MODELOS PROBABILÍSTICOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MODELOS PROBABILÍSTICOS"

Transcrição

1 Disciplina de BIOLOGIA COMPUTACIONAL Mestrado em ENGENHARIA BIOMÉDICA 4º Ano, 1º Semestre 2007/08 MODELOS PROBABILÍSTICOS Relatório 4 Ana Calhau Ângela Pisco Nuno Santos Palavras-Chave: HMMs, Estados, Caminhos, Ilhas CpG, Algoritmo de Viterbi Resumo Com este trabalho, pretendeu-se analisar a utilidade das HMMs na modelação de problemas reais. Inicialmente, estudou-se o problema do Fair Bet Casino, pretendendo-se saber quantos e quais os caminhos que podem gerar uma dada sequência, bem como a sua probabilidade. De seguida, analisou-se o problema de identificação de ilhas CpG numa longa sequência de DNA. Para resolver este problema construiu-se uma matriz de transição para a HMM em estudo, que representa de forma unificada os modelos de Markov (+) e (-), uma matriz de emissão e calculou-se ainda a probabilidade de uma dada sequência de estados gerar uma dada sequência de C e G, bem como o caminho mais provável associado à sequência pretendida, recorrendo-se ao algoritmo de Viterbi. 1. FAIR BET CASINO O problema do Fair Bet Casino é bastante conhecido residindo o seu interesse na analogia que se consegue estabelecer com o problema biológico da procura de ilhas CpG numa sequência de DNA. Um agente responsável por um jogo num casino tem duas moedas, possivelmente viciadas. O agente começa o jogo sempre com a moeda m1 e em cada jogada muda de moeda, podendo escolher ou a mesma moeda ou a outra, com uma determinada probabilidade. O jogador apenas observa o resultado da jogada, isto é, só vê cara ou coroa, sem nunca saber qual das moedas está ser utilizada. Existem dois estados, S1 e S2, que correspondem a cada uma das moedas, e é possível fazer duas observações: cara ou coroa. O sistema pode ter início, com igual probabilidade, em qualquer um dos estados. Os restantes parâmetros correspondem à probabilidade de ver cara no estado S1, p1, à probabilidade de ver cara no estado S2, p2, à probabilidade de transição do estado S1 para o estado S2, q1, e à probabilidade de transição do estado S2 para o S1, q Admitindo que no estado S1 apenas é possível observar cara, que no estado S2 apenas é possível observar coroa e que a probabilidade de transição entre estados (ou ficar no mesmo) é de 0,5, o Hidden Markov Model (HMM) que descreve esta situação é dado por:

2 Pesquisa de Motivos Não p1 = 1 1 p1 = 0 p2 = 0 1 p2 = 1 Cara Coroa Cara Coroa Figura 1 HMM para o problema proposto Para uma dada sequência de caras e coroas de tamanho T (X 1,T ), existe apenas um caminho, na HMM da alínea anterior, capaz de gerar a sequência X 1,T, com probabilidade diferente de zero (sai sempre cara ou coroa). O facto de o estado S1 apenas gerar caras e o estado S2 apenas gerar coroas faz com que a HMM anterior se transforme num MM com estados não escondidos. Desta forma, se sair cara estamos necessariamente no estado S1 e se sair coroa estamos necessariamente no estado S2, pelo que a cada sequência de caras e coroas corresponde um e um só caminho Para se calcular a probabilidade de observar a sequência X 1,T de acordo com a HMM da alínea 1.1, há que ter em conta que há igual probabilidade de sair cara ou coroa para cada um dos T lançamentos. Desta forma, a probabilidade vem dada por: em que T é o tamanho da sequência X 1,T. P(X 1,T )= (1) 1.4. Considerando agora que os estados S1 e S2 correspondem, respectivamente, a uma moeda viciada e não viciada, que as probabilidades de ver cara e coroa são idênticas para o estado S1 e iguais a 0,6 e 0,4 para o estado S2, e ainda que é possível transitar entre estados com uma probabilidade q=0,3, a HMM e respectivos parâmetros que descrevem esta situação são: Não p1 = 0, p1 = 0,5 p2 = 0,6 1 p2 = 0,4 Cara Coroa Cara Coroa Figura 2 HMM para o problema proposto. 2

