Aula 09. Bibliograa: Kreps, Cap. 06. Cláudio R. Lucinda FEA-RP/USP. Equilíbrio Geral Eciência do Equilíbrio Geral Existência e Número de Equilíbrios

Tamanho: px
Começar a partir da página:

Download "Aula 09. Bibliograa: Kreps, Cap. 06. Cláudio R. Lucinda FEA-RP/USP. Equilíbrio Geral Eciência do Equilíbrio Geral Existência e Número de Equilíbrios"

Transcrição

1 Aula 09 Bibliograa: Kreps, Cap. 06 Cláudio R. Lucinda FEA-RP/USP

2 Objetivos da Aula Equilíbrio Geral 1 Equilíbrio Geral Economia de Trocas e o Equilíbrio de Preços

3 Objetivos da Aula Equilíbrio Geral 1 Equilíbrio Geral Economia de Trocas e o Equilíbrio de Preços 2

4 Objetivos da Aula Equilíbrio Geral 1 Equilíbrio Geral Economia de Trocas e o Equilíbrio de Preços 2 3

5 : Equilíbrio Geral Economia de Trocas e o Equilíbrio de Preços Nesta aula, iremos continuar trabalhando a questão do equilíbrio de mercado, mas em um contexto bastante diferente. Aqui iremos modelar os mercados de forma integrada; neste caso, as alterações nos elementos relevantes para um mercado em particular possuem efeitos que se irradiam para outros mercados. Essa é a idéia de Equilíbrio Geral

6 O problema Equilíbrio Geral Economia de Trocas e o Equilíbrio de Preços Considere: I consumidores: i = 1,, I J empresas: j = 1,, J L produtos: l = 1,, L u i : X i R, sendo que X i R + L i X i X i, em que X i R +, e é representado por uma função utilidade u i ( ) ω = (ω 1, ω 2,, ω I ), que representa o vetor de dotações Y j R L é o conjunto de produção para a empresa j

7 Economia de Trocas: Economia de Trocas e o Equilíbrio de Preços Por enquanto, vamos abstrair do lado da produção. Ou seja, a atividade econômica relevante envolve a troca de bens pertencentes às dotações dos diferentes indivíduos. Neste sentido, a soma dos consumos tem que ser igual às somas das dotações: ω l = i ω l i = i x l i = x l Representação Gráca: Caixa de Edgeworth:

8 Caixa de Edgeworth: Economia de Trocas e o Equilíbrio de Preços

9 Caixa de Edgeworth Equilíbrio: Economia de Trocas e o Equilíbrio de Preços

10 Denição de Equilíbrio Geral Economia de Trocas e o Equilíbrio de Preços Denição Um Equiíbrio Geral, também conhecido como Equilíbrio Walrasiano, para uma economia de trocas consiste em um vetor de preços p e um vetor de cestas de consumo competitivas x i tais que: (1) aos preços p, x i é uma cesta que maximiza a utilidade do consumidor: (2) I x i I i=1 i=1 ei O conjunto de vetores x i que satisfazem a estas condições caracterizam a alocação de consumo nal deste equilíbrio.

11 Implicações: Equilíbrio Geral Economia de Trocas e o Equilíbrio de Preços Se multiplicarmos todos os preços por um mesmo múltiplo λ, a alocação de consumo nal deste equilíbrio ca inalterada Uma vez que as preferências dos consumidores não são decrescentes, temos que o preço de todos os bens tem que ser positivo: p l 0. Uma vez que assumimos não saciedade local, temos que eles gastarão toda sua renda no processo de maximização de sua utilidade. Ou seja, px i = pω i. Somando entre todos os indivíduos, temos: px i = pω i i i

12 Implicações (II): Equilíbrio Geral Economia de Trocas e o Equilíbrio de Preços Observação importante. Do ponto de vista de quantidades, apenas dissemos que I x i I i=1 i=1 ei, ou seja, pode haver um bem que tem sobra, ou seja, que o total de dotações é maior do que o total de demandas. Estes bens devem ter o preço igual a zero. Da mesma forma, pela igualdade do slide anterior, se L 1 mercados estiverem em equilíbrio, o L-ésimo também estará. Não podemos ter um equilíbrio walrasiano em que todos os preços sejam zero, desde que os consumidores sejam localmente não saciados. A alocação Walrasiana será ao longo da curva de contrato, e em especial, no núcleo (Core)

13 Economia de Trocas e o Equilíbrio de Preços Até o momento, apenas nos preocupamos com as propriedades do equilíbrio e os seus elementos básicos, e não como se chega de um ao outro. Por isso o Kreps enfatiza que esta é uma análise de forma reduzida. Uma forma de racionalizar este processo é introduzindo o conceito de leiloeiro Walrasiano. Imagine que exista um indivíduo que que defronte à população como um todo e anuncie um vetor de preços p. Cada consumidor faz uma meditação toda pessoal e determina qual seria sua oferta ou demanda líquida a estes preços: z i (p) = x i (p) ω i.

