UM TUBO LIGEIRAMENTE INCRUSTADO (ESQ) E UM TUBO COMPLETAMENTE LIMPO. 37

38 FIGURA 19: FOTOGRAFIA TOMADA NO TUBULÃO SUPERIOR DE UMA CALDEIRA, MOSTRANDO GROSSAS INCRUSTAÇÕES NOS TUBOS. FIGURA 20: ACÚMULO DE LAMA E DEPÓSITOS EM UM COLETOR LATERAL DE CALDEIRA AQUATUBULAR. 38

39 6.2 - TRATAMENTOS PARA PREVENÇÃO DAS INCRUSTAÇÕES Como as incrustações constituem um problema que aparece com relativa rapidez, também foi o primeiro a ter sua solução pesquisada. Os primeiros tratamentos visando prevenção das incrustações surgiram na mesma época em que as caldeiras passaram a ter mais eficiência e maior produção de vapor por área de aquecimento, principalmente após o início da Revolução Industrial. Os métodos usados na época eram bastante empíricos e funcionavam na base da tentativa e erro. Com o avanço da ciência, muitas técnicas foram desenvolvidas e aperfeiçoadas, mostrando-se mais ou menos efetivas na solução do problema. Na seqüência, apresentaremos os principais tratamentos empregados atualmente para prevenir as incrustações Tratamento Precipitante Fosfato É uma dos primeiros conceitos em tratamento bem sucedidos e o mais utilizado em número de caldeiras hoje em dia, principalmente nos modelos pequenos e de baixa pressão. Consiste em adicionar um composto a base de fosfato à água (fosfato mono, di ou trissódico, polifosfatos, etc.) o qual reage com a dureza e a sílica dissolvidas; estas reações ocorrem estequiometricamente e, na presença de adequadas concentrações de alcalinidade hidróxida (OH - ), formam lamas precipitadas de hidroxiapatita de cálcio e um hidroxissilicato de magnésio (chamado de serpentina ). As lamas sedimentam-se no fundo da caldeira e são removidas pelas descargas de fundo. Vide reações abaixo. 39

40 10Ca PO OH - 3Ca 3 (PO 4 ) 2. Ca(OH) 2 (Hidroxiapatita de cálcio) 3Mg SiO OH - + 2H 2 O 2MgSiO 3.Mg(OH) 2.2H 2 O (Serpentina) Juntamente com o fosfato, é também adicionado um produto chamado condicionador de lama, que a mantém dispersa visando impedir a sua aderência sobre a superfície de aquecimento da caldeira. Inicialmente, usavase para esta finalidade produtos a base de ligninas, taninos, amidos modificados, carboximetilcelulose (CMC), entre outros. Atualmente, o uso de polímeros específicos tem se mostrado mais eficiente; como exemplo, podemos citar os polímeros baseados em acrilatos, sulfonados e fosfinocarboxílicos. No caso dos fosfatos, o uso dos chamados polifosfatos tem se mostrado mais eficiente, principalmente pelo efeito Threshold que este tipo de molécula exibe (vide observações sobre este fenômeno mais adiante). Na figura abaixo está ilustrada a estrutura básica dos polifosfatos. FIGURA 21: ESTRUTURA BÁSICA DOS POLIFOSFATOS O tratamento com fosfatos tem alguns inconvenientes, a saber: 40

41 Formação de lamas: podem se aderir sobre as superfícies metálicas da caldeira, constituindo incrustações. Isto ocorre principalmente em locais com elevada taxa de vaporização, tais como nos trechos e tubos submetidos à radiação (fornalha). Necessita de valores elevados de alcalinidade hidróxida, o que aumenta a probabilidade de ataque cáustico ( Caustic Embrittlement detalhado posteriormente). Não tolera abaixamentos de ph na água da caldeira, sendo que quando isso ocorre há formação de fosfato de cálcio e fosfato de magnésio, incrustações duras e aderentes. Excesso de fosfato pode comprometer o tratamento, também formando incrustações de fosfato de cálcio e/ou magnésio. A necessidade de razoáveis valores de alcalinidade hidróxida e residuais de fosfato a serem mantidos na água aumentam a condutividade elétrica da mesma, favorecendo a ocorrência de processos corrosivos. Em função dessas desvantagens, outros métodos de tratamento surgiram visando obter melhores resultados práticos e redução nos custos de tratamento. Apesar disso, o tratamento com fosfato ainda é muito difundido. Em caldeiras de alta pressão, são normalmente aplicados tratamentos a base de fosfatos, tais como o Fosfato-pH Coordenado e o método congruente. Estes tratamentos visam a eliminação de alcalinidade hidróxida livre (OH - ) que são causadoras de ataque cáustico. Neste tipo de caldeira, a preocupação principal é com os processos corrosivos, já que o tratamento preliminar aplicado (desmineralização, osmose reversa, etc.) remove todos os sais que poderiam se incrustar; as incrustações, nesse caso, são normalmente de produtos de corrosão. 41

42 Tratamento Quelante É um tratamento que tem por meta a complexação (quelação) dos íons de cálcio e magnésio da água, formando compostos estáveis e solúveis, prevenindo-os assim de se incrustarem na caldeira. Como vantagem, não há formação de lamas e nem as possíveis conseqüências que as mesmas podem gerar. Os agentes quelantes mais utilizados são o EDTA (Etileno Diamino Tetra Acetato) e o NTA (Nitrilo Acetato) que também podem se apresentar na forma ácida. O NTA é mais estável que o EDTA tem temperaturas elevadas e, portanto, mais fácil de ser controlado. A observação criteriosa de muitos casos onde foi aplicado o tratamento quelante em caldeiras mostra algumas desvantagens, entre elas: Necessita desaeração total da água de alimentação, sob o risco de traços de oxigênio causarem degradação do produto no ponto de dosagem, situado normalmente na seção pré-caldeira. Um pequeno excesso de quelante pode causar corrosão generalizada na caldeira, devido à complexação do óxido de ferro protetor (magnetita Fe 3 O 4 ). Existem relatos de caldeiras completamente avermelhadas 6 no seu interior, devido ao ataque do quelante. A reação do quelante com os íons metálicos é estequiométrica. Caso haja subdosagem do quelante, fatalmente iniciar-se-á um processo incrustante na caldeira. Os agentes quelantes tem muita afinidade com o cobre, o que impossibilita este tipo de tratamento em sistemas que contenha este metal ou suas ligas, principalmente na seção pré-caldeira (tanque de alimentação, desaerador, economizador, etc.). Os quelantes são instáveis e decompõem-se em altas temperaturas, formando produtos difíceis de serem detectados por testes analíticos; impedem assim a determinação exata de sua concentração na caldeira. 6 Normalmente a coloração avermelhada é resultado da presença de Fe 2 O 3, chamado hematita. Este óxido de ferro é o predominante na ferrugem, onde também podem ser encontrados os hidróxidos de ferro, tais como o Fe(OH) 2 e Fe(OH) 3. 42

43 Os quelantes convencionais não são suficientemente efetivos para evitar deposição de óxido férrico (Fe 2 O 3 ) nas superfícies da caldeira. Exigem, assim, o uso de dispersantes de ferro específicos. Finalizando, os quelantes não apresentam ação contra a sílica. Assim, a mesma se precipita de maneira quase que exclusiva, constituindo incrustações vitrificadas pelo calor, extremamente duras e ancoradas na tubulação da caldeira Tratamentos Disperso-Solubilizantes (TDS 7 ) Consiste no uso de técnicas e produtos mais modernos, desenvolvidos nas últimas décadas na tentativa de solucionar os problemas encontrados com outros tipos de tratamento. Pelo fato do princípio de atuação ser exatamente o mesmo, os produtos e princípios abaixo apresentados também podem ser usados em outras aplicações, tais como sistemas de resfriamento, evaporadores, processos de destilação, etc. A ação dos disperso-solubilizantes no tratamento de água de caldeira está baseada nos seguintes mecanismos: 1. Efeito Limiar ( Threshold ): Também chamado de seqüestração, é caracterizado pela redução na tendência de precipitação de compostos de cálcio, magnésio, ferro, entre outros, causando um atraso na precipitação desses sais mesmo quando o dispersante é dosado em quantidades sub-estequiométricas. Isto é possível porque o produto reage somente com a espécie química que está na iminência de se precipitar, sendo assim consumido somente por uma pequena fração da espécie. As principais classes de produtos que exibem estas propriedades são os polifosfatos, fosfonatos (compostos organofosfóricos) e polímeros/ copolímeros (acrílicos, maleicos, estireno-sulfonados, carboxílicos etc.). 7 Não confundir com a sigla TDS do inglês (Total Dissolved Solids) que significa Sólidos Totais Dissolvidos. 43

44 2. Ação dispersante: Apresentada comumente por compostos organofosfóricos e polieletrólitos, que por sua vez tendem a se adsorver sobre a superfície de partículas em suspensão, tais como núcleos de precipitação de sais. O produto adsorvido sobre a partícula confere-lhe cargas elétricas, fazendo com que as mesmas exerçam forças de repulsão entre elas e, assim, permaneçam dispersas. Em outras palavras, a ação dispersiva atua de modo oposto à coagulação. As partículas dispersas podem então ser removidas pelos sistemas de descarga da caldeira. 3. Modificação de Cristais: Sem tratamento, as incrustações inorgânicas são formadas por retículos cristalinos que se desenvolvem de maneira bem regular, o que favorece seu crescimento após a formação e aderência sobre as superfícies metálicas. A modificação de cristais age através da distorção dos mesmos, impedindo seu crescimento ordenado e alterando sua forma. Com isso, os cristais tendem a não se aderir sobre as superfícies e permanecem dispersos no líquido, favorecendo sua eliminação pelas descargas. Alguns produtos orgânicos naturais, tais como ligninas e taninos, foram e ainda são usados com esta finalidade, auxiliando inclusive os tratamentos a base de fosfatos; ultimamente, o uso de polímeros e copolímeros sintéticos específicos (poliacrilatos, maleicos, fosfino-carboxílicos, entre outros) tem se mostrado mais vantajoso. Muitas vezes, um único produto pode apresentar duas ou mais das características mencionadas, sendo que a escolha deve levar em consideração os íons presentes na água, o pré-tratamento empregado, a classe de operação da caldeira, a presença de incrustações antigas e evidentemente, o custo global do tratamento. Várias informações adicionais sobre os produtos usados neste tipo de tratamento podem ser encontradas em literatura, catálogos e boletins técnicos 44