3 Ana Calhau Ângela Pisco Nuno Santos 1.5. Os HMMs podem ser vistos como máquinas abstractas, com k estados escondidos que emitem símbolos a partir de um alfabeto. Cada um destes estados tem a sua própria distribuição de probabilidade e a máquina vai mudando entre estados de acordo com essa distribuição. Desta forma, considerando a sequência X = {1,1,0,0,0} em que {1,0} = {Cara,Coroa}, através do método HMM, é possível determinar a sequência de estados mais provável dessa sequência T > B > 0.6 b) a) Início Fim F > a) b) T > Figura 3 Diagrama que representa os vários passos para a obtenção da sequência de estados mais provável sabendo a sequência X. Os valores a) e b) são 0,3 e 0,7, respectivamente, e são equivalentes em cada coluna do diagrama. Às linhas B e F correspondem, respectivamente, os estados S2 e S1. O diagrama anterior pode ser resumido numa tabela de programação dinâmica 2x5, tal como evidenciado de seguida: Tabela 1 Tabela de programação dinâmica 2x5 para o caso considerado, estando evidente a sequência de estados mais provável Begin S1 0 0,25 0,0875 0, , ,00375 S2 0 0,30 0,1260 0, , ,00277 Pela análise da tabela e diagramas anteriores, torna-se evidente que a sequência de estados mais provável é S={S1, S1, S1, S1, S1}. 2. IDENTIFICAÇÃO DE ILHAS CpG 2.1. As ilhas CpG são zonas do DNA que possuem elevado número de citosinas imediatamente seguidas por guaninas. Neste exercício, foram consideradas sequências de DNA humano, nas quais, segundo o modelo de Markov considerado, foram identificadas 48 ilhas CpG. Considerando que a probabilidade de se estar numa ilha CpG é equivalente à de se estar fora dela, obtém-se a matriz com as probabilidades de transição, para uma HMM unificada dos dois modelos utilizados no estudo: 3

4 Pesquisa de Motivos Tabela 2 Matriz 8x8 onde estão evidenciadas as probabilidades de transição para uma HMM que representa de forma unificada os modelos de Markov + e -. A + C + G + T + A - C - G - T - A C G T A C G T Pode-se dizer que a matriz obtida é constituída por quatro submatrizes. Uma vez que a probabilidade de estar ou não numa ilha CpG é igual, a transição de um nucleótido + para outro + será metade do que no modelo em que apenas se considera o estado + (ilha CpG). O mesmo se passa para o modelo. No caso de uma transição + para ou vice-versa, a probabilidade de um qualquer nucleótido transitar para outro será o produto de ¼ e ½, já que existe uma equiprobabilidade entre os nucleótidos. 2.2.Para o caso que se pretende estudar, a sequência X é igual a X={C,G,C,G} e a matriz dos caminhos p dada por p={c +,G -,C -,G + }. O cálculo da probabilidade pedida pode ser feito de acordo com a equação abaixo Simplificando (2) vem Desenvolvendo (3) fica-se com (2) (3) (4) Para se ficar com o resultado independente de parâmetros não fornecidos pela tabela anterior assumiram-se duas condições. Dado que a probabilidade de estar numa ilha CpG é igual à de estar fora, então a probabilidade de ir do estado begin para qualquer um dos estados pode ser considerada igual, o que corresponde a ter-se em valor numérico. Por outro lado, quando se está no último estado do caminho, e apenas por simplificação, admitiu-se que a probabilidade de ir do último estado para o estado end é a mesma, independentemente do estado em que se esteja, e vale 1 ( ). De acordo com o enunciado, a matriz de emissão é dada pela tabela abaixo: Tabela 3 Matriz de emissão da HMM. A + C + G + T + A - C - G - T - A C G T A C G T