14 Leiloeiro (II): Equilíbrio Geral Economia de Trocas e o Equilíbrio de Preços O leiloeiro pega os relatórios de cada um dos indivíduos e os soma. Se as demandas líquidas somadas forem iguais ou menores a zero, i zi (p) 0, tudo ca bem e as transações se realizam. Este vetor seria, então, o vetor de preços de equilíbrio. E se isso não acontecer? Caso isso não ocorra, o leiloeiro irá tentar um novo vetor de preços, tal como p, sendo que os elementos de p que exibem excesso de demanda têm seus preços aumentados e os elementos que possuem excesso de oferta têm os seus preços reduzidos. Este é o mecanismo de tateamento ou Tatônnement Note que este não é o único método para se determinar um equilíbrio geral

15 Uma Forma Alternativa: Economia de Trocas e o Equilíbrio de Preços Uma alternativa para isto poderia ser a seguinte: Imagine que um determinado produto seja considerado como numerário (padrão de troca). Cada um dos dias são abertos mercados - em formato eletrônico - em que cada indivíduo pode lançar ordens de compra e venda de qualquer um dos bens em termos do bem estabelecido como numerário. Existe uma grande literatura em Desenho de Mercados (market design).

16 Perguntas: Este Equilíbrio Geral é uma boa forma de alocar os bens na economia? Se conscássemos todas as dotações dos indivíduos, poderíamos chegar a uma alocação Pareto Superior àquela que foi alcançada no Equilíbrio Geral? Vamos discutir o que entendemos por alocação Pareto Superior.

17 Alocação Pareto Superior Denição Um resultado x é Pareto Superior a um resultado x se V (x i ) V (x i )para qualquer consumidor i, com desigualdade estrita para pelo menos um dos consumidores. A situação x é Estritamente Pareto Superior se a desigualdade se manter de forma estrita para todos os indivíduos

18 Eciência de Pareto Denição Dado um conjunto X de possíveis alocações de produtos, podemos chamar uma alocação x X como sendo Pareto Eciente ou Pareto Ótima se nenhuma outra alocação x X seja Pareto Superior a x. O conjunto de cestas (pode sim, haver mais de uma) que satisfaz esta propriedade é chamada de Fronteira de Pareto.

19 Primeiro Teorema do Bem-Estar Denição Um equilíbrio walrasiano como o descrito anteriormente sempre é uma alocação Pareto Eciente da dotação inicial ω. Demonstração. Vamos provar por contradição. Suponha que (p, (ˆx i )) seja uma alocação competitiva e (ˇx i ) uma alocação pareto superior. Mostraremos que isso leva a uma contradição. Uma vez que ˇx i é uma realocação da dotação inicial ω, temos que i ˇx i ω. Uma vez que os preços não são negativos, temos que i pˇx i pω

20 Prova - Cont Equilíbrio Geral Demonstração. (continuação). Pela Lei de Walras, e pela não saciedade local, na cesta de equilíbrio competitivo ˆx i temos que a somatória vale como igualdade: pˆx i = pω i Por hipótese, temos que cada consumidor i prera ˇx i a ˆx i, e algum (ou alguns) preferem estritamente ˇx i a ˆx i. Por preferência revelada, temos que para estes sujeitos, neste vetor de preços, pˇx i pˆx i = pω. Somando estes negócios, temos que i pˇx i i pˆx i, o que está em contradição com as relações anteriores,

21 Segundo Teorema do Bem-Estar Denição Supondo que as preferências são convexas, contínuas e localmente não saciadas e não decrescentes. Seja ˆx i uma alocação Pareto Eciente da dotação social que é estritamente positiva: ˆx i k > 0 i, k. Neste caso, ˆx i é parte da alocação resultante de um equilíbrio competitivo, desde que redistribuamos adequadamente ω entre os seus consumidores.

22 Existência Equilíbrio Geral Até agora, supusemos as características de um equilíbrio, mas a pergunta que não quer calar é: anal de contas, existe uma situação com estas propriedades? Pode existir mais de uma situação assim? Vamos analisar a situação com dois bens, e todas as premissas anteriormente discutidas são válidas.