45 de fabricantes, dentre os quais se destacam: SOLUTIA (1998); ROHM AND HAAS, (1997a) e GIOVANNI BOZZETTO (1996). Nas figuras a seguir, estão ilustrados alguns cristais submetidos a tratamentos com diferentes classes de disperso-solubilizantes. FIGURA 22: CRISTAIS DE CARBONATO DE CÁLCIO: (A) PRECIPITADO COMO CALCITA (FORMA CRISTALINA PREDOMINANTE EM BAIXAS TEMPERATURAS). (B) PRECIPITADO COMO ARAGONITA (PREDOMINANTE EM ALTAS TEMPERATURAS). (C) DISTORÇÃO CAUSADA POR TRATAMENTO COM POLIACRILATO. (D) MUDANÇAS NA ESTRUTURA DO PRECIPITADO. (E) ESTRUTURA RESULTANTE DE TRATAMENTO COM COPOLÍMERO SULFONADO. (F) DISTORÇÕES PRODUZIDAS POR UMA MISTURA DE FOSFONATO E POLIACRILATO. 45

46 FIGURA 23: CRISTAIS DE SULFATO DE CÁLCIO. ACIMA, À ESQ.: SEM TRATAMENTO. ACIMA, À DIR.: APÓS TRATAMENTO COM FOSFONATO (PBTC). ABAIXO: APÓS TRATAMENTO COM POLIACRILATO (ROHM AND HAAS, 1997B). 46

47 FIGURA 24: ACIMA: CRISTAIS DE OXALATO DE CÁLCIO PRECIPITADOS NATURALMENTE. ABAIXO: PRECIPITADOS NA PRESENÇA DE DISPERSO-SOLUBILIZANTES (MISTURA DE FOSFONATO E POLIACRILATO). As vantagens dos tratamentos disperso-solubilizantes são: Não há formação de lamas que poderiam se aderir às superfícies, a exemplo do que ocorre com os fosfatos. Habilidade em dispersar íons de ferro, impedindo a formação de incrustações originadas de produtos de corrosão. Os produtos relacionados a este tratamento são estáveis em temperaturas relativamente elevadas e são facilmente detectados e quantificados por procedimentos analíticos 8 simples. 8 Alguns polímeros são dotados de um traçador, permitindo a avaliação de sua concentração na água da caldeira com testes rápidos e confiáveis. 47

48 Este tipo de tratamento tolera abaixamentos de ph, tal como quando ocorre contaminação da água da caldeira por material indesejável (orgânicos principalmente). Uma sobredosagem de produtos é capaz de remover incrustações (com composição predominante de cálcio e magnésio) presentes no sistema, promovendo uma limpeza em operação. Alguns terpolímeros de pesos moleculares e estruturas especialmente desenvolvidas são capazes de dispersar a sílica e silicatos, impedindo-os de se incrustarem; trata-se de uma tarefa relativamente difícil, pois estes compostos normalmente se precipitam de maneira amorfa (não cristalina). Maiores detalhes em ROHM AND HAAS (1997c). Por outro lado, certo critério deve ser adotado na aplicação do tratamento disperso-solubilizante, haja visto que o mesmo apresenta algumas desvantagens: Funciona bem em tratamento de águas com níveis de dureza, sílica e sólidos suspensos relativamente baixos (alto retorno de condensado, água de reposição de boa qualidade abrandada, desmi, etc.). Em águas com concentrações de sais mais elevadas, o uso isolado do TDS torna-se técnica e economicamente inviável, exigindo um apoio de compostos à base de fosfatos para auxiliar na remoção dos sais (tratamento combinado ou misto). Dosagens excessivas de alguns compostos empregados neste tratamento podem causar corrosão generalizada no metal da caldeira. Alguns produtos (certos tipos de fosfonatos) também têm forte interação com o cobre e podem, assim, causar corrosão em equipamentos construídos com este metal ou suas ligas, normalmente encontradas na seção pré-caldeira. Caso haja necessidade do uso desses produtos, recomenda-se fazer após o equipamento em questão. 48

49 O tratamento disperso-solubilizante depende, fundamentalmente, da eficiência e de um ótimo funcionamento dos sistemas de descarga das caldeiras. Existem legislações em alguns países que proíbem o descarte de efluentes contendo fósforo. Assim, os fosfonatos não podem ser usados e a escolha deve recair somente sobre os polímeros isentos desse elemento. 49

50 7 - CORROSÃO E MÉTODOS DE CONTROLE Corrosão pode ser definida como a destruição da estrutura de um metal através de reações químicas e/ ou eletroquímicas com o ambiente em que o mesmo se encontra. Podemos dizer que a corrosão é uma forma natural dos metais voltarem ao estado original em que eram encontrados na natureza, tais como nos minérios (óxidos); isto ocorre porque, nesta forma, os metais apresentam-se da maneira mais estável possível do ponto de vista energético. Seria como o exemplo de uma bola no alto de uma montanha: a bola tenderia a descer pela mesma, até atingir um estado de energia (potencial gravitacional, no caso) mais baixo possível. As sérias conseqüências dos processos de corrosão têm se tornado um problema de âmbito mundial, principalmente em relação aos aspectos econômicos. Nos EUA, por exemplo, a corrosão gera prejuízos da ordem de US$ 300 bilhões por ano, dados de 1995 (ROBERGE, 1999). Infelizmente, no Brasil, não dispomos de dados precisos sobre os prejuízos causados pela corrosão, mas acreditamos serem consideravelmente elevados FUNDAMENTOS Basicamente, a corrosão envolve reações de óxido-redução, ou seja, troca de elétrons. É um processo eletroquímico no qual o ânodo (espécie onde ocorre oxidação perda de elétrons) que é consumido está separado por uma certa distância do cátodo, onde ocorre redução (ganho de elétrons). O 9 Informações detalhadas sobre corrosão, bem como uma série de trabalhos, livros e publicações sobre o assunto podem ser encontradas em: ABRACO - ASSOCIAÇÃO BRASILEIRA DE CORROSÃO: NACE NATIONAL ASSOCIATION OF CORROSION ENGINEERS: 50

51 fenômeno ocorre devido à existência de uma diferença de potencial elétrico entre estes dois locais. Apesar de diferir de um sistema para outro, o mecanismo básico proposto para o processo de corrosão é: 1. Na região anódica, átomos de ferro (Fe 0 ) passam para o estado de oxidação II, formando Fe Como resultado da formação do Fe 2+, dois elétrons migram através do metal para a área catódica. 3. Se houver oxigênio presente na água, o mesmo move-se para a área catódica e ingressa no circuito, usando os elétrons que migraram para o cátodo e formando íons hidroxila (OH - ) na superfície do metal. O oxigênio até pode, devido à sua eletroafinidade, induzir a migração dos elétrons do ferro no cátodo. 4. Os íons OH - deslocam-se para a região anódica, onde reagem com os íons Fe 2+ formando hidróxido ferroso, Fe(OH) 2, que se deposita ao redor da área anódica. Esta etapa completa o ciclo básico do processo. 5. O hidróxido ferroso formado é instável e, na presença de oxigênio e/ ou íons hidroxila, forma-se hidróxido férrico Fe(OH) O hidróxido férrico, por sua vez, tende a se decompor em Fe 2 O 3, que é o óxido férrico, conhecido como ferrugem. Quimicamente, as reações envolvidas são: 1, 2) Fe 0 Fe e - (ânodo) 3) ½O 2 + H 2 O + 2e - 2(OH) - (cátodo) 4) Fe (OH) - Fe(OH) 2 5) 2Fe(OH) 2 + ½O 2 + H 2 O 2Fe(OH) 3 6) 2Fe(OH) 3 Fe 2 O 3. 3H 2 O Na figura a seguir, está ilustrado o processo aqui descrito. 51

52 FIGURA 25: REPRESENTAÇÃO DE UMA CÉLULA DE CORROSÃO CLÁSSICA. Analisando-se os mecanismos descritos podemos verificar que, se conseguirmos eliminar o oxigênio da água da caldeira, controlaremos os processos corrosivos elementares. Assim, a remoção do oxigênio é um dos mais importantes meios de se prevenir a corrosão nas caldeiras, e será comentada oportunamente. Um outro método consiste em manter o ph da água na faixa alcalina, o que elimina a chance de corrosão no metal por ataque ácido TIPOS DE CORROSÃO EM CALDEIRAS Várias formas de processos corrosivos são encontradas nos sistemas geradores de vapor. Apesar de muitos deles estarem relacionados e serem interdependentes, podemos destacar, resumidamente, os seguintes: Pittings (ou pites): São processos de corrosão localizada, pontuais e, na ausência de um controle eficiente, promovem grande penetração no metal da caldeira, chegando inclusive até a inutilização do equipamento. Geralmente os processos de corrosão por pitting são observados na seção vapor das caldeiras 52

53 e acessórios pós-caldeira, sendo provocados em sua quase totalidade pelo ataque de oxigênio indevidamente presente na água. Um dos métodos de controle deste tipo de pitting é a desaeração mecânica conveniente da água de alimentação da caldeira, bem como a dosagem e manutenção de um residual adequado de seqüestrante de oxigênio (sulfito de sódio, hidrazina,...). A corrosão localizada também ocorre sob depósitos, em locais de falha na estrutura cristalina do metal e em locais submetidos a tensões. Nas figuras seguintes são mostradas algumas ocorrências de pittings em caldeiras. FIGURA 26: CARCAÇA DE UMA CALDEIRA FOGOTUBULAR, MOSTRANDO OS PONTOS DE CORROSÃO LOCALIZADA (PITTINGS) DEVIDO À PRESENÇA DE OXIGÊNIO 53

54 FIGURA 27: TUBO DE SUPERAQUECEDOR VÍTIMA DE CORROSÃO POR OXIGÊNIO Corrosão Galvânica Este tipo de corrosão ocorre, basicamente, quando dois ou mais metais com diferença significativa de potenciais de oxidação estão ligados ou imersos em um eletrólito (tal como a água com sais dissolvidos). Um metal chamado de menos nobre, tem uma tendência a perder elétrons para um metal mais nobre, cuja tendência de perda é menor. Assim, o metal menos nobre tornase um ânodo e é corroído. Este fenômeno também depende da área entre as regiões anódicas e catódicas, isto é, quanto menor for a área do ânodo em relação ao cátodo, mais rápida é a corrosão daquele. Um exemplo disso ocorre entre o cobre (mais nobre) e o aço carbono, menos nobre e que tem a sua taxa de corrosão acelerada. No quadro a seguir, encontra-se representada uma série galvânica de diferentes metais e ligas onde se pode visualizar a maior tendência à corrosão (áreas anódicas) ou menor tendência (área catódica). 54