5 Ana Calhau Ângela Pisco Nuno Santos Substituindo as variáveis em (4) pelos valores dados pelas tabelas 2 e 3, a probabilidade pedida vale 2.3.Algoritmo de Viterbi e cálculo do caminho mais provável O Algoritmo de Viterbi é utilizado para encontrar a sequência de estados que gera, com maior probabilidade, a sequência observada, isto é, identifica qual o caminho mais provável, para a HMM em causa. Este algoritmo pode ser definido da seguinte forma (5) Sendo p * o caminho óptimo, tem-se que (6) Para este caso concreto não é necessário considerar todos os estados possíveis, já que de acordo com a matriz de emissão apenas são relevantes os estados C e G (tanto em ilha CpG, como fora), dado que todos os outros têm probabilidade nula para a sequência em causa. Com base em (5) e (6) e no parágrafo anterior, construiu-se a seguinte tabela: Tabela 4 Tabela de programação dinâmica 4x4 para o caso considerado, estando evidente a sequência de estados mais provável. C G C G Begin C+ 0 0, , G , , C- 0 0, , G , , O caminho mais provável é, portanto, {C+, G+, C+, G+}. 3. CONCLUSÃO Ao longo deste trabalho foi possível tomar conhecimento de todas as potencialidades dos modelos de Markov. Estes modelos, na sua versão geral, não apresentam uma correspondência biunívoca entre estados e símbolos, já que pode existir mais do que um estado que emita o mesmo símbolo. Isto leva a que exista mais do que um caminho com a capacidade de gerar uma dada sequência. A pesquisa de ilhas CpG é um problema importante na medida em que encontrar ilhas CpG corresponde a encontrar, em grande parte dos casos, regiões promotoras de genes. O par CG está tipicamente sub-representado num genoma, porque o nucleótido C é facilmente metilado, tendo posteriormente tendência a mutar para T. No entanto, a metilação é suprimida nas zonas 5

6 Pesquisa de Motivos envolventes dos genes, razão pela qual existe um maior número de CG nestas regiões. No último ponto do primeiro exercício, o resultado obtido está de acordo com o esperado, pois existe um maior número de coroas do que caras na sequência, e o estado S1 emite coroas com maior probabilidade do que S2. O mesmo se verifica na última alínea do segundo exercício, em que o modelo admite que se está numa ilha CpG. As sequências são, no entanto, pequenas para que se possam extrapolar conclusões. Em termos globais, a realização deste trabalho foi bastante útil para entender o funcionamento dos HMMs. Apesar da sua natureza heurística, considera-se que os resultados conseguidos com estes modelos são bastante bons. 4. BIBLIOGRAFIA [1] Freitas, Ana T., Modelos Probabilísticos, Guia do 4º Laboratório de Biologia Computacional, Novembro de 2007 [2] Freitas, Ana T., Apontamentos das aulas teóricas de Biologia Computacional, 2007 [3] An Introduction to Bioinformatics Algorithms, N. C. Jones and P. Pevzner, 2005, MIT Press [4] Biological Sequence Analysis - Probabilistic models of proteins and, R. Durbin, S. Eddy, A. Krogh, G. Mitchison, 1998, Cambridge 6

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

ESCOLA SECUNDÁRIA DE LOUSADA

ESCOLA SECUNDÁRIA DE LOUSADA ESCOLA SECUNDÁRIA DE LOUSADA 2012 2013 PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA Curso Profissional de Técnico de Multimédia ELENCO MODULAR A7 Probabilidades 28 A6 Taxa de variação 36 A9 Funções de crescimento

Leia mais

a) Defina em Prolog iguais/1, um predicado que recebe um estado do jogo e que verifica que todas as pilhas têm o mesmo número de peças.

a) Defina em Prolog iguais/1, um predicado que recebe um estado do jogo e que verifica que todas as pilhas têm o mesmo número de peças. Introdução à Inteligência Artificial 2ª Época 29 Janeiro 2015 Nº Aluno: Nome Completo: Exame com consulta. Responda às perguntas nesta própria folha, nos espaços indicados. (I) O jogo do Nim (também chamado

Leia mais

Plano. Aspectos Relevantes de HMMs. Teoria de HMMs. Introdução aos Modelos Escondidos de Markov

Plano. Aspectos Relevantes de HMMs. Teoria de HMMs. Introdução aos Modelos Escondidos de Markov Plano Esta apresentação é para pessoas sem conhecimento prévio de HMMs Introdução aos Modelos Escondidos de Markov 2004 Objetivos: Ensinar alguma coisa, não tudo (Visão geral, sem muitos detalhes). Tentar

Leia mais

Investigação Operacional

Investigação Operacional Métodos de Programação Linear: Gráfica, (Mestrado) Engenharia Industrial http://dps.uminho.pt/pessoais/zan - Escola de Engenharia Departamento de Produção e Sistemas 1 Representação Gráfica Considere o

Leia mais

Curso Profissional de Nível Secundário

Curso Profissional de Nível Secundário Curso Profissional de Nível Secundário Técnico Auxiliar de Saúde 2 TAS Ano Letivo: 2014/2015 Matemática (200 horas) 11º Ano PLANIFICAÇÃO A LONGO PRAZO A7 Probabilidades Fenómenos aleatórios. 2 aulas Argumento

Leia mais

O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV

O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV Um conceito simples e útil mas que não é normalmente explorado no Ensino Fundamental no Brasil é o de valor esperado