23 Algumas Considerações 1 Se (p 1, p 2 ) é um vetor de preços de equilíbrio, (λp 1, λp 2 ), para λ > 0. Também sabemos que estes preços são não negativos, sabemos que p 1 + p 2 > 0. Ou seja, podemos multiplicar qualquer preço de equilíbrio por 1/(p 1 + p 2 ), de forma a garantir que p 1 + p 2 = 1 2 A partir desta premissa, podemos escrever a demanda por um dos bens - por exemplo, x i, como sendo: 2 x i 2 = p 1ω i 1 + p 2ω i 2 p 1x i 1 p 2

24 Mais Considerações 3. Agora imagine que, neste vetor de preços, x i é parte do 1 equilíbrio competitivo e os mercados clear para o bem 1 apenas, ou seja i x i = 1 i ωi, Pela denição do slide anterior: 1 x i 2 = p 1 ω i + p 1 2ω i p 2 1x i 1 p 2 i i [ = 1 p 1 (ω i 1 x i p 1) + p 2 2 = 1 p 2 p 2 i i ω i 2 i ω i 2 ]

25 Hipóteses Equilíbrio Geral 1 Para cada par de preços estritamente positivos p 1 e p 2, para cada consumidor i, o problema de maximização da utilidade possui uma solução única. Vamos denir a Demanda Agregada pelo bem 1 como sendo X 1 (p 1 ) = i x i 1 (p 1), com preços (p 1, 1 p 1 ) 2 Para algum valor de p 1 > 0,,X 1 (p 1 ) > ω 1 e para algum valor de p 1 < 1, temos que X 1 (p 1 ) < ω 1

26 Gráco de X 1 (p 1 ) Equilíbrio Geral

27 Hipótese e Conclusão: A função X 1 (p 1 ) é contínua para 0 < p 1 < 1 Pelo Teorema do Valor Médio do Cálculo, temos que existe um p 1 tal que X 1 (p 1 ) = ω 1. Se o mercado para o bem 1 está em equilíbrio, como vimos anteriormente, o mercado para o bem 2 também está em equilíbrio.

28 Extensões Equilíbrio Geral A extensão mais comum é a que passa por relaxar a premissa que as escolhas dos consumidores são únicas. Neste caso, X 1 (p 1 ) é chamada Correspondência, no sentido que as respostas de X 1 (p 1 ) não são valores especícos, mas sim conjuntos. Dada a continuidade e convexidade das preferências, temos que a correspondência X 1 (p 1 ) possui os requisitos de continuidade e convexidade. Neste caso, ao invés do teorema do valor médio, é utilizado um resultado da matemática chamado Teorema do Ponto Fixo.

29 Número de Equilíbrios Fato E quantos equilíbrios podem existir? Para uma dada dotação inicial desta economia, podemos demonstrar o seguinte resultado: Uma economia de trocas com dotação aleatoriamente selecionada possuirá um número nito e ÍMPAR de equilíbrios.

Economia de Trocas Pura

Economia de Trocas Pura Economia de Trocas Pura Caracterização Estamos de volta às questões colocadas por Adam Smith na Riqueza das Nações. Seria um sistema de trocas, baseado em indivíduos auto interessados, com propriedade

Leia mais

Prova de Microeconomia

Prova de Microeconomia Prova de Microeconomia 1) Acerca do comportamento do consumidor pode-se afirmar que: I. O formato das curvas de indiferença pode significar diferentes graus de desejo de substituir uma mercadoria por outra.

Leia mais

Teoria do Consumidor: Equilíbrio do Consumidor

Teoria do Consumidor: Equilíbrio do Consumidor Teoria do Consumidor: Equilíbrio do Consumidor Roberto Guena de Oliveira 16 de março de 2012 Roberto Guena de Oliveira () Equilíbrio 16 de março de 2012 1 / 36 Sumário 1 Restrição orçamentária 2 Restrição

Leia mais

TEORIA DA PRODUÇÃO. Rafael V. X. Ferreira Abril de 2017

TEORIA DA PRODUÇÃO. Rafael V. X. Ferreira Abril de 2017 MICROECONOMIA I TEORIA DA PRODUÇÃO Rafael V. X. Ferreira rafaelferreira@usp.br Abril de 2017 Universidade de São Paulo (USP) Faculdade de Economia, Administração e Contabilidade (FEA) Departamento de Economia

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

Teoria do Consumidor: Equilíbrio do Consumidor

Teoria do Consumidor: Equilíbrio do Consumidor Teoria do Consumidor: Equilíbrio do Consumidor Roberto Guena de Oliveira 21 de março de 2011 Roberto Guena de Oliveira ( ) Preferências 21 de março de 2011 1 / 36 Sumário 1 Restrição orçamentária 2 Restrição

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

CÁLCULO I Aula 14: Crescimento e Decrescimento. Teste da Primeira Derivada.