55 QUADRO 01: SÉRIE GALVÂNICA DE DIVERSOS METAIS E LIGAS (MAGUIRE, 1980). REGIÃO ANÓDICA (Menos Nobre) Extremidade Corroída MAIOR TENDÊNCIA À CORROSÃO REGIÃO CATÓDICA (Mais Nobre) Extremidade Protegida Magnésio Ligas de Magnésio Zinco Alumínio 2S Cádmio Alumínio 17 ST Aço Carbono e Ferro Ferro Fundido Ferro Cromo (ativo) 18/8 Cr-Ni-Fe (Inox 304-Ativo) 18/8/3 Cr-Ni-Mo-Fe (Inox 316-Ativo) Hastelloy C Chumbo Estanho (soldas) Chumbo Estanho Níquel (Ativo) Inconel (Ativo) Hastelloy A Hastelloy B Latão Cobre Bronze Cobre Níquel (ligas) Titânio Monel Prata (soldas) Níquel (Passivo) Inconel (Passivo) Ferro-Cromo (Passivo) 18/8 Cr-Ni-Fe (Inox 304-Passivo) 18/8/3 Cr-Ni-Mo-Fe (Inox 316-Passivo) Prata Grafite Em aparelhos geradores de vapor, principalmente nas seções pré e póscaldeira, é comum a construção de equipamentos auxiliares com ligas diferentes do aço empregado na caldeira. Isto acentua a corrosão galvânica e as medidas corretivas tem que ser tomadas, sob pena de um processo rápido de corrosão no metal menos nobre. 55

56 Para minimizar a ocorrência de corrosão galvânica, recomenda-se evitar a construção de equipamentos utilizando metais ou ligas com potenciais de oxidação muito diferentes e evitar o contato elétrico direto entre os metais, colocando materiais isolantes entre os mesmos (plástico, borracha, etc). A manutenção de valores baixos de sólidos dissolvidos na água contribui para uma diminuição na condutividade elétrica da mesma e, assim, ajuda a minimizar os processos corrosivos como um todo, inclusive os de origem galvânica Corrosão por Tensão Já citada no item referente aos pittings, a corrosão sob tensão ocorre em áreas do metal submetidas a tensões e esforços, tais como nas operações de corte, soldagem, mandrilhamento de tubos, calandragem e dobramento de chapas, entalhamento de roscas, rebites, etc. Também aparecem em pontos de falha na estrutura cristalina do metal, tal como a presença de átomos metálicos diferentes da liga, espaços vazios no retículo, presença de átomos nos interstícios do mesmo, etc. A corrosão sob tensão pode causar prejuízos significativos quando atinge determinadas proporções. Os métodos de combatê-la são, na maioria, preventivos: alívio de tensões, escolha de material de boa qualidade para fabricação e reparos no equipamento, evitar operações que provoquem tensões excessivas no equipamento depois de montado, entre outros Ataque Cáustico ( Caustic Embrittlement ) É um tipo de ataque que ocorre devido à excessiva concentração de alcalinidade hidróxida (íons OH - ), provenientes normalmente da soda cáustica 56

57 usada para manutenção do ph na faixa alcalina 10. Mesmo que no seio da água a concentração não esteja tão alta, nas camadas de líquido próximas à parede dos tubos a concentração é bem superior, devido à vaporização de água na região. Além disso, existem locais onde pode haver maior concentração de OH -, tais como sob depósitos/ incrustações, em locais submetidos a fluxos de calor muito altos (como ocorre quando a chama atinge os tubos), ou em tubos inclinados ou horizontais, nos quais há pouca quantidade de água no seu interior. Nessas áreas onde a concentração de hidroxilas é elevada, há uma reação das mesmas com o filme de magnetita (Fe 3 O 4 ) que protege a superfície do metal. Removido o filme e exposto o aço, as hidroxilas em altas concentrações também reagem como o ferro. As reações envolvidas são: Fe 3 O 4 + 4NaOH 2NaFeO 2 + Na 2 FeO 2 + 2H 2 O Fe + 2NaOH Na 2 FeO 2 + H 2 Para que o ataque cáustico se configure, também deve ocorrer a existência de pontos de tensão no local onde há a concentração dos íons OH -. A presença de sílica também auxilia no processo, direcionando o ataque do OH - para os limites do grão do metal e levando a um ataque intercristalino. Este processo causa fissuras na estrutura do metal, podendo ocasionar rupturas extremamente perigosas. Nas figuras seguintes são mostradas algumas ocorrências de ataque cáustico. 10 Deve-se manter o ph na faixa alcalina pelos seguintes fatores: evitar a corrosão por ácido, promover a formação de lamas não aderentes (tratamentos c/ fosfatos) e garantir a dispersão da sílica na forma de, evitando a formação do ácido ortosilíssico. 57

58 FIGURA 28: FOTOGRAFIA MOSTRANDO FISSURA PROVOCADA POR ATAQUE CÁUSTICO (500X) 58

59 FIGURA 29: TUBO DE 3 DE UMA CALDEIRA QUE SOFREU ATAQUE CÁUSTICO. PRESSÃO DE OPERAÇÃO: 150 Kgf/ cm Fragilização por Hidrogênio É um processo que ocorre somente em caldeiras de pressões elevadas, digamos acima de 100 Kgf/ cm 2. É ocasionado pela presença de hidrogênio molecular (H) que pode se formar nas reações químicas presentes na caldeira, tal como aquela que causa o ataque cáustico. Devido ao seu pequeno tamanho, o hidrogênio produzido é capaz de penetrar no interior do metal e reagir com o carbono do aço, formando uma molécula de metano no interior do retículo. 59

60 A reação é: 4H + Fe 3 C 3Fe + CH 4 A formação da molécula de metano, relativamente grande, no interior do metal causa uma tensão enorme, o que pode causar ruptura. FIGURA 30: RUPTURA EM UM TUBO DE CALDEIRA (PRESSÃO DE OPERAÇÃO: 136 Kgf/ cm 2 ) DEVIDO A FRAGILIZAÇÃO POR HIDROGÊNIO REMOÇÃO DO OXIGÊNIO DA ÁGUA Como mencionado no item Fundamentos ao início do capítulo, um dos meios mais simples e eficientes de se combater a corrosão elementar nas caldeiras é através da remoção do oxigênio presente na água. Não havendo oxigênio, não há receptor para os elétrons provenientes do ferro e, assim, o ciclo não se completa. Portanto, grande parte da atenção é voltada à remoção do oxigênio, a qual é feita de dois modos: mecanicamente e quimicamente. Detalhes na seqüência. 60

61 Desaeração Mecânica Consiste em fazer a água passar por um equipamento chamado desaerador o qual, trabalhando em temperatura elevada 11, promove uma grande área de contato para expulsão do ar dissolvido. Existem dois tipos básicos desse equipamento: o tipo spray e o tipo que contém bandejas, sendo que a disposição do vaso principal pode ser horizontal (mais comum) ou vertical. Alguns desaeradores, principalmente para caldeiras de alta pressão, podem trabalhar a vácuo, o que ajuda na remoção do oxigênio. Nas figuras seguintes está esquematizado o funcionamento desses equipamentos. FIGURA 31: ESQUEMA DE FUNCIONAMENTO DO DESAERADOR. ESQ.: MODELO BANDEJA. DIR.: MODELO SPRAY 11 A solubilidade dos gases em líquidos é inversamente proporcional à temperatura, ou seja, quanto maior a temperatura, menor é a solubilidade. 61

62 FIGURA 32: FOTOGRAFIA DE UM DESAERADOR HORIZONTAL DO TIPO BANDEJA Desaeração Química Seqüestrantes de Oxigênio ( Oxygen Scavengers ) Na maioria das vezes o desaerador não consegue eliminar totalmente o oxigênio dissolvido na água, restando ainda uma pequena parcela que, se adentrar a caldeira, poderá causar processos corrosivos, principalmente pittings na seção vapor. Assim, logo após o elemento desaerador, deve-se fazer a adição de um composto químico capaz de remover, suficientemente, o oxigênio 12 presente na água. Para isso, utilizam-se normalmente as seguintes substâncias: 12 Na alimentação da caldeira, são desejados valores de oxigênio dissolvidos inferiores a 5 ppb. 62

63 Sulfito de Sódio É um pó branco, relativamente solúvel em água, de fórmula Na 2 SO 3. Reage com o oxigênio formando sulfatos: Na 2 SO 3 2Na + + SO 3 2- SO ½O 2 SO 4 2- Esta reação é muito lenta à temperatura ambiente e aumenta de velocidade com o aumento da mesma. Dependendo do ponto de dosagem, pode acontecer do sulfito não ter tempo de eliminar todo o oxigênio presente na água e, ao penetrar na caldeira, o mesmo causa corrosão. Para evitar este inconveniente, utiliza-se um catalisador para acelerar a velocidade, tal como sais de cobalto. O sulfito deve ser dosado visando reagir como todo o oxigênio presente na água e também uma quantidade adicional para manter um residual na mesma, normalmente entre 10 e 60 ppm. Alguns condensados, tais como os originados da evaporação do caldo de cana para produção de açúcar branco, já contêm quantidade razoável de sulfitos e, assim, dispensam o uso do produto em pó. O sulfito tem o inconveniente de formar sulfatos, ou seja, sólidos que contribuem para aumento da condutividade da água. Em caldeiras de alta pressão, isto não é desejado e outros produtos devem ser usados. Além disso, em altas temperaturas (altas pressões), pode ocorrer a decomposição do sulfito em H 2 S, ácido sulfídrico, podendo causar corrosão, sobretudo na seção pós-caldeira e linhas de condensado Hidrazina Trata-se de um líquido de fórmula N 2 H 4, forte agente redutor e utilizado no passado como combustível de foguetes. Reage com o oxigênio formando nitrogênio e água, de acordo com a seguinte reação: 63