Leia mais

Sílvio A. Abrantes. Uns pequenos truques que facilitam alguns cálculos de Códigos e Teoria da Informação

Sílvio A. Abrantes. Uns pequenos truques que facilitam alguns cálculos de Códigos e Teoria da Informação Sílvio A. Abrantes Livro de receitas. Receitas?! Uns pequenos truques que facilitam alguns cálculos de Códigos e Teoria da Informação Abril 00 Codificação aritmética: Representação binária de números reais

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA DOCENTE: CIRA SOUZA PITOMBO UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA ENG J21 Ajustamentos de observações geodésicas A AULA 9 TESTES ESTATÍSTICOS DE

Leia mais

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Proposta por Alan Turing em 1936; É universalmente conhecida e aceita como formalização de algoritmo; Teoria

Leia mais

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade Probabilidade Variáveis Aleatórias Distribuição de Probabilidade Variáveis Aleatórias Variável Aleatória Indica o valor correspondente ao resultado de um experimento A palavra aleatória indica que, em

Leia mais

L.J. Amoreira UBI. Dezembro 2010

L.J. Amoreira UBI. Dezembro 2010 Definição de informação L.J. Amoreira UBI Dezembro 2010 Entropia (ou incerteza [ou ignorância]) A incerteza associada a uma variável aleatória X que pode tomar os valores x 1, x 2,..., x n com probabilidades

Leia mais

Cadeias de Markov no ensino básico.

Cadeias de Markov no ensino básico. Cadeias de Markov no ensino básico Rodrigo Sychocki da Silva Porto Alegre, 3 de Dezembro de 200 Cadeias de Markov no ensino básico Rodrigo Sychocki da Silva* Maria Paula Gonçalves Fachin** Resumo Neste

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

ALINHAMENTO DE SEQUÊNCIAS

ALINHAMENTO DE SEQUÊNCIAS Disciplina de BIOLOGIA COMPUTACIONAL Mestrado em ENGENHARIA BIOMÉDICA 4º Ano, 1º Semestre 2007/08 ALINHAMENTO DE SEQUÊNCIAS Relatório 2 Ana Calhau Ângela Pisco Nuno Santos 54605 55748 55746 Palavras-Chave:

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

TCC EM SISTEMAS DA INFORMAÇÃO. Aula 9- Modelando um Sistema com a UML parte 2

TCC EM SISTEMAS DA INFORMAÇÃO. Aula 9- Modelando um Sistema com a UML parte 2 Aula 9- Modelando um Sistema com a UML parte 2 Objetivo desta sexta aula Identificar como deve ser o desenvolvimento da escrita do projeto. Apresentar exemplos de trabalhos modelados com a UML para que

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 1.3 Jogos na Forma Extensiva informação num jogo

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 1.3 Jogos na Forma Extensiva informação num jogo Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 1.3 Jogos na Forma Extensiva informação num jogo Isabel Mendes 2007-2008 Na aula 1.1 falou-se ainda dos jogos sequenciais

Leia mais

Matriz de Referência da área de Matemática Ensino Médio

Matriz de Referência da área de Matemática Ensino Médio Matriz de Referência da área de Matemática Ensino Médio C1 Utilizar o conhecimento sobre números e suas representações em situações relacionadas a operações matemáticas, grandezas e unidades de medidas.

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Função de 2º Grau. Parábola: formas geométricas no cotidiano

Função de 2º Grau. Parábola: formas geométricas no cotidiano 1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando

Leia mais

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36 1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico

Leia mais

5ª Lista de Exercícios de Programação I

5ª Lista de Exercícios de Programação I 5ª Lista de Exercícios de Programação I Instrução As questões devem ser implementadas em C. Questões que envolvam leitura de matrizes, a construção dessas matrizes pode ser realizada através da geração

Leia mais

Cadeias de Markov. ch n M = 0,4 0,2 0,6 0,8. Matriz (diária): M² = 0,28 0,24 0,72 0,76 M 4 = 0,2512 0,2496 0,7488 0,7504. Diagrama (semanal)

Cadeias de Markov. ch n M = 0,4 0,2 0,6 0,8. Matriz (diária): M² = 0,28 0,24 0,72 0,76 M 4 = 0,2512 0,2496 0,7488 0,7504. Diagrama (semanal) ( ) Prova ( ) Prova Semestral (x) Exercícios ( ) Segunda Chamada ( ) Prova Modular ( ) Prova de Recuperação ( ) Prática de Laboratório ( ) Exame Final/Exame de Certificação ( ) Aproveitamento Extraordinário