CÁLCULO I Aula 14: Crescimento e Decrescimento. Teste da Primeira Derivada. CÁLCULO I Aula 14:.. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Denição Sejam f : A B uma função e x 1, x 2 D f. Denimos que f é uma (i) função crescente se x 1

Leia mais

Teoria Microeconômica I. Prof. Marcelo Matos. Aula Introdutória

Teoria Microeconômica I. Prof. Marcelo Matos. Aula Introdutória Teoria Microeconômica I Prof. Marcelo Matos Aula Introdutória Ementa do Curso Teoria do consumidor: escolha do consumidor; preferência revelada; efeitos-renda e efeito-substituição: equação de Slutsky

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 6 - Introdução à probabilidade Departamento de Economia Universidade Federal de Pelotas (UFPel) Maio de 2014 Experimento Experimento aleatório (E ): é um experimento que pode ser repetido indenidamente

Leia mais

Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear Pedro A. Santos

Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear Pedro A. Santos Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear MEG Operações Elementares Trocar a posição de duas equações Multiplicar uma equação por uma constante diferente de zero Não alteram

Leia mais

ESCOLHA INDIVIDUAL. Rafael V. X. Ferreira Março de 2017

ESCOLHA INDIVIDUAL. Rafael V. X. Ferreira Março de 2017 MICROECONOMIA I ESCOLHA INDIVIDUAL Rafael V. X. Ferreira rafaelferreira@usp.br Março de 2017 Universidade de São Paulo (USP) Faculdade de Economia, Administração e Contabilidade (FEA) Departamento de Economia

Leia mais

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias

Leia mais

Teoria dos Jogos Algorítmica Maximização de Lucros no Design de Mecanismos

Teoria dos Jogos Algorítmica Maximização de Lucros no Design de Mecanismos Teoria dos Jogos Algorítmica Maximização de Lucros no Design de Mecanismos Luis Gustavo Rocha Vianna. Instituto de Matemática e Estatística IME Universidade de São Paulo USP Maximização de Lucros Design

Leia mais

Teoria do consumidor. Propriedades do Conjunto Consumo,

Teoria do consumidor. Propriedades do Conjunto Consumo, Teoria do consumidor 1 Pedro Rafael Lopes Fernandes Qualquer modelo que vise explicar a escolha do consumidor é sustentado por quatro pilares. Estes são o conjunto consumo, o conjunto factível, a relação

Leia mais

Teoria dos Grafos AULA 3

Teoria dos Grafos AULA 3 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA 3 Trajetos, Caminhos, Circuitos, Grafos Conexos Preparado

Leia mais

Parte II Teoria da Firma

Parte II Teoria da Firma Parte II Teoria da Firma Maximização de Lucro Roberto Guena de Oliveira USP 25 de julho de 2014 Roberto Guena de Oliveira (USP) Produção 25 de julho de 2014 1 / 33 Sumário 1 Introdução Roberto Guena de

Leia mais

Parte II Teoria da Firma

Parte II Teoria da Firma Parte II Teoria da Firma Maximização de Lucro Roberto Guena de Oliveira USP 25 de julho de 2014 Roberto Guena de Oliveira (USP) Produção 25 de julho de 2014 1 / 33 Sumário 1 Introdução 2 Abordagem direta

Leia mais

MA21 (2015) - Teste - Gabarito comentado. Problema 1 (OBM 2005) Na sequência de números

MA21 (2015) - Teste - Gabarito comentado. Problema 1 (OBM 2005) Na sequência de números MA21 (2015) - Teste - Gabarito comentado Problema 1 (OBM 2005) Na sequência de números 1, a, 2, b, c, d,... dizemos que o primeiro termo é 1, o segundo é a, o terceiro é 2, o quarto é b, o quinto é c e

Leia mais

Notas de Aula - Espaços Vetoriais I

Notas de Aula - Espaços Vetoriais I Notas de Aula - Espaços Vetoriais I 1 O espaço vetorial R 2 A definição de espaço vetorial que veremos adiante faz uso da ideia de operações definidas sobre um conjunto. Iniciaremos nosso estudo explorando

Leia mais

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Análise II Professor: Rubens Penha Cysne

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Análise II Professor: Rubens Penha Cysne Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Análise II Professor: Rubens Penha Cysne Lista de Exercícios 1 - VC Cálculo de Variações em Tempo Contínuo Postada dia 13/4/9 Data

Leia mais

Exemplo: Monopólio de segundo grau

Exemplo: Monopólio de segundo grau Notas de Aula - Teoria dos Jogos - FCE/UERJ 2016.2 (Versão preliminar - favor não circular) Professor Pedro Hemsley Horário: xxxx Sala: xxxx Ementa e informações relevantes: página do curso 1 Seleção Adversa

Leia mais

Álgebra Linear. Alan Anderson

Álgebra Linear. Alan Anderson Álgebra Linear Alan Anderson 9 de abril de 2016 1 Espaço Euclidiano Denimos o espaço euclidiano n dimensional R n como sendo o conjunto das listas de n números reais. R n = {(x 1,..., x n ) : x 1,...,

Leia mais

6. Frações contínuas como as melhores aproximações de um número real

6. Frações contínuas como as melhores aproximações de um número real 6. Frações contínuas como as melhores aproximações de um número real Com um pouco de técnica matemática iremos calcular frações contínuas, ou seja, os numeradores e denominadores de através de fórmulas