64 N 2 H 4 + O 2 N 2 + 2H 2 O Tal como no sulfito, a velocidade de reação da hidrazina com o oxigênio também é lenta e deve-se utilizar um catalisador para acelerá-la. Como vantagem, a hidrazina não forma sólidos na caldeira, sendo recomendada para unidades de médias e altas pressões. Além da seqüestração do oxigênio, por ser um forte agente redutor a hidrazina é capar de promover a transformação de óxido férrico (Fe 2 O 3 produto de corrosão) em óxido de ferro IV (Fe 3 O 4 Magnetita), que é um óxido protetor e desejado na superfície da caldeira: 6Fe 2 O 3 + N 2 H 4 4Fe 3 O 4 + N 2 + 2H 2 O A hidrazina tem a desvantagem de, sob altas pressões e concentrações acima dos limites normalmente recomendados, decompor-se em amônia (NH 3 ) a qual, na presença de traços de oxigênio, pode causar corrosão em ligas de cobre. Outras desvantagens são: periculosidade, pois é tóxica e estudos comprovam que é cancerígena, exigindo cuidados especiais no seu manuseio; limites de controle são baixos (da ordem de 0,02 0,4 ppm, dependendo da pressão) o que dificulta a quantificação pelos métodos analíticos Outros Seqüestrantes de Oxigênio Apesar do sulfito e hidrazina serem os seqüestrantes de oxigênio mais usados, algumas outras classes de substâncias também podem ser usadas para este fim. Entre elas, destacamos: DEHA (Dietilhidroxilamina), amina com características redutoras Ácido Iso-ascórbico: Tem sido usado em caldeiras de até 60 Kgf/ cm 2 de pressão em substituição à hidrazina Alguns sacarídeos (tais como glicose): usados em aplicações específicas Hidroquinona Taninos 64

65 Aminoguanidinas Hidrazidas e polímeros contendo este grupo funcional (-CONHNH 2 ) Cada um desses compostos apresenta características específicas e não serão detalhados no presente trabalho MÉTODOS FÍSICOS DE PREVENÇÃO DA CORROSÃO Durante a construção e possíveis reparos nos geradores de vapor e equipamentos relacionados, uma série de cuidados são tomados de modo a minimizar os processos corrosivos que poderão ocorrer durante seu funcionamento. Assim, os métodos mais empregados são: Alívio de Tensões: Consiste em promover um aquecimento lento e gradual, manter uma determinada temperatura por certo tempo e resfriar lentamente a região que se quer aliviar. Com isto há uma melhor acomodação dos grãos constituintes do metal, minimizando a ocorrência de defeitos e, conseqüentemente, a possibilidade de processos corrosivos. O alívio de tensão também melhora as propriedades mecânicas do aço, aumentando sua resistência quando o mesmo for solicitado. Escolha das ligas e metais adequados: Visa minimizar a ocorrência de corrosão galvânica, normalmente responsável pelo aparecimento de processos corrosivos rápidos e localizados. Caso haja necessidade de soldas no equipamento, os eletrodos e procedimentos também devem ser selecionados adequadamente. Tratamentos de Superfície: Têm por objetivo a formação de uma película protetora sobre o metal, impedindo seu contato direto com o meio. Este tratamento é muito importante durante a fabricação e 65

66 montagem do equipamento, evitando que o mesmo sofra um processo corrosivo antes mesmo de entrar em operação. Hibernação: Aplicado em caldeiras fora de operação ou em stand-by, a hibernação minimiza a ocorrência de corrosão na superfície interna da caldeira. Os métodos mais simples costumam empregar residuais elevados de sulfito de sódio e a manutenção de um ph adequado, normalmente feito com soda cáustica. Deve-se atentar para o completo enchimento da caldeira e o fechamento de todas as válvulas e aberturas existentes no equipamento. Alguns processos de hibernação são feitos a seco, colocando-se agentes dessecantes no interior do equipamento; são métodos menos eficientes que os anteriores. Externamente, também devemos nos preocupar com o ataque da corrosão. Assim, a manutenção adequada do equipamento, o isolamento térmico, cobertura ou telhado adequado, revestimentos, alvenaria e pinturas devem sempre ser verificados e corrigidos. Deve-se também evitar a lavagem de qualquer seção do lado fogo e as infiltrações de água no equipamento CORROSÃO EM LINHAS DE CONDENSADO AMINAS FÍLMICAS E NEUTRALIZANTES São fenômenos que ocorrem com freqüência nos sistemas de geração, distribuição e utilização de vapor. O condensado é uma água praticamente pura, com uma tendência elevada de dissolver o material com o qual mantém contato. Além disso, os condensados podem apresentar um caráter ácido devido à formação de ácido carbônico, originado da decomposição térmica de íons carbonato e bicarbonato presentes na água da caldeira. Nas equações seguintes é possível visualizar este processo: 2HCO 3 - CO CO 2 + H 2 O CO H 2 O 2OH - + CO 2 66

67 O gás carbônico produzido por essa decomposição sai junto com o vapor e, na condensação, dissolve-se formando ácido carbônico. Este se dissocia e forma íons H +, responsáveis pelo abaixamento do ph e pela corrosão ácida encontrada nesses sistemas. As reações são: CO 2 + H 2 O H 2 CO 3 H 2 CO 3 H HCO 3 HCO 3 - H + + CO 3 2- Na fotografia seguinte pode-se visualizar o efeito da corrosão nas linhas de condensado. FIGURA 33: INTERIOR DE UMA LINHA DE RETORNO DE CONDENSADO QUE SOFREU PROCESSO INTENSO DE CORROSÃO (PORT & HERRO, 1991) Para evitar este problema, é feita uma dosagem de um produto alcalino volátil, que tenha capacidade de vaporizar-se junto com o vapor de água e, no momento da condensação deste, promover a neutralização do condensado resultante. Um dos produtos usados é a amônia, na forma de solução aquosa 67

68 como hidróxido de amônio (NH 4 OH). No entanto, a amônia causa corrosão em cobre, impedindo sua utilização em sistemas onde este metal ou alguma de suas ligas esteja presente. Além disso, a amônia é muito volátil e tende a se acumular somente nas áreas mais frias do sistema, deixando desprotegidos os pontos com temperatura mais elevada. Para contornar este problema, o uso de aminas específicas, com diferentes volatilidades, tem sido empregado com sucesso. Os principais produtos são: morfolina, ciclohexilamina e dietilaminoetanol. Além das aminas neutralizantes, existem também as chamadas aminas fílmicas, que apresentam o seguinte princípio de atuação: um dos extremos da molécula da substância consegue se adsorver firmemente na superfície metálica, formando um delgado filme. O outro extremo tem características hidrofóbicas, ou seja, consegue repelir a água. A formação desse filme protege o metal e minimiza a ocorrência dos processos corrosivos. As aminas dotadas desta propriedade mais utilizadas são a octadecilamina e o acetato de octadecilamina. FIGURA 34: TUBO QUE RECEBEU TRATAMENTO COM AMINA FÍLMICA. OBSERVAR A REPULSÃO EXERCIDA NAS GOTAS DE ÁGUA (KEMMER, 1988). 68

69 8 - ARRASTES Outro problema enfrentado no tratamento de água para geração de vapor é a ocorrência de arrastes de água da caldeira para a seção pós-caldeira (superaquecedor, linhas de distribuição de vapor, turbinas, equipamentos, etc.). Como conseqüências desse fenômeno, podemos enumerar as seguintes: Deposição e incrustação de sais nos separadores de vapor e equipamentos da seção pós-caldeira, como superaquecedores, turbinas, válvulas, acessórios, etc, podendo causar danos significativos nos mesmos (rupturas, desbalanceamentos, etc.) Formação dos chamados golpes de aríete nas linhas de vapor, devido à formação de um pistão de água na mesma e o deslocamento do mesmo a velocidades razoavelmente elevadas. Abrasão na tubulação, válvulas e acessórios da linha de vapor. A medição dos sólidos 13 no vapor é um método eficiente para a detecção de arrastes e quantificação de sua intensidade. Alguns exemplos na tabela a seguir: TABELA 02: PROBLEMAS NORMALMENTE OBSERVADOS EM FUNÇÃO DA PRESENÇA DE SÓLIDOS TOTAIS NO VAPOR (AQUATEC, N/D) Concentração de Sólidos Totais no Vapor (ppm) Problemas Observados 0 a 0,01 Nenhum 0,01 a 0,10 Possíveis depósitos nas turbinas e filtros 13 Medição através de resíduo de evaporação. Coleta do vapor com funil apropriado, colocado diretamente na linha de saída da caldeira, antes de qualquer acessório. 69

70 0,10 a 1,00 Depósitos nas turbinas. Possíveis depósitos nos superaquecedores Acima de 1,00 Depósitos nas turbinas e também nos superaquecedores Alguns danos provocados por arrastes podem ser encontrados nas figuras seguintes: 70

71 FIGURA 35: ACIMA: VÁLVULA DE REGULAGEM DE VAPOR DE UMA TURBINA COM DEPOSIÇAO DE SAIS ORIGINADA DE ARRASTES. ABAIXO: ROTOR DA TURBINA EXIBINDO MATERIAL DEPOSITADO. 71

72 FIGURA 36: TUBO DE SUPERAQUECEDOR COMPLETAMENTE OBSTRUÍDO POR MATERIAL ORIGINADO DE ARRASTES. Basicamente, existem duas causas para a ocorrência de arrastes: química e mecânica. Na tabela a seguir, apontamos resumidamente as causas e medidas corretivas para cada tipo de arraste. 72

OPERAÇÃO DE CALDEIRAS Tratamento de água

OPERAÇÃO DE CALDEIRAS Tratamento de água A água na sua forma líquida é encontrada na natureza sob duas condições: Águas de superfície (mares, rios, lagos e lagoas); Águas subterrâneas. Águas de superfície: instáveis são saturadas em O 2 dissolvido

Leia mais

Universidade Tecnológica Federal do Paraná Campus Londrina Operações Unitárias na Indústria de Alimentos. Profa. Marianne Ayumi Shirai

Universidade Tecnológica Federal do Paraná Campus Londrina Operações Unitárias na Indústria de Alimentos. Profa. Marianne Ayumi Shirai Universidade Tecnológica Federal do Paraná Campus Londrina Operações Unitárias na Indústria de Alimentos Profa. Marianne Ayumi Shirai CALDEIRAS Caldeira ou Gerador de vapor é um equipamento que se destina

Leia mais

SISTEMAS TÉRMICOS DE POTÊNCIA

SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS TÉRMICOS DE POTÊNCIA CALDEIRAS E COMPONENTES Prof. Dr. Ramón Silva - 2015 Sistemas Térmicos de Potência - 2015 O objetivo dessa aula é mostrar os componentes das caldeiras flamotubulares e aquatubulares.