Leia mais

Aula - Introdução a Teoria da Probabilidade

Aula - Introdução a Teoria da Probabilidade Introdução a Teoria da Probabilidade Prof. Magnos Martinello Aula - Introdução a Teoria da Probabilidade Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI 5 de dezembro de

Leia mais

Prova Escrita de MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS

Prova Escrita de MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS Prova Escrita de MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS Identi que claramente os grupos e as questões a que responde. Utilize apenas caneta ou esferográ ca de tinta azul ou preta. É interdito o uso de

Leia mais

Estatística - aulasestdistrnormal.doc 13/10/05

Estatística - aulasestdistrnormal.doc 13/10/05 Distribuição Normal Introdução O pesquisador estuda variáveis. O estatístico diz que essas variáveis são aleatórias porque elas têm um componente que varia ao acaso. Por exemplo, a variabilidade dos pesos

Leia mais

A matemática e o genoma. Resumo

A matemática e o genoma. Resumo I Coloquio Regional da Região Centro-Oeste, 3 a 6 de novembro de 2009 Universidade Federal de Mato Grosso do Sul Mini-curso A matemática e o genoma Nalvo F. Almeida Jr. Resumo Os avanços da biotecnologia

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e

Leia mais

Agrupamento de Escolas do Fundão

Agrupamento de Escolas do Fundão Agrupamento de Escolas do Fundão MATEMÁTICA P GPI 13 12º Ano CURRÍCULO DA DISCIPLINA E Nº DE AULAS PREVISTAS Período PLANIFICAÇÃO ANUAL Módulos a leccionar + Conteúdos Programáticos Módulo A6- Taxa de

Leia mais

Programação Dinâmica: Modelos Determinísticos

Programação Dinâmica: Modelos Determinísticos Programação Dinâmica: Modelos Determinísticos Prof. Fernando Augusto Silva Marins Departamento de Produção Faculdade de Engenharia Campus de Guaratinguetá UNESP www.feg.unesp.br/~fmarins fmarins@feg.unesp.br

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Engenharia Biomédica. Relatório Cinética da Enzima Invertase

Engenharia Biomédica. Relatório Cinética da Enzima Invertase Engenharia Biomédica Bioquímica e Biologia Molecular Relatório Cinética da Enzima Invertase Relatório realizado por: Ana Calhau nº54605 Dárcio Silva nº54214 José Frazão nº54198 1º Semestre, Ano Lectivo

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

Exemplos de Aplicações da Teoria das Probabilidades em Biologia. Qual a probabilidade de que o próximo nucleotídeo na seqüência seja A, C, G ou T?

Exemplos de Aplicações da Teoria das Probabilidades em Biologia. Qual a probabilidade de que o próximo nucleotídeo na seqüência seja A, C, G ou T? Exemplos de Aplicações da Teoria das Probabilidades em Biologia Exemplo 1. Suponha que se conheça a seguinte seqüência de nucleotídeos em uma molécula de DNA: AGCTTCCGATCCGCTATAATCGTTAGTTGTTACACCTCTG Qual

Leia mais

Otimização. Otimização e Teoria dos Jogos. Paulo Henrique Ribeiro Gabriel Faculdade de Computação Universidade Federal de Uberlândia

Otimização. Otimização e Teoria dos Jogos. Paulo Henrique Ribeiro Gabriel Faculdade de Computação Universidade Federal de Uberlândia Otimização Otimização e Teoria dos Jogos Paulo Henrique Ribeiro Gabriel phrg@ufu.br Faculdade de Computação Universidade Federal de Uberlândia 2016/2 Paulo H. R. Gabriel (FACOM/UFU) GSI027 2016/2 1 / 26

Leia mais

Medidas de Dispersão 1

Medidas de Dispersão 1 Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não

Leia mais

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições Motivação: MOQ-2: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS VA s e Distribuições Definimos anteriormente Espaço de Probabilidades como sendo a tripla (W,, P(.)), em que, dado um eperimento, W representa

Leia mais

SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS

SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS Universidade Federal do Tocantins SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS Diogo Rigo de Brito Guimarães Alexandre Tadeu Rossini da Silva Objetivo Implementar soluções heurísticas para o Jogo de Damas

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Descrição de Sistemas LTI por Variáveis de Estados 1