Leia mais

Poliedros AULA Introdução Denições

Poliedros AULA Introdução Denições AULA 13 13.1 Introdução Nesta aula estudaremos os sólidos formados por regiões do espaço (faces), chamados poliedros. O conceito de poliedro está para o espaço assim como o conceito de polígono está para

Leia mais

EXERCICIOS SOBRE: TEORIA DO CONSUMIDOR VI Procura, oferta e equilíbrio de mercado

EXERCICIOS SOBRE: TEORIA DO CONSUMIDOR VI Procura, oferta e equilíbrio de mercado EXERCICIOS SOBRE: TEORIA DO CONSUMIDOR VI Procura, oferta e equilíbrio de mercado Exercício Nº 1 Defina e caracterize os seguintes conceitos: a) Procura individual de um bem. Descreve as quantidades alternativas,

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Técnicas de Prova Profa. Sheila Morais de Almeida DAINF-UTFPR-PG julho - 2015 Técnicas de Prova Definição Uma prova é um argumento válido que mostra a veracidade de um enunciado matemático.

Leia mais

Introdução à Microeconomia. Renata Lèbre La Rovere. Grupo de Economia da Inovação IE/UFRJ

Introdução à Microeconomia. Renata Lèbre La Rovere. Grupo de Economia da Inovação IE/UFRJ Introdução à Microeconomia Renata Lèbre La Rovere Grupo de Economia da Inovação IE/UFRJ PARTE III: CONSUMO BIBLIOGRAFIA DA PARTE III: Krugman & Wells, cap. 10 e 11 Varian, cap. 2,3, 4,5 BIBLIOGRAFIA DESTA

Leia mais

Microeconomia 1 - Teoria da Firma

Microeconomia 1 - Teoria da Firma Microeconomia - Teoria da Firma Rodrigo Nobre Fernandez Pelotas, 05 DECON/UFPEL Rodrigo Nobre Fernandez Microeconomia / 37 Conjunto de Possibilidade de Produção Uma firma é uma entidade que transforma

Leia mais

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos:

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos: EQUAÇÃO DE SEGUNDO GRAU INTRODUÇÃO Equação é uma igualdade onde há algum elemento desconhecido Como exemplo, podemos escrever Esta igualdade é uma equação já conhecida por você, pois é de primeiro grau

Leia mais

Programação Linear. MÉTODOS QUANTITATIVOS: ESTATÍSTICA E MATEMÁTICA APLICADAS De 30 de setembro a 13 de novembro de 2011 prof. Lori Viali, Dr.

Programação Linear. MÉTODOS QUANTITATIVOS: ESTATÍSTICA E MATEMÁTICA APLICADAS De 30 de setembro a 13 de novembro de 2011 prof. Lori Viali, Dr. Programação Linear São problemas complexos, muitas vezes de difícil solução e que envolvem significativas reduções de custos, melhorias de tempos de processos, ou uma melhor alocação de recursos em atividades.

Leia mais

Teoria das Desições Financeiras II p.1/15

Teoria das Desições Financeiras II p.1/15 Teoria das Desições Financeiras II José Fajardo Barbachan IBMEC Business School Rio de Janeiro Teoria das Desições Financeiras II p.1/15 Probabilidade para Finanças Teoria das Desições Financeiras II p.2/15

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin ECO/UnB 2013-I. Aula 3 Teoria dos Jogos Maurício Bugarin. Cap. 1: Jogos Coalizionais sem Pagamentos Laterais

Teoria dos Jogos. Prof. Maurício Bugarin ECO/UnB 2013-I. Aula 3 Teoria dos Jogos Maurício Bugarin. Cap. 1: Jogos Coalizionais sem Pagamentos Laterais Teoria dos Jogos Prof. Maurício Bugarin ECO/UnB 2013-I Cap. 1: Jogos Coalizionais se Pagaentos Laterais Roteiro Capítulo 1: Jogos Coalizionais se Pagaentos Laterais 1. A Fora Coalizional e o Conceito de

Leia mais

Números Inteiros Axiomas e Resultados Simples

Números Inteiros Axiomas e Resultados Simples Números Inteiros Axiomas e Resultados Simples Apresentamos aqui diversas propriedades gerais dos números inteiros que não precisarão ser provadas quando você, aluno, for demonstrar teoremas nesta disciplina.