Leia mais

SISTEMAS TÉRMICOS DE POTÊNCIA

SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS TÉRMICOS DE POTÊNCIA PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 2 Caldeira de vapor é todo equipamento que utilizando a energia química liberada durante a combustão de um combustível

Leia mais

Tratar os efluentes significa reduzir seu potencial poluidor através de processos físicos, químicos ou biológicos, adaptando-os aos padrões

Tratar os efluentes significa reduzir seu potencial poluidor através de processos físicos, químicos ou biológicos, adaptando-os aos padrões Tratamento de água e efluentes: do convencional ao sistema avançado O papel das membranas PARTE 1 TRATAMENTO FÍSICO QUÍMICO CONVENCIONAL Profa. Dr. ElisângelaMoraes 02 de dezembro de 2010 TRATAMENTO DE

Leia mais

Maquinas Termicas Geradores de Vapor

Maquinas Termicas Geradores de Vapor Máquinas Térmicas: Geradores de Vapor Geradores de Vapor Fornalha Caldeira Superaquecedores Economizadores Aquecedores de Ar Dispositivos de Controle e Segurança Tiragem 1 Gerador de Vapor Usina : 65 MW

Leia mais

09/09/ Agosto/2012

09/09/ Agosto/2012 09/09/2012 1 Agosto/2012 Caldeiras 09/09/2012 2 CALDEIRAS Histórico 1698 - O inglês Thomas Savery patenteou um sistema de bombeamento de água utilizando vapor como força motriz. 1711 Newcomen desenvolveu

Leia mais

Maquinas Termicas Geradores de Vapor

Maquinas Termicas Geradores de Vapor Máquinas Térmicas: Geradores de Vapor Geradores de Vapor Fornalha Caldeira Superaquecedores Economizadores Aquecedores de Ar Dispositivos de Controle e Segurança Tiragem 1 Gerador de Vapor Usina : 65 MW

Leia mais

Caldeiras Industriais

Caldeiras Industriais Caldeiras Industriais SUMÁRIO VAPOR 5 O QUE É VAPOR? 5 CALOR 10 QUANTIDADE DE CALOR 10 CALOR ESPECÍFICO 10 TRANSFERÊNCIA DE CALOR 11 CALOR SENSÍVEL 11 CALOR LATENTE 11 CALOR TOTAL 11 TIPOS DE VAPOR 21

Leia mais

Maquinas Termicas - Fornalha

Maquinas Termicas - Fornalha Máquinas Térmicas: Fornalhas Combustão 1 Fornalha Converte energia química do combustível em energia térmica. De acordo com o tipo e a qualidade do combustível disponível, a queima pode ser em suspensão,

Leia mais

SISTEMAS TÉRMICOS DE POTÊNCIA

SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS TÉRMICOS DE POTÊNCIA GERADORES DE VAPOR Prof. Dr. Ramón Silva - 2015 O objetivo dessa aula apresentar e classificar os diversos tipos de geradores de vapor. Prof. Dr. Ramón Silva - 2015 2 Gerador

Leia mais

Fluido térmico orgânico NSF HT1, para transferência de calor é uma opção vantajosa para indústria alimentícia.

Fluido térmico orgânico NSF HT1, para transferência de calor é uma opção vantajosa para indústria alimentícia. Fluido térmico orgânico NSF HT1, para transferência de calor é uma opção vantajosa para indústria alimentícia. Por Everton Kolosque Engenheiro Consultor de Mercado da Klüber Lubrication A evolução tecnológica

Leia mais

1) A eficiência das caldeiras elétricas varia significativamente de acordo com a carga. ( ) Certo ( ) Errado

1) A eficiência das caldeiras elétricas varia significativamente de acordo com a carga. ( ) Certo ( ) Errado 1) A eficiência das caldeiras elétricas varia significativamente de acordo com a carga. 2) As caldeiras a combustão se dividem, basicamente em dois tipos básicos: caldeiras elétricas e caldeiras fogotubulares.

Leia mais

INSTRUMEMACÀO E COSTROLE CE PROCESSOS. MEDIÇÃO DE ph. A medição de ph permite determinar o grau de acidez ou alcalinidade de uma solução.

INSTRUMEMACÀO E COSTROLE CE PROCESSOS. MEDIÇÃO DE ph. A medição de ph permite determinar o grau de acidez ou alcalinidade de uma solução. INSTRUMEMACÀO E COSTROLE CE PROCESSOS MEDIÇÃO DE ph Introdução A medição de ph permite determinar o grau de acidez ou alcalinidade de uma solução. Em diversos processos industriais a medição e controle

Leia mais

Equilíbrio de solubilidade

Equilíbrio de solubilidade Equilíbrio de solubilidade Solubilidade É a quantidade máxima de soluto que se pode dissolver numa certa quantidade de solvente, a uma dada temperatura e pressão. Solubilidade se sais em água: Regra geral

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo IV Aula 03 1. Introdução As caldeiras a vapor são um equipamento encontrado na maior parte das indústrias tais como a indústria química, a petrolífera,

Leia mais

Aula: Processo de Filtração

Aula: Processo de Filtração Aula: Processo de Filtração Definição: É uma operação unitária que tem por finalidade, a separação de um sólido insolúvel presente em um fluido (líquido ou gás), através da passagem desta mistura sólido-fluido

Leia mais

Corrosão: Definições e implicações práticas Aspectos termodinâmicos Formas de controle

Corrosão: Definições e implicações práticas Aspectos termodinâmicos Formas de controle Curso Técnico Integrado em Química Físico-química III VÍDEO AULA Corrosão: Definições e implicações práticas Aspectos termodinâmicos Formas de controle 1 Professor: Me. Sebastião Junior T. Vasconcelos

Leia mais

1 Introdução Princípios Básicos da Corrosão Eletroquímica... 5

1 Introdução Princípios Básicos da Corrosão Eletroquímica... 5 Sumário 1 Introdução................................ 1 2 Princípios Básicos da Corrosão Eletroquímica........ 5 2.1 POTENCIAIS ELETROQUÍMICOS............................ 5 2.2 PILHAS DE CORROSÃO...................................17

Leia mais

Ocorrência de reações

Ocorrência de reações Ocorrência de reações Dados: Força de ácidos e bases Classificação dos hidrácidos mais conhecidos: Regra prática para a classificação dos oxiácidos Determine a diferença (D) entre a quantidade de átomos

Leia mais

Profa.. Dra. Ana Maria Pereira Neto

Profa.. Dra. Ana Maria Pereira Neto 5/09/0 Universidade Federal do ABC BC309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Bloco A, torre, sala 637 Calor, Trabalho e Primeira Lei da Termodinâmica 5/09/0

Leia mais

PROCESSOS QUÍMICOS INDUSTRIAIS I

PROCESSOS QUÍMICOS INDUSTRIAIS I PROCESSOS QUÍMICOS INDUSTRIAIS I INDÚSTRIAS DE CLORO-ÁLCALIS INTRODUÇÃO INDÚSTRIAS DE CLORO-ÁLCALIS: Na 2 CO 3 SODA CÁUSTICA NaOH CLORO Essas substâncias estão entre as mais importantes das indústrias

Leia mais

TUBULAÇÕES INDUSTRIAS AULA 4 Prof. Clélio AULA 4. Volume I do Livro Texto CONTEÚDO: Capítulo 7. Purgadores de Vapor, Separadores Diversos e Filtros.

TUBULAÇÕES INDUSTRIAS AULA 4 Prof. Clélio AULA 4. Volume I do Livro Texto CONTEÚDO: Capítulo 7. Purgadores de Vapor, Separadores Diversos e Filtros. AULA 4 Volume I do Livro Texto CONTEÚDO: Capítulo 7 Purgadores de Vapor, Separadores Diversos e Filtros. 1 LINHAS DE VAPOR Nas linhas de vapor sempre haverá água líquida (condensado) resultante da condensação

Leia mais

UFSC Universidade Federal de Santa Catarina Depto. de Eng. Química e de Eng. de Alimentos EQA 5221 - Turma 945 Higiene e Legislação de Alimentos

UFSC Universidade Federal de Santa Catarina Depto. de Eng. Química e de Eng. de Alimentos EQA 5221 - Turma 945 Higiene e Legislação de Alimentos UFSC Universidade Federal de Santa Catarina Depto. de Eng. Química e de Eng. de Alimentos EQA 5221 - Turma 945 Higiene e Legislação de Alimentos AGENTES QUÍMICOS PARA HIGIENIZAÇÃO DETERGENTES 1. Definição

Leia mais

INTRODUÇÃO À QUÍMICA

INTRODUÇÃO À QUÍMICA INTRODUÇÃO À QUÍMICA O QUE É QUÍMICA? É a ciência que estuda a matéria, suas propriedades, transformações e interações, bem como a energia envolvida nestes processos. QUAL A IMPORTÂNCIA DA QUÍMICA? Entender

Leia mais

RESPOSTAS ESPERADAS QUÍMICA

RESPOSTAS ESPERADAS QUÍMICA Questão 1 Sim, a analogia está correta. Por se tratar de mudança de estado físico, a temperatura do sistema água permanece constante durante o processo de solidificação, assim como ocorre para o caso das

Leia mais

CHUVA ÁCIDA. - Causas e consequências; - Controlar e corrigir as chuvas ácidas; - Impacto da chuva ácida em alguns. materiais.