Descrição de Sistemas LTI por Variáveis de Estados 1 Descrição de Sistemas LTI por Variáveis de Estado Os estados de um sistema podem ser definidos como o conjunto mínimo de sinais que descrevem o comportamento dinâmico do sistema. Sendo assim, dado o valor

Leia mais

3 Aprendizado por reforço

3 Aprendizado por reforço 3 Aprendizado por reforço Aprendizado por reforço é um ramo estudado em estatística, psicologia, neurociência e ciência da computação. Atraiu o interesse de pesquisadores ligados a aprendizado de máquina

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

Otimização Aplicada à Engenharia de Processos

Otimização Aplicada à Engenharia de Processos Otimização Aplicada à Engenharia de Processos Aula 4: Programação Linear Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo Programa de Pós-Graduação em Engenharia Elétrica Belo Horizonte Março de 2013

Leia mais

Programação Aplicada à Engenharia

Programação Aplicada à Engenharia Universidade Federal Rural do Semi-Árido Departamento de Ciências Ambientais Programação Aplicada à Engenharia Aula 03: Algoritmos Silvio Fernandes 2009.1 1 Algoritmos Em uma receita de bolo, descrevem-se

Leia mais

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO 99 15 EQUAÇÕES DE MAXWELL, POTENCIAL MANÉTICO E EQUAÇÕES DE CAMPO 15.1 - AS QUATRO EQUAÇÕES DE MAXWELL PARA CAMPOS ELÉTRICOS E MANÉTICOS ESTACIONÁRIOS Como pudemos observar em todo o desenvolvimento deste

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues Unidade IV ESTATÍSTICA Prof. Fernando Rodrigues Análise combinatória Analise combinatória é a área da Matemática que trata dos problemas de contagem. Ela é utilizada para contarmos o número de eventos

Leia mais

8º ANO. Lista extra de exercícios

8º ANO. Lista extra de exercícios 8º ANO Lista extra de exercícios . Determine os valores de x que tornam as equações a seguir verdadeiras. a) (x + 4)(x ) = 0 b) (x + 6)(x ) = 0 c) (x + )(6x 9) = 0 d) 4x(x ) = 0 e) 7x(x ) = 0. Determine

Leia mais

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A MATEMÁTICA PARA ADMINISTRADORES AULA 03: ÁLGEBRA LINEAR E SISTEMAS DE EQUAÇÕES LINEARES TÓPICO 02: SISTEMA DE EQUAÇÕES LINEARES Considere o sistema linear de m equações e n incógnitas: O sistema S pode

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 Probabilidade As definições de probabilidade apresentadas anteriormente podem

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova 1 de Probabilidade I Prof.: Fabiano F. T. dos Santos Goiânia, 15 de setembro de 2014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

Desvendando o futuro: Matemática Computacional

Desvendando o futuro: Matemática Computacional Desvendando o futuro: Matemática Computacional L. Felipe Bueno lfelipebueno@gmail.com Universidade Federal de São Paulo (UNIFESP) São José dos Campos 11/03/15 Resumo O que é Matemática Computacional Habilidades

Leia mais

Busca de motivos em sequências. João Carlos Setubal 2015

Busca de motivos em sequências. João Carlos Setubal 2015 Busca de motivos em sequências João Carlos Setubal 2015 Cadeias exatas Podem ser encontradas com o mecanismo de busca de qualquer editor de textos Que algoritmo é executado? O mais simples (e que é muito

Leia mais

O Problema de Transportes

O Problema de Transportes Investigação Operacional- 00/0 - Problemas de Transportes 8 O Problema de Transportes O problema geral de transportes consiste em determinar a forma mais económica de enviar um bem que está disponível

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

INFORMÁTICA APLICADA AULA 02 ALGORITMOS

INFORMÁTICA APLICADA AULA 02 ALGORITMOS UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: Bacharelado em Ciências e Tecnologia INFORMÁTICA APLICADA AULA 02 ALGORITMOS Profª ª Danielle Casillo ALGORITMOS Um algoritmo é uma sequência de instruções

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 3.1 Introdução à Teoria das Probabilidades e da Preferência pelo Risco Isabel Mendes 2007-2008 18-03-2008 Isabel Mendes/MICRO

Leia mais

Análise e Projeto Orientados a Objetos Aula III Concepção Visão Geral do Sistema. Prof. Bruno E. G. Gomes IFRN