Leia mais

Teoria do Consumidor. Temos quatro elementos importantes em qualquer modelo de escolha do consumidor:

Teoria do Consumidor. Temos quatro elementos importantes em qualquer modelo de escolha do consumidor: Temos quatro elementos importantes em qualquer modelo de escolha do consumidor: conjunto de consumo; conjunto factível; relação de preferência ehipótesecomportamental Conjunto de consumo (ou escolha):

Leia mais

03 Análise de Algoritmos (parte 3) SCC201/501 - Introdução à Ciência de Computação II

03 Análise de Algoritmos (parte 3) SCC201/501 - Introdução à Ciência de Computação II 03 Análise de Algoritmos (parte 3) SCC201/501 - Introdução à Ciência de Computação II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2010/2 Moacir

Leia mais

Aula 10 Produto interno, vetorial e misto -

Aula 10 Produto interno, vetorial e misto - MÓDULO 2 - AULA 10 Aula 10 Produto interno, vetorial e misto - Aplicações II Objetivos Estudar as posições relativas entre retas no espaço. Obter as expressões para calcular distância entre retas. Continuando

Leia mais

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições Motivação: MOQ-2: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS VA s e Distribuições Definimos anteriormente Espaço de Probabilidades como sendo a tripla (W,, P(.)), em que, dado um eperimento, W representa

Leia mais

Capítulo 7 Transformadas de Fourier. definimos a sua transformada de Fourier

Capítulo 7 Transformadas de Fourier. definimos a sua transformada de Fourier Capítulo 7 Transformadas de Fourier Dada uma função definimos a sua transformada de Fourier A constante multiplicativa em (1),, é um valor arbitrário. Há autores que escolhem. Mas é muito importante lembrar

Leia mais

Matemática Discreta - 05

Matemática Discreta - 05 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 05 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

Aula 4: Consequência Lógica e Equivalência Lógica

Aula 4: Consequência Lógica e Equivalência Lógica Lógica para Computação Segundo Semestre, 2014 Aula 4: Consequência Lógica e Equivalência Lógica DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 4.1. Em lógica proposicional dizemos que uma fórmula B

Leia mais

2 Conceitos Básicos de Probabilidade

2 Conceitos Básicos de Probabilidade CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas

Leia mais

Os números inteiros. Capítulo 2

Os números inteiros. Capítulo 2 6 Capítulo 2 Os números inteiros Intuitivamente, o conjunto Z dos números inteiros é composto pelos números naturais e pelos "negativos". Como justificamos de uma forma simples qual a origem dos números

Leia mais

Demonstração. Ver demonstração em [1]. . Para que i j se tem µ i µ j? Determine a derivada no sentido de Radon-Nikodym em cada caso.

Demonstração. Ver demonstração em [1]. . Para que i j se tem µ i µ j? Determine a derivada no sentido de Radon-Nikodym em cada caso. Proposição 2.39 (Propriedades de e.). Sejam µ, λ, λ 1, λ 2 medidas no espaço mensurável (X, F). Então 1. se λ 1 µ e λ 2 µ então (λ 1 + λ 2 ) µ. 2. se λ 1 µ e λ 2 µ então (λ 1 + λ 2 ) µ. 3. se λ 1 µ e λ

Leia mais

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE ANA PAULA CHAVES AND THIAGO PORTO 1. Introdução Os temas centrais deste texto - bases numéricas e critérios de divisibilidade

Leia mais

Curvas Planas em Coordenadas Polares

Curvas Planas em Coordenadas Polares Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

a) Monte a situação acima na forma de um jogo, escrevendo a tabela de payoffs b) Encontre todos os equilíbrios de Nash em estratégias puras

a) Monte a situação acima na forma de um jogo, escrevendo a tabela de payoffs b) Encontre todos os equilíbrios de Nash em estratégias puras Universidade Federal do Rio Grande do Sul Faculdade de Ciências Econômicas Ecop 26 - Teoria Microeconômica II Prof. Sabino Porto Junior Teoria dos jogos 1 - Apresente os conceitos de: a) Equilíbrio em

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS Capítulo 4 Limites e assíntotas 4.1 Limite no ponto Considere a função f(x) = x 1 x 1. Observe que esta função não é denida em x = 1. Contudo, fazendo x sucientemente próximo de 1 (mais não igual a1),

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n 1. Descrição do método e alguns exemplos Colocamos o seguinte problema: dado um conjunto finito: A = {a 1, a 2,...,

Leia mais

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 Neste curso, consideraremos o conjunto dos números naturais como sendo o conjunto N = {0, 1, 2, 3,... }, denotando por N o conjunto N \ {0}. Como

Leia mais

5 Análise de Sensibilidade

5 Análise de Sensibilidade MAC-35 - Programação Linear Primeiro semestre de 00 Prof. Marcelo Queiroz http://www.ime.usp.br/~mqz Notas de Aula 5 Análise de Sensibilidade Neste capítulo consideramos o problema de programação linear

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;

Leia mais

MA14 - Aritmética Unidade 5 Resumo. Máximo Divisor Comum

MA14 - Aritmética Unidade 5 Resumo. Máximo Divisor Comum MA14 - Aritmética Unidade 5 Resumo Máximo Divisor Comum Abramo Hefez PROFMAT - SBM Julho 2013 Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