CHUVA ÁCIDA. - Causas e consequências; - Controlar e corrigir as chuvas ácidas; - Impacto da chuva ácida em alguns. materiais. CHUVA ÁCIDA - Causas e consequências; - Controlar e corrigir as chuvas ácidas; - Impacto da chuva ácida em alguns materiais. FORMAÇÃO DE CHUVA ÁCIDA A chuva torna-se ácida porque dissolve o dióxido de

Leia mais

LIMPEZA QUÍMICA E PASSIVAÇÃO. Em Sistemas Críticos de Alta Pureza

LIMPEZA QUÍMICA E PASSIVAÇÃO. Em Sistemas Críticos de Alta Pureza LIMPEZA QUÍMICA E PASSIVAÇÃO Em Sistemas Críticos de Alta Pureza TIPOS DE CONTAMINAÇÃO (FONTES) Contaminação Orgânica Sujidade oriunda de resíduos dos produtos, gorduras, proteínas, óleos, etc. Contaminação

Leia mais

INTEMPERISMO QUÍMICO MUDANÇAS QUÍMICAS DE MINERAIS DA SUA FORMA MAIS INSTÁVEL PARA MAIS ESTÁVEL

INTEMPERISMO QUÍMICO MUDANÇAS QUÍMICAS DE MINERAIS DA SUA FORMA MAIS INSTÁVEL PARA MAIS ESTÁVEL INTEMPERISMO QUÍMICO MUDANÇAS QUÍMICAS DE MINERAIS DA SUA FORMA MAIS INSTÁVEL PARA MAIS ESTÁVEL PERDA DE ELEMENTOS QUÍMICOS PRIMÁRIOS TRASFORMAÇÃO DE ELEMENTOS PRIMÁRIOS DA ROCHA EM SECUNDÁRIOS ALTERAÇÃO

Leia mais

PHA 3418 TECNOLOGIA DE SEPARAÇÃO POR MEMBRANAS PARA TRATAMENTO DE ÁGUA E EFLUENTES. Aula 8 Procedimentos de Limpeza química e Sanitização

PHA 3418 TECNOLOGIA DE SEPARAÇÃO POR MEMBRANAS PARA TRATAMENTO DE ÁGUA E EFLUENTES. Aula 8 Procedimentos de Limpeza química e Sanitização PHA 3418 TECNOLOGIA DE SEPARAÇÃO POR MEMBRANAS PARA TRATAMENTO DE ÁGUA E EFLUENTES Aula 8 Procedimentos de Limpeza química e Sanitização Prof.: José Carlos Mierzwa mierzwa@usp.br Operações de limpeza e

Leia mais

ELETRODO OU SEMIPILHA:

ELETRODO OU SEMIPILHA: ELETROQUÍMICA A eletroquímica estuda a corrente elétrica fornecida por reações espontâneas de oxirredução (pilhas) e as reações não espontâneas que ocorrem quando submetidas a uma corrente elétrica (eletrólise).

Leia mais

Minerais, Qualidade da Madeira e Novas Tecnologias de Produção de Celulose. Celso Foelkel

Minerais, Qualidade da Madeira e Novas Tecnologias de Produção de Celulose. Celso Foelkel Minerais, Qualidade da Madeira e Novas Tecnologias de Produção de Celulose Celso Foelkel Celso Foelkel Características de fábricas modernas Alta capacidade de utilização da capacidade e com produção estável

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I Máquinas Térmicas I "Existem três tipos de pessoas: as que sabem e as que não sabem contar...

Leia mais

RECUPERAÇÃO DE INSUMOS E SUBPRODUTOS DA PRODUÇÃO DE BIODIESEL. Processo de recuperação do Metanol e da Glicerina.

RECUPERAÇÃO DE INSUMOS E SUBPRODUTOS DA PRODUÇÃO DE BIODIESEL. Processo de recuperação do Metanol e da Glicerina. RECUPERAÇÃO DE INSUMOS E SUBPRODUTOS DA PRODUÇÃO DE BIODIESEL Processo de recuperação do Metanol e da Glicerina. O processo completo de produção de biodiesel partindo-se do óleo degomado é constituído

Leia mais

QUÍMICA Exercícios de revisão resolvidos

QUÍMICA Exercícios de revisão resolvidos 9. (ENEM 2013) A produção de aço envolve o aquecimento do minério de ferro, junto com carvão (carbono) e ar atmosférico em uma série de reações de oxirredução. O produto é chamado de ferro-gusa e contém

Leia mais

t RESOLUÇÃO COMECE DO BÁSICO

t RESOLUÇÃO COMECE DO BÁSICO t RESOLUÇÃO COMECE DO BÁSICO - o processo I sugere a evaporação (transformação física) dos componentes do medicamento. - a decomposição das substâncias (transformação química) que constituem o princípio

Leia mais

Tratamento da Água. João Karlos Locastro contato:

Tratamento da Água. João Karlos Locastro contato: 1 Tratamento da Água João Karlos Locastro contato: prof.joaokarlos@feitep.edu.br 2 Vazão 3 Informações pertinentes - A água bruta pode conter compostos como: partículas coloidais, substâncias húmicas e

Leia mais

AULA 10 EQUILÍBRIO DE SOLUBILIDADE

AULA 10 EQUILÍBRIO DE SOLUBILIDADE Fundamentos de Química Analítica (009) AULA 10 EQUILÍBRIO DE SOLUBILIDADE OBJETIVOS Definir solubilidade do soluto. Definir solução saturada, não saturada e supersaturada. Conhecer as regras de solubilidade.

Leia mais

Transferência de calor

Transferência de calor Transferência de calor 1.1 Calor: Forma de energia que se transmite espontaneamente de um corpo para o outro quando entre eles existir uma diferença de temperatura. O calor é uma energia em trânsito provocada

Leia mais

Produto de solubilidade de sais

Produto de solubilidade de sais Produto de solubilidade de sais Nos sais pouco solúveis (solubilidade menor que 0,01mol/L) o produto da concentração molar de íons é uma constante a uma determinada temperatura, esse produto (Kps) é chamado

Leia mais

Aula 4: Química das Águas Parte 3a

Aula 4: Química das Águas Parte 3a Química Ambiental- 1 semestre 2016 Aula 4: Química das Águas Parte 3a Purificação de águas:tratamento de Água para abastecimento Taimara Polidoro Ferreira Departamento de Química- UFJF Importância da água

Leia mais

Tratamento de Água: Generalidades Aeração

Tratamento de Água: Generalidades Aeração UNIVERSIDADE FEDERAL DE OURO PRETO DECIV DEPARTAMENTO DE ENGENHARIA CIVIL Tratamento de Água: Generalidades Aeração DISCIPLINA: SANEAMENTO PROF. CARLOS EDUARDO F MELLO e-mail: cefmello@gmail.com Água para

Leia mais

COMPOSTOS INORGÂNICOS Profº Jaison Mattei

COMPOSTOS INORGÂNICOS Profº Jaison Mattei COMPOSTOS INORGÂNICOS Profº Jaison Mattei Ácidos (teoria de Arrhenius) Ácidos são substâncias moleculares que, ao serem dissolvidas em água se dissociam, originando o íon hidrônio (H 3 O + ). Exemplos:

Leia mais

Petróleo. O petróleo é um líquido oleoso, menos denso que a água, cuja cor varia segundo a origem, oscilando do negro ao âmbar.

Petróleo. O petróleo é um líquido oleoso, menos denso que a água, cuja cor varia segundo a origem, oscilando do negro ao âmbar. Petróleo e Carvão Petróleo O petróleo é um líquido oleoso, menos denso que a água, cuja cor varia segundo a origem, oscilando do negro ao âmbar. É encontrado no subsolo, em profundidades variáveis e é

Leia mais

Exercícios Métodos de Separação. Professor (a): Cassio Pacheco Disciplina: Química Data da entrega: 01/06/2017

Exercícios Métodos de Separação. Professor (a): Cassio Pacheco Disciplina: Química Data da entrega: 01/06/2017 Exercícios Métodos de Separação Nome: nº: Ano: 1º E.M. Professor (a): Cassio Pacheco Disciplina: Química Data da entrega: 01/06/2017 Questões Objetivas 1- Para a separação das misturas: gasolina-água e

Leia mais

Saneamento Ambiental I. Aula 12 Parâmetros de Qualidade de Água - Potabilização

Saneamento Ambiental I. Aula 12 Parâmetros de Qualidade de Água - Potabilização Universidade Federal do Paraná Engenharia Ambiental Saneamento Ambiental I Aula 12 Parâmetros de Qualidade de Água - Potabilização Profª Heloise G. Knapik 1 Primeiro módulo: Dimensionamento de redes de

Leia mais

Química. Eletroquímica

Química. Eletroquímica CIC Colégio Imaculada Conceição Química Eletroquímica Msc. Camila Soares Furtado Couto Eletrólise Inverso da Pilha; Reação de oxi-redução que é provocada pela corrente elétrica; Não espontânea!!!! Eletrólise

Leia mais

PURIFICAÇÃO DO CALDO PARA PRODUÇÃO DE AÇÚCAR

PURIFICAÇÃO DO CALDO PARA PRODUÇÃO DE AÇÚCAR Universidade de São Paulo USP Escola Superior de Agricultura Luiz de Queiroz Esalq Departamento de Agroindústria, Alimentos e Nutrição - LAN LAN 1458 Açúcar e Álcool PURIFICAÇÃO DO CALDO PARA PRODUÇÃO

Leia mais

Tratamento de Água: Desinfecção

Tratamento de Água: Desinfecção UNIVERSIDADE FEDERAL DE OURO PRETO DECIV DEPARTAMENTO DE ENGENHARIA CIVIL Tratamento de Água: Desinfecção DISCIPLINA: SANEAMENTO PROF. CARLOS EDUARDO F MELLO e-mail: cefmello@gmail.com Conceito É o processo

Leia mais

OPERAÇÕES UNITÁRIAS II

OPERAÇÕES UNITÁRIAS II COLÉGIO META OPERAÇÕES UNITÁRIAS II Prof. ABEL SCUPELITI ARTILHEIRO SÃO PAULO 2012 1 OPERAÇÕES UNITÁRIAS II BALANÇO MATERIAL O Balanço Material é utilizado para projetos e análises de equipamentos de novas

Leia mais

QUÍMICA PRIMEIRA ETAPA

QUÍMICA PRIMEIRA ETAPA QUÍMICA PRIMEIRA ETAPA - 1998 QUESTÃO 01 Uma mistura de hidrogênio, H 2 (g), e oxigênio, O 2 (g), reage, num recipiente hermeticamente fechado, em alta temperatura e em presença de um catalisador, produzindo

Leia mais

Saneamento Ambiental I. Aula 15 Flotação e Filtração

Saneamento Ambiental I. Aula 15 Flotação e Filtração Universidade Federal do Paraná Engenharia Ambiental Saneamento Ambiental I Aula 15 Flotação e Filtração Profª Heloise G. Knapik 1 Conteúdo Módulo 2 Parâmetros de qualidade de água - Potabilização Coagulação

Leia mais

3ª Série / Vestibular. As equações (I) e (II), acima, representam reações que podem ocorrer na formação do H 2SO 4. É correto afirmar que, na reação:

3ª Série / Vestibular. As equações (I) e (II), acima, representam reações que podem ocorrer na formação do H 2SO 4. É correto afirmar que, na reação: 3ª Série / Vestibular 01. I _ 2SO 2(g) + O 2(g) 2SO 3(g) II _ SO 3(g) + H 2O(l) H 2SO 4(ag) As equações (I) e (II), acima, representam reações que podem ocorrer na formação do H 2SO 4. É correto afirmar

Leia mais

Tratamento de água em instalações industriais

Tratamento de água em instalações industriais Tratamento de água em instalações industriais Notas das aulas da disciplina de Instalações e Serviços Industriais Instalações e Serviços Industriais 1 Importância do tratamento de água Em geradores de

Leia mais

REAÇÕES QUÍMICAS PRODUZINDO CORRENTE ELÉTRICA CORRENTE ELÉTRICA PRODUZINDO REAÇÃO QUÍMICA PROF. RODRIGO BANDEIRA

REAÇÕES QUÍMICAS PRODUZINDO CORRENTE ELÉTRICA CORRENTE ELÉTRICA PRODUZINDO REAÇÃO QUÍMICA PROF. RODRIGO BANDEIRA REAÇÕES QUÍMICAS PRODUZINDO CORRENTE ELÉTRICA CORRENTE ELÉTRICA PRODUZINDO REAÇÃO QUÍMICA A relação entre as reações químicas e a corrente elétrica é estudada por um ramo da química chamado ELETROQUÍMICA

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Introdução e Modos de Transferência Prof. Universidade Federal do Pampa BA000200 Campus Bagé 08 de maio de 2017 Transferência de Calor: Introdução 1 / 29 Introdução à Transferência

Leia mais

Indicadores da qualidade e valores recomendados para cana-de-açucar

Indicadores da qualidade e valores recomendados para cana-de-açucar Indicadores da qualidade e valores recomendados para cana-de-açucar Recebimento Universidade Tecnológica Federal do Paraná Campus Campo Mourão Extração e Tratamento do Caldo Profª Camila O. Martinez 3

Leia mais

INTRODUÇÃO AOS PROCESSOS METALÚRGICOS. Prof. Carlos Falcão Jr.

INTRODUÇÃO AOS PROCESSOS METALÚRGICOS. Prof. Carlos Falcão Jr. INTRODUÇÃO AOS PROCESSOS METALÚRGICOS Prof. Carlos Falcão Jr. 2. PROCESSOS HIDROMETALÚRGICOS Ocorrem na interface entre as fases sólida e líquida Temperaturas entre 10 e 300ºC São divididos em diferentes

Leia mais

PROCESSOS QUÍMICOS INDUSTRIAIS I

PROCESSOS QUÍMICOS INDUSTRIAIS I PROCESSOS QUÍMICOS INDUSTRIAIS I INDÚSTRIAS DE CLORO-ÁLCALIS LCALIS INTRODUÇÃO INDÚSTRIAS DE CLORO-ÁLCALIS: LCALIS: Na 2 CO 3 SODA CÁUSTICA C NaOH CLORO Essas substâncias estão entre as mais importantes

Leia mais

PHA 3418 Tecnologia de Separação por Membranas para Tratamento de Água e Efluentes

PHA 3418 Tecnologia de Separação por Membranas para Tratamento de Água e Efluentes PHA 3418 Tecnologia de Separação por Membranas para Tratamento de Água e Efluentes AULA 2 CLASSIFICAÇÃO DOS PROCESSOS DE SEPARAÇÃO POR MEMBRANAS Prof.: José Carlos Mierzwa Processos de Separação por Membranas

Leia mais

Máquinas Térmicas. Transferência de Calor na Caldeira

Máquinas Térmicas. Transferência de Calor na Caldeira Máquinas Térmicas Transferência de Calor na Caldeira Dimensionamento térmico Objetivo: minimizar investimentos em material e buscar o aproveitamento racional da eneria. Abordaem: combinação de fundamentos

Leia mais

SOLDA OXIACETILENO 1

SOLDA OXIACETILENO 1 SOLDA OXIACETILENO 1 SOLDA OXIACETILENO A soldagem oxi-acetilênica é um processo no qual a união das peças é obtida pela fusão localizada do metal por uma chama gerada pela reação entre o oxigênio e o

Leia mais

Revisão Específicas. Química Monitores: Luciana Lima e Rafael França 02-08/11/2015. Material de Apoio para Monitoria

Revisão Específicas. Química Monitores: Luciana Lima e Rafael França 02-08/11/2015. Material de Apoio para Monitoria Revisão Específicas 1. As conchas marinhas não se dissolvem apreciavelmente na água do mar, por serem compostas, na sua maioria, de carbonato de cálcio, um sal insolúvel cujo produto de solubilidade é

Leia mais

Universidade Tecnológica Federal do Paraná - Campus Campo Mourão Tratamento do Caldo - Clarificação

Universidade Tecnológica Federal do Paraná - Campus Campo Mourão Tratamento do Caldo - Clarificação Universidade Tecnológica Federal do Paraná - Campus Campo Mourão Tratamento do Caldo - Clarificação Profª Camila O. Martinez 1 2016 Tratamento do caldo Peneiramento Sulfitação (Bicarbonatação, ozonização)

Leia mais

8ª LISTA - EXERCÍCIOS DE PROVAS Equilíbrio de Solubilidade

8ª LISTA - EXERCÍCIOS DE PROVAS Equilíbrio de Solubilidade Pg. 1/6 1 a Questão De acordo com as equações abaixo, a 25 ºC, faça o que se pede. BaF 2 (s) Ba 2+ (aq) + 2F - (aq) K ps (BaF 2 ) = 1,7 x 10-6 BaSO 4 (s) Ba 2+ (aq) + SO 2-4 (aq) K ps (BaSO 4 ) = 1,0 x

Leia mais

FÍSICO QUÍMICA AULA 5 - ELETRÓLISE

FÍSICO QUÍMICA AULA 5 - ELETRÓLISE FÍSICO QUÍMICA AULA 5 - ELETRÓLISE Em nossas aulas anteriores aprendemos como reações de óxidoredução podem ser utilizadas para se obter energia. Nas pilhas ocorrem reações químicas capazes de produzir

Leia mais

Aula: 03 Temática: Componentes Inorgânicos das Células Parte I

Aula: 03 Temática: Componentes Inorgânicos das Células Parte I Aula: 03 Temática: Componentes Inorgânicos das Células Parte I As substâncias inorgânicas existem na natureza, independentemente dos seres vivos, mas algumas delas podem ser encontradas nas células. Acompanhe!

Leia mais

Declaração de Conflitos de Interesse. Nada a declarar.

Declaração de Conflitos de Interesse. Nada a declarar. Declaração de Conflitos de Interesse Nada a declarar. GESTÃO DA QUALIDADE DE FORNECEDORES ÁGUA REAGENTE Ana Paula Lima 2 Fornecedores O Sistema de Gestão da Qualidade do laboratório deve contemplar o fornecimento

Leia mais

Atividade complementar. Substâncias e transformações químicas, entendendo os aspectos quantitativos

Atividade complementar. Substâncias e transformações químicas, entendendo os aspectos quantitativos Atividade complementar Substâncias e transformações químicas, entendendo os aspectos quantitativos Esta atividade tem como objetivo complementar e aprofundar os estudos sobre as transformações químicas,

Leia mais

TRATAMENTO DE CALDO E A SUA IMPORTÂNCIA. Carlos A. Tambellini

TRATAMENTO DE CALDO E A SUA IMPORTÂNCIA. Carlos A. Tambellini TRATAMENTO DE CALDO E A SUA IMPORTÂNCIA Carlos A. Tambellini PRÉ TRATAMENTO DE CALDO Limpeza da Cana Peneiramento de Caldo Bruto Regeneração de Calor TRATAMENTO DE CALDO Sulfitação Calagem / Dosagem por

Leia mais

Saneamento Ambiental I. Aula 14 Sedimentação e Decantação

Saneamento Ambiental I. Aula 14 Sedimentação e Decantação Universidade Federal do Paraná Engenharia Ambiental Saneamento Ambiental I Aula 14 Sedimentação e Decantação Profª Heloise G. Knapik 1 Conteúdo Módulo 2 Parâmetros de qualidade de água - Potabilização

Leia mais

Química B Intensivo V. 1

Química B Intensivo V. 1 1 Química B Intensivo V. 1 Exercícios 01) B 02) B a) Falsa. O leite in natura é uma mistura heterogênea e não apresenta as mesmas propriedades em toda a extensão da amostra. b) Verdadeira. A gelatina é

Leia mais

RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 02 TURMA FMJ

RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 02 TURMA FMJ RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 02 TURMA FMJ 03. Item C O equador da figura mostrada pode ser representado como abaixo. 01. Item B I Correto. A energia para quebrar a ligação H F (568 kj/mol) é

Leia mais

Número atômico de A = número atômico de B = 18

Número atômico de A = número atômico de B = 18 61 e QUÍMICA O elemento químico B possui 20 nêutrons, é isótopo do elemento químico A, que possui 18 prótons, e isóbaro do elemento químico C, que tem 16 nêutrons Com base nessas informações, pode-se afirmar

Leia mais

Conceitos, fontes de energia, a questão energética no futuro e o caso brasileiro

Conceitos, fontes de energia, a questão energética no futuro e o caso brasileiro Conceitos, fontes de energia, a questão energética no futuro e o caso brasileiro Consumo de Energia Para satisfazer as necessidades relativas ao consumo de energia o Homem utiliza diversas fontes; A combinação

Leia mais

29/11/2010 DEFINIÇÃO:

29/11/2010 DEFINIÇÃO: Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS TÉRMICAS AT-056 M.Sc. Alan Sulato de Andrade alansulato@ufpr.br 1 DEFINIÇÃO: Trocadores de calor são dispositivo utilizados

Leia mais

SurTec 872 Processo de Cromo Decorativo

SurTec 872 Processo de Cromo Decorativo SurTec 872 Processo de Cromo Decorativo 1- DESCRIÇÃO O SurTec 872 é uma mistura de catalisadores e ácido crômico desenvolvido especialmente, para um processo de cromação decorativa de alto desempenho.