Análise e Projeto Orientados a Objetos Aula III Concepção Visão Geral do Sistema. Prof. Bruno E. G. Gomes IFRN Análise e Projeto Orientados a Objetos Aula III Concepção Visão Geral do Sistema Prof. Bruno E. G. Gomes IFRN 1 Introdução Fase de concepção do UP Analista vai em busca das primeiras informações sobre

Leia mais

O JOGO DOS DISCOS INTRODUÇÃO DISCUSSÃO PROCEDIMENTO ORIENTAÇÃO PARA O PROFESSOR

O JOGO DOS DISCOS INTRODUÇÃO DISCUSSÃO PROCEDIMENTO ORIENTAÇÃO PARA O PROFESSOR MATEMATICA 2 2 O JOGO DOS DISCOS ORIENTAÇÃO PARA O PROFESSOR INTRODUÇÃO Através desse jogo bem interessante o professor pode abordar o conceito de probabilidade geométrica, que normalmente não é visto

Leia mais

Lista de Exercícios - Multiplicação

Lista de Exercícios - Multiplicação Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 6 - Multiplicação - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=gppmajolb1s Gabaritos nas últimas

Leia mais

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 7. SISTEMAS LINEARES 7.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Matemática Básica Relações / Funções

Matemática Básica Relações / Funções Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os

Leia mais

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos:

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos: Eisencraft e Loiola 2.1 Probabilidade 37 Modelo matemático de experimentos Para resolver problemas de probabilidades são necessários 3 passos: a Estabelecimento do espaço das amostras b Definição dos eventos

Leia mais

Exercícios sobre algoritmos

Exercícios sobre algoritmos Exercícios sobre algoritmos Exercícios envolvendo estruturas de decisão Fazer um algoritmo para: 1) Receber um número do usuário e mostrar se esse número é par ou não par 2) Receber 3 valores numéricos,

Leia mais

Problemas de Transportes e de Afectação

Problemas de Transportes e de Afectação CAPÍTULO 6 Problemas de Transportes e de Afectação 1. Problema de Transporte Este problema, que é um dos particulares de PL, consiste em determinar a forma mais económica de enviar um bem disponível, em

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica

Leia mais

2 Teoria da Informação

2 Teoria da Informação 2 Teoria da Informação Neste capítulo apresentamos alguns conceitos básicos sobre Teoria da Informação que utilizaremos durante este trabalho. 2.1 Alfabeto, texto, letras e caracteres Um alfabeto Σ = (σ

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha 2 Determinantes Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores 1 o semestre 2016/17 Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto

Leia mais

Matriz de Referência da área de Matemática Ensino Fundamental

Matriz de Referência da área de Matemática Ensino Fundamental Matemática EF Matriz de Referência da área de Matemática Ensino Fundamental C1 Utilizar o conhecimento numérico para operar e construir argumentos ao interpretar situações que envolvam informações quantitativas.

Leia mais

Matemática A. Teste Intermédio Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade

Matemática A. Teste Intermédio Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade Teste Intermédio Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 17.01.2008 12.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,

Leia mais

Modelos de Escolha Discreta. a)pretende-se conhecer os coeficientes da função de utilidade, assim como a sua significância estatística.

Modelos de Escolha Discreta. a)pretende-se conhecer os coeficientes da função de utilidade, assim como a sua significância estatística. Nº Observações espaço Lx centro espaço periferia nº clientes (15 min) centro Lx nº clientes (15 min) periferia estacionamento centro Lx estacionamento periferia tc rodo centro Lx tc rodo periferia Código

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e

Leia mais

Projecto de Algoritmos e Estruturas de Dados

Projecto de Algoritmos e Estruturas de Dados Projecto de Algoritmos e Estruturas de Dados Licenciatura em Engenharia Electrotécnica e de Computadores Licenciatura em Engenharia Electrónica 1 o ano, 2 o Semestre, 2005/2006 Instituto Superior Técnico

Leia mais

Sistemas de Numeração

Sistemas de Numeração Tecnologias de Informação e Comunicação Engenharia Mecânica 1º Ano / 1º Semestre Filipe Caldeira, 2006 Sistema Decimal No sistema decimal existem dez símbolos numéricos, algarismos : 0 1 2 3 4 5 6 7 8

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Fundamentos de Teste de Software

Fundamentos de Teste de Software Núcleo de Excelência em Testes de Sistemas Fundamentos de Teste de Software Módulo 2- Teste Estático e Teste Dinâmico Aula 5 Técnicas de Especificação SUMÁRIO INTRODUÇÃO... 3 TÉCNICAS PARA PROJETO DE CASOS

Leia mais

UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO MICROECONOMICS 2009/2010

UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO MICROECONOMICS 2009/2010 UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO MICROECONOMICS 2009/2010 References: - Gibbons, R. (1992), A Primer in Game Theory, Harvester Wheatsheaf (G) - Mas-Collel, A., M.