Introdução à Microeconomia

Introdução à Microeconomia Introdução à Microeconomia Marcelo Pessoa de Matos Aula 20 PARTE III: CONSUMO BIBLIOGRAFIA DA PARTE III: Krugman & Wells, cap. 10 e 11 Varian, cap. 2,4,5,6 BIBLIOGRAFIA DESTA AULA: Krugman & Wells, cap.10

Leia mais

Comportamento do consumidor Parte Preferências do Consumidor 2. Restrições Orçamentárias 3. A Escolha do Consumidor

Comportamento do consumidor Parte Preferências do Consumidor 2. Restrições Orçamentárias 3. A Escolha do Consumidor Comportamento do consumidor Parte 1 1. Preferências do Consumidor 2. Restrições Orçamentárias 3. A Escolha do Consumidor Comportamento do consumidor Há 3 etapas no estudo do comportamento do consumidor.

Leia mais

Capítulo 1. Fundamentos

Capítulo 1. Fundamentos Capítulo 1 Fundamentos A probabilidade moderna se baseia fortemente na Teoria da Medida e supomos durante esse curso que o leitor esteja bem familiarizado com conceitos tais como: Medida de Lebesgue, extensões

Leia mais

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 Para efetuar cálculos, a forma mais eciente de representar os números reais é por meio de expressões decimais. Vamos falar um pouco

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 11 28 de maio de 2010 Aula 11 Pré-Cálculo 1 A função raiz quadrada f : [0, + ) [0, + ) x y

Leia mais

Economia do Trabalho OFERTA DE TRABALHO. CAP. 2 Borjas

Economia do Trabalho OFERTA DE TRABALHO. CAP. 2 Borjas Economia do Trabalho OFERTA DE TRABALHO CAP. 2 Borjas 1. INTRODUÇÃO Indivíduos procuram maximizar bem estar, consumindo bens e lazer Existe trade-off entre trabalho e lazer Indivíduos precisam de trabalho

Leia mais

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana MA14 - Aritmética Unidade 2 Resumo Divisão Euclidiana Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte da disciplina e o seu estudo não garante o domínio do assunto. O material

Leia mais

MICROECONOMIA

MICROECONOMIA MICROECONOMIA 01. (Fiscal ISS-SP/98) Se a quantidade demandada de um bem permanece inalterada quando o seu preço aumenta, pode-se concluir que a elasticidade preço deste bem é: a) Menor do que a unidade.

Leia mais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais

Aula 12 Introdução ao Cálculo Integral

Aula 12 Introdução ao Cálculo Integral Aula 12 Introdução ao Cálculo Integral Objetivos da Aula Contextualizar o cálculo integral, dando ênfase em sua definição como sendo a operação inversa da diferenciação e estudar algumas propriedades fundamentais.

Leia mais

Lista de exercícios 5 Microeconomia 1

Lista de exercícios 5 Microeconomia 1 Lista de exercícios 5 Microeconomia 1 Graduação em economia Exercícios para entrega 08 de junho de 2016 Exercício 1. Uma empresa produz bolas de gude e possui a seguinte função de produção: Q = 2(KL) 0.5,

Leia mais

Equações não lineares

Equações não lineares DMPA IME UFRGS Cálculo Numérico Índice Raizes de polinômios 1 Raizes de polinômios 2 raizes de polinômios As equações não lineares constituídas por polinômios de grau n N com coeficientes complexos a n,a

Leia mais

TEORIA MICROECONÔMICA I N

TEORIA MICROECONÔMICA I N CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA 2016.1 ECO 1113 TEORIA MICROECONÔMICA I N PROFESSOR: JULIANO ASSUNÇÃO TURMA: 2JA LISTA 1 1. Um consumidor dispõe de R$ 320 para gastar com maçãs nacionais

Leia mais

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG 1 Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos Ana Cristina Vieira Departamento de Matemática - ICEx - UFMG - 2011 1. Representações de Grupos Finitos 1.1. Fatos iniciais Consideremos

Leia mais

Fluxo de um campo vetorial e a Lei de Gauss

Fluxo de um campo vetorial e a Lei de Gauss Fluxo de um campo vetorial e a Lei de Gauss Bibliografia e figuras: Sears & Zemanski, 12a ed. cap 22 Nesta aula vamos aprender a: determinar a quantidade de carga no interior de uma superfície fechada

Leia mais

x a1 mod m 1 x a 2 mod m 2

x a1 mod m 1 x a 2 mod m 2 Teorema Chinês do Restos. Dados dois inteiros m, m primos entre si (isto é, mdc(m, m )=), e dados outros dois inteiros quaisquer a, a, o sistema x a mod m x a mod m () Obs: Quem é chinês é o teorema, não

Leia mais

1 Vetores no Plano. O segmento de reta orientada P Q tem P como ponto inicial, Q como ponto nal e

1 Vetores no Plano. O segmento de reta orientada P Q tem P como ponto inicial, Q como ponto nal e Vetores no Plano Resumo 1 - Vetores no Plano 2. Componentes de um vetor; 3. Vetor nulo e vetores unitários; 4. Operações algébricas com vetores; 5. Exercícios; 6. Questões de Revisão 1 Vetores no Plano