Leia mais

QUÍMICA PRIMEIRA ETAPA

QUÍMICA PRIMEIRA ETAPA QUÍMICA PRIMEIRA ETAPA - 1999 QUESTÃO 46 Um limão foi espremido num copo contendo água e as sementes ficaram no fundo do recipiente. A seguir, foi adicionado ao sistema um pouco de açúcar, que se dissolveu

Leia mais

PROCESSOS QUÍMICOS INDUSTRIAIS I APRESENTAÇÃO DA DISCIPLINA

PROCESSOS QUÍMICOS INDUSTRIAIS I APRESENTAÇÃO DA DISCIPLINA PROCESSOS QUÍMICOS INDUSTRIAIS I APRESENTAÇÃO DA DISCIPLINA UNIDADES DIDÁTICAS 1. Introdução ao estudo dos Processos Químicos Industriais. Relacionamento com a Indústria Química. 2. Derivados inorgânicos

Leia mais

Reações de identificação dos cátions dos grupos 1 e 2

Reações de identificação dos cátions dos grupos 1 e 2 Reações de identificação dos cátions dos grupos 1 e 2 Na, K e NH 4 São os maiores cátions do período que pertencem, possuem carga pequena e estrutura de gás nobre. O íon amônio está incluído porque apresenta

Leia mais

Funções e Importância da Água Regulação Térmica Manutenção dos fluidos e eletrólitos corpóreos Reações fisiológicas e metabólicas do organismo Escassa

Funções e Importância da Água Regulação Térmica Manutenção dos fluidos e eletrólitos corpóreos Reações fisiológicas e metabólicas do organismo Escassa Aspectos Higiênicos da Água Prof. Jean Berg Funções e Importância da Água Regulação Térmica Manutenção dos fluidos e eletrólitos corpóreos Reações fisiológicas e metabólicas do organismo Escassa na natureza

Leia mais

Combustíveis e Redutores ENERGIA PARA METALURGIA

Combustíveis e Redutores ENERGIA PARA METALURGIA Combustíveis e Redutores ENERGIA PARA METALURGIA Energia para Metalurgia Principal fonte energética: Carbono Carvão mineral e carvão vegetal C + O 2 >> CO 2 + energia Portanto, carbono é redutor, usado

Leia mais

ABRANDADOR DE ÁGUA. Materiais Utilizados

ABRANDADOR DE ÁGUA. Materiais Utilizados ABRANDADOR DE ÁGUA Com a finalidade de prevenir obstruções das tubulações, válvulas e manter a eficiência da troca térmica em equipamentos como a Caldeira, se faz necessário o uso da água abrandada. O

Leia mais

RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 10 TURMA ANUAL

RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 10 TURMA ANUAL RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 10 TURMA ANUAL 01. Item B I Correto. A energia para quebrar a ligação H F (568 kj/mol) é a maior da tabela. Isto torna mais difícil a sua quebra, portanto ionizando

Leia mais

6 MATERIAIS E EQUIPAMENTOS

6 MATERIAIS E EQUIPAMENTOS 79 6 MATERIAIS E EQUIPAMENTOS 6.1. Amostra O spent potliner, estudado neste trabalho, foi fornecido pela Valesul Alumínio S.A., empresa que produz e comercializa alumínio primário e ligas para a indústria

Leia mais

CONHEÇA AS PRINCIPAIS ETAPAS QUÍMICAS NA INDÚSTRIA DE CELULOSE. Processos Químicos Industriais II

CONHEÇA AS PRINCIPAIS ETAPAS QUÍMICAS NA INDÚSTRIA DE CELULOSE. Processos Químicos Industriais II CONHEÇA AS PRINCIPAIS ETAPAS QUÍMICAS NA INDÚSTRIA DE CELULOSE E PAPEL Processos Químicos Industriais II POLPAÇÃO QUÍMICA Os cavacos são cozidos em licores ou lixívias, isto é, em soluções aquosas contendo

Leia mais

Questão 10: Sobre as moléculas de CO 2 e SO 2, cujas estruturas estão representadas a seguir, é CORRETO afirmar que: S O O C O

Questão 10: Sobre as moléculas de CO 2 e SO 2, cujas estruturas estão representadas a seguir, é CORRETO afirmar que: S O O C O QUESTÕES OBJETIVAS Questão 9: Nitrogênio e fósforo são elementos essenciais para a nutrição das plantas e por isso alguns de seus compostos são utilizados na maioria dos fertilizantes. Sobre esses elementos

Leia mais

Funções inorgânicas : Sais e Óxidos

Funções inorgânicas : Sais e Óxidos Funções inorgânicas : Sais e Óxidos Sais Bicarbonato de sódio (NaHCO 3 ) Utilizado em antiácidos Carbonato de cálcio (CaCO 3 ) Encontrado no mármore, no calcário, nas cascas de ovos etc Sulfato de cálcio

Leia mais

PRINCÍPIOS BÁSICOS DA TERMODINÂMICA

PRINCÍPIOS BÁSICOS DA TERMODINÂMICA PRINCÍPIOS BÁSICOS DA TERMODINÂMICA... 1 1.1 Variáveis e Transformações Termodinâmicas... 1 1.2 Primeiro Princípio da Termodinâmica... 1 1.3 Segundo Princípio da Termodinâmica... 2 1.4 Expressões das Variáveis

Leia mais

GERAÇÃO, TRANSMISSÃO E DISTRIBUIÇÃO DE ENERGIA DE ELÉTRICA

GERAÇÃO, TRANSMISSÃO E DISTRIBUIÇÃO DE ENERGIA DE ELÉTRICA Universidade do Estado de Mato Grosso Campus Sinop Faculdade de Ciências Exatas e Tecnológicas GERAÇÃO, TRANSMISSÃO E DISTRIBUIÇÃO DE ENERGIA DE ELÉTRICA ROGÉRIO LÚCIO LIMA Sinop Outubro de 2016 Principais

Leia mais

Exercícios de Funções Inorgânicas 2

Exercícios de Funções Inorgânicas 2 Exercícios de Funções Inorgânicas 2 Material de apoio do Extensivo 1. A contaminação do leite com substâncias químicas nocivas à saúde, infelizmente, ainda é notícia na mídia. Uma das substâncias encontradas

Leia mais

Ficha Informativa n.º 2 Tipos de Reações Químicas

Ficha Informativa n.º 2 Tipos de Reações Químicas FÍSICO-QUÍMICA 8º ANO DE ESCOLARIDADE Ficha Informativa n.º 2 Tipos de Reações Químicas Nome: Data: / /20 INTRODUÇÃO TEÓRICA Reações Químicas Nas reações químicas, uma ou várias substâncias iniciais (reagentes)

Leia mais

CIÊNCIAS PROVA 3º BIMESTRE 9º ANO PROJETO CIENTISTAS DO AMANHÃ

CIÊNCIAS PROVA 3º BIMESTRE 9º ANO PROJETO CIENTISTAS DO AMANHÃ PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO CIÊNCIAS PROVA 3º BIMESTRE 9º ANO PROJETO CIENTISTAS DO AMANHÃ 2010 01. A tabela

Leia mais

RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 13 TURMA INTENSIVA

RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 13 TURMA INTENSIVA RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 13 TURMA INTENSIVA 01. Item B I Correto. A energia para quebrar a ligação H F (568 kj/mol) é a maior da tabela. Isto torna mais difícil a sua quebra, portanto ionizando

Leia mais

Produto de solubilidade de sais. Produto de solubilidade de sais

Produto de solubilidade de sais. Produto de solubilidade de sais Produto de solubilidade de sais Nos sais pouco solúveis (solubilidade menor que 0,01mol/L) o produto da concentração molar de íons é uma constante a uma determinada temperatura, esse produto (Kps) é chamado

Leia mais

Todos os elementos desse grupo são sólidos com exceção do nitrogênio que é um gás nas condições ambientais (25 C e 1 atm)

Todos os elementos desse grupo são sólidos com exceção do nitrogênio que é um gás nas condições ambientais (25 C e 1 atm) O GRUPO DO NITROGÊNIO GRUPO 15 OU V Todos os elementos desse grupo são sólidos com exceção do nitrogênio que é um gás nas condições ambientais (25 C e 1 atm) Todos os elementos desse grupo apresentam

Leia mais

17/02/ Agosto/2012

17/02/ Agosto/2012 17/02/2013 1 Agosto/2012 Caldeiras 17/02/2013 2 O VAPOR Um vapor é uma substância na fase de gás à uma temperatura inferior à sua temperatura crítica. Isto significa que o vapor pode ser condensado para

Leia mais

1º trimestre Sala de Estudos Data: 12/04/17 Ensino Médio 3º ano classe: A_B_C Profª Danusa Nome: nº

1º trimestre Sala de Estudos Data: 12/04/17 Ensino Médio 3º ano classe: A_B_C Profª Danusa Nome: nº 1º trimestre Sala de Estudos Data: 12/04/17 Ensino Médio 3º ano classe: A_B_C Profª Danusa Nome: nº Conteúdo: Soluções (concentração comum e molaridade) e Gases Caso seja necessário, utilize a tabela periódica.

Leia mais

PROGRAMA DE ENSINO. CÓDIGO DISCIPLINA OU ESTÁGIO SERIAÇÃO IDEAL/PERÍODO 1146 Química Tecnológica para Engenharia Civil 1ª S / 2º P

PROGRAMA DE ENSINO. CÓDIGO DISCIPLINA OU ESTÁGIO SERIAÇÃO IDEAL/PERÍODO 1146 Química Tecnológica para Engenharia Civil 1ª S / 2º P PROGRAMA DE ENSINO UNIDADE UNIVERSITÁRIA: UNESP CÂMPUS DE ILHA SOLTEIRA CURSO: Engenharia HABILITAÇÃO: Engenharia Civil - (Resolução UNESP nº 76/2007- Curso: 2 - Currículo: 3 OPÇÃO: DEPARTAMENTO RESPONSÁVEL:

Leia mais

Avaliação da Etapa de Tratamento Físico-Químico da Água do Mar com Vistas à Dessalinização Para Uso em Usinas Termoelétricas

Avaliação da Etapa de Tratamento Físico-Químico da Água do Mar com Vistas à Dessalinização Para Uso em Usinas Termoelétricas Avaliação da Etapa de Tratamento Físico-Químico da Água do Mar com Vistas à Dessalinização Para Uso em Usinas Termoelétricas A.L. SOUZA 1, G.T. RIBEIRO 2, L.D. XAVIER 3, L. YOKOYAMA 4, N.O. SANTOS 5, V.R.

Leia mais