Leia mais

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Matemática II - / - Sistemas de Equações Lineares Sistemas de equações lineares Introdução Uma equação linear nas incógnitas ou variáveis x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a

Leia mais

Aula 1: Reconhecendo Matrizes

Aula 1: Reconhecendo Matrizes Aula 1: Reconhecendo Matrizes Caro aluno, nesta aula você aprenderá a reconhecer matrizes, posteriormente vamos identificar os tipos de matrizes existentes e como realizar algumas operações entre elas.

Leia mais

MT como calculadoras de funções parciais

MT como calculadoras de funções parciais MT como calculadoras de funções parciais Uma máquina de Turing pode ser vista como uma calculadora de funções parciais dos inteiros nos inteiros: f : N k p N Suponhamos que os inteiros estão codificados

Leia mais

AULA 9 RAZÃO E PROPORÇÃO. 1. Determine a razão do primeiro para o segundo número:

AULA 9 RAZÃO E PROPORÇÃO. 1. Determine a razão do primeiro para o segundo número: AULA 9 RAZÃO E PROPORÇÃO 1. Determine a razão do primeiro para o segundo número: Para montar a razão, basta fazer o numerador sobre o denominador. Para esse exercício, temos: a) 1 para 9 = 9 1 b) para

Leia mais

Exame de 1ª Época Introdução à Programação IGE e ETI 2003/02/25-1º semestre de 2002/2003 ISCTE

Exame de 1ª Época Introdução à Programação IGE e ETI 2003/02/25-1º semestre de 2002/2003 ISCTE Recibo do Exame de 1ª Época de Introdução à Programação (IGE e ETI), 2003/02/25 1º semestre de 2002/2003, ISCTE Nome do aluno:... Número do aluno:... Assinatura do docente:... Notas: Exame de 1ª Época

Leia mais

Planificação a médio e longo prazo. Matemática B. 11º Ano de escolaridade. Total de aulas previstas: 193. Ano letivo 2015/2016

Planificação a médio e longo prazo. Matemática B. 11º Ano de escolaridade. Total de aulas previstas: 193. Ano letivo 2015/2016 Planificação a médio e longo prazo Matemática B 11º Ano de escolaridade. Total de aulas previstas: 193 Ano letivo 2015/2016 Professor responsável: Paulo Sousa I O programa Matemática B do 11º Ano - Página

Leia mais

Resolução De Problemas Em Informática. Docente: Ana Paula Afonso Resolução de Problemas. 1. Analisar o problema

Resolução De Problemas Em Informática. Docente: Ana Paula Afonso Resolução de Problemas. 1. Analisar o problema ALGORITMIA Resolução De Problemas Em Informática Docente: Ana Paula Afonso 2000-2001 Resolução de Problemas 1. Analisar o problema Conhecer o bem o problema Descrever o problema: subdividir, detalhar 2.

Leia mais

Algoritmos e Linguagem de Programação I

Algoritmos e Linguagem de Programação I Algoritmos e Linguagem de Programação I Roberto Ferreira roberto.ferreira@lapa.ifbaiano.edu.br 2014.1 Módulo I Aula 3 Algoritmos Computacionais Na aula anterior vimos... Quais são os passos para solucionar

Leia mais

Algoritmo e Introdução a Programação. Prof. Josino Rodrigues

Algoritmo e Introdução a Programação. Prof. Josino Rodrigues Algoritmo e Introdução a Programação Prof. Josino Rodrigues Um algoritmo é qualquer procedimento computacional bem definido que toma algum valor ou conjunto de valores como entrada e produz algum valor

Leia mais

MATEMÁTICA APLICADA. Portanto, o preço do produto, nessa situação, varia entre 0 e R$ 5,00. 0 < P < R$ 5,00. Ao admitirmos P > 0, ocorre:

MATEMÁTICA APLICADA. Portanto, o preço do produto, nessa situação, varia entre 0 e R$ 5,00. 0 < P < R$ 5,00. Ao admitirmos P > 0, ocorre: MATEMÁTICA APLICADA Apresentação Caro aluno: A contextualização e a aplicação dos conteúdos matemáticos (já estudados) contemplarão o objetivo geral da disciplina Matemática Aplicada à Administração. Este

Leia mais