Leia mais

Microeconomia II Lista de Exercícios 3

Microeconomia II Lista de Exercícios 3 Microeconomia II Lista de Exercícios 3 09 de Setembro de 2011 Questão 1: Nicholson - 14.5. Questão 2: Nicholson - 14.8. Questão 3 - Provinha 3 (2010). Um monopolista depara-se com uma curva de demanda

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

TEORIA MICROECONÔMICA I N

TEORIA MICROECONÔMICA I N CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA 2016.1 ECO 1113 TEORIA MICROECONÔMICA I N PROFESSOR: JULIANO ASSUNÇÃO TURMA: 2JA LISTA 1 1. Um consumidor dispõe de R$ 320 para gastar com maçãs nacionais

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 Probabilidade As definições de probabilidade apresentadas anteriormente podem

Leia mais

Números naturais e cardinalidade

Números naturais e cardinalidade Números naturais e cardinalidade Roberto Imbuzeiro M. F. de Oliveira 5 de Janeiro de 2008 Resumo 1 Axiomas de Peano e o princípio da indução Intuitivamente, o conjunto N dos números naturais corresponde

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Prove que para todo x 0 IR

Leia mais

Revisão: Potenciação e propriedades. Prof. Valderi Nunes.

Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo

Leia mais

Análise amortizada CLRS 17. Algoritmos p. 1

Análise amortizada CLRS 17. Algoritmos p. 1 Análise amortizada CLRS 17 Algoritmos p. 1 Análise amortizada Serve para analisar uma sequência de operações ou iterações onde o pior caso individual não reflete o pior caso da sequência. Em outras palavras,

Leia mais

Linguagens Formais e Autômatos

Linguagens Formais e Autômatos Linguagens Formais e Autômatos (notas da primeira aula 1 Definições básicas 1.1 Conjuntos Definição 1. Um conjunto é uma coleção de objetos, denominados elementos. Notação 1. Para indicar que um elemento

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto USP Departamento de Economia

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto USP Departamento de Economia REC 2112 Economia do Setor Público - Finanças Públicas Profa. Natalia Batista Exercícios Sugeridos (matéria que deverá ser abordada até a 1ª. prova) Observação: A seleção abaixo não restringe o conteúdo

Leia mais

Aula 4 Medidas de dispersão

Aula 4 Medidas de dispersão AULA 4 Aula 4 Medidas de dispersão Nesta aula, você estudará as medidas de dispersão de uma distribuição de dados e aprenderá os seguintes conceitos: amplitude desvios em torno da média desvio médio absoluto

Leia mais

Uma curiosa propriedade com inteiros positivos

Uma curiosa propriedade com inteiros positivos Uma curiosa propriedade com inteiros positivos Fernando Neres de Oliveira 21 de junho de 2015 Resumo Neste trabalho iremos provar uma curiosa propriedade para listas de inteiros positivos da forma 1, 2,...,

Leia mais

Cálculo Diferencial e Integral 2 Formas Quadráticas

Cálculo Diferencial e Integral 2 Formas Quadráticas Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 1 - Soluções

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 1 - Soluções Universidade Federal de Pelotas Disciplina de Microeconomia Professor Rodrigo Nobre Fernandez Lista - Soluções ) Suponha que existam apenas dois bens e o governo resolve controlar os preços desses bens

Leia mais

Jogos de soma zero com dois jogadores

Jogos de soma zero com dois jogadores Jogos de soma zero com dois jogadores Problema: Dada uma matriz A m n, encontrar um equilíbrio de Nash (de estratégias mistas). Jogador 1 quer encontrar p que maximize v sujeito a i p i = 1 sujeito a (pa)

Leia mais

Matriz Hessiana e Aplicações

Matriz Hessiana e Aplicações Matriz Hessiana e Aplicações Sadao Massago Dezembro de 200 Sumário Introdução 2 Matriz Jacobiana 3 Matriz hessiana 2 4 Talor de primeira e segunda ordem 2 5 Classicação dos pontos críticos 3 A Procedimeno

Leia mais

Economia e Finanças Públicas Aula T7. Bibliografia. Conceitos a reter. Obrigatória: Cap. 2 - Despesas públicas: teoria e prática

Economia e Finanças Públicas Aula T7. Bibliografia. Conceitos a reter. Obrigatória: Cap. 2 - Despesas públicas: teoria e prática Economia e Finanças Públicas Aula T7 Cap. 2 - Despesas públicas: teoria e prática 2.3 Despesa e equidade: redistribuição e igualdade de oportunidades 2.3.1 O óptimo social e a F.P.U. 2.3.2 As FBES: utilitarismo

Leia mais