Matemática Discreta. Prof. Nilson Costa 2014

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Matemática Discreta. Prof. Nilson Costa 2014"

Transcrição

1 1 Matemática Discreta Prof. Nilson Costa 2014

2 Definições Importantes 2 Proposição: É qualquer afirmação, verdadeira ou falsa, mas que faça sentido. Exemplos: A: Todo número maior e que 2 é impar. (V) B: A soma dos ângulos internos de qualquer triângulo é 180.(V) C: Todo número impar é primo. (F) Teorema: É uma proposição verdadeira do tipo P=>Q, onde P e Q são proposições.

3 Definições Importantes P é a Hipótese do teorema. (Conjectura, Suposição, Presunção, Prognostico, etc.) É um condição suficiente de Q Q é a Tese do teorema. Exemplos: (1) D: n é um número primo maior do que 2. E: n é um número ímpar. (2) Se duas frações a/b e c/d são iguais então a b = c d = a + c b + d ou a b = c d a b = c d 3 = a + c b + d

4 Definições Importantes 4 Lema: É um teorema preparatório para a demonstração de outro teorema. Colorário: É um teorema que segue como consequência natural de outro teorema. Atenção: Num teorema P=>Q (Vale Q se vale P) e (Vale P somente se valer Q) P(Hipótese) é uma condição suficiente de Q( Tese) e Q(Tese) é uma condição necessária de P(Hipótese)

5 Definições Importantes 5 Recíproca de um teorema P=>Q : É proposição Q=>P ou P<=Q que pode ser verdadeira ou não. Ex: Todo número primo maior que 2 é ímpar. Recíproca Ex: Se ABC é um triângulo retângulo em B, então AC 2 =AB 2 +BC 2 Recíproca

6 Definições Importantes 6 Atenção: P Q(P se e somente se Q)(Proposições equivalentes) A condição necessária e suficiente para que a proposição P seja verdadeira é que a proposição Q também seja verdadeira. Ex: Existe várias maneiras de de se juntar o teorema anterior e sua recíproca. 1- A condição necessária e suficiente para que um triângulo ABC seja retângulo em B é que AC 2 =AB 2 +BC 2

7 Definições Importantes 7 2- Dados três pontos distintos A,B e C, a condição necessária e suficiente para que AC 2 =AB 2 +BC 2 é que o triângulo ABC seja triângulo em B. 3- Seja ABC um triângulo. Então, ABC é um triângulo em B AC 2 =AB 2 +BC Um triângulo ABC é retângulo em B se e somente se AC 2 =AB 2 +BC 2. Exercícios Propostos 1-Escreva a recíproca para cada sentença: a. O crescimento sadio das plantas é consequência da quantidade suficiente de água.

8 Recíproca: Exercícios Propostos b. O crescimento da oferta de computadores é uma condição necessária para o desenvolvimento científico. Recíproca: c. Haverá novos erros apenas se o programa for alterado. Recíproca:

9 Exercícios Propostos d. A economia de combustível implica um bom isolamento, ou todas as janelas são janelas para tempestades. Recíproca: e. Se a chuva continuar, o rio vai transbordar. Rec:

10 Exercícios Propostos f. Uma condição suficiente para a falha de uma rede é que a chave geral pare de funcionar. Rec: g. Os abacates só estão maduros quando estão escuros e macios. Rec: h. Uma boa dieta é uma condição necessária para um gato saudável. Rec:

11 Definições Importantes Princípios Lógicos Principio da não contradição Afirma que uma proposição não pode ser verdadeira e falsa ao mesmo tempo. Em outras palavras denotando a negativa de uma proposição por Ã, se A for verdadeira, então à é falsa Principio do Terceiro Excluído Afirma que qualquer proposição A ou é verdadeira ou é falsa. Em outras palavras, ou A é verdadeira, ou à é verdadeira, não existindo uma terceira alternativa. 11

12 Técnicas de Demonstração Tipos de Raciocínios Indutivo: Parte do particular para o geral (Construindo uma conclusão baseada em experiência). 12 Ex: Examinando sete ou oito inteiros divisíveis por 6, e constado que estes inteiros também são divisíveis por 3. Podemos conjecturar: Se P, então Q (se um inteiro é divisível por 6, então ele também é divisível por 3). Ex: Sistemas baseados em agentes(abordagem de aprendizado)

13 Técnicas de Demonstração Ex: O ferro conduz eletricidade O ferro é metal O ouro conduz eletricidade O ouro é metal O cobre conduz eletricidade O cobre é metal Logo os metais conduzem eletricidade. 13

14 Técnicas de Demonstração Dedutivo: Parte do geral para o particular (Você tenta verificar se sua conjectura é verdadeira ou falsa). 14 Usado na lógica predicativa para provar que uma wff é um teorema, ou encontramos uma interpretação na qual a wff é falsa. ex: Sistemas especialistas(abordagem declarativa) Duas abordagens Demonstrar a conjectura Negar a conjectura

15 Técnicas de Demonstração Demonstração por contra exemplo (Negar a conjectura) Exemplo 0: Examinando sete ou oito inteiros divisíveis por 6, foi constado que estes inteiros também são divisíveis por 3. Para encontrar um contra exemplo basta simplesmente encontrando um inteiro divisível por 6 mas não por 3. Exemplo 1: Considere a sentença "Todo inteiro menor que 10 é maior que 5" ou, expresso em uma implicação "Se um inteiro é menor que 10, então ele é maior que 5". 15

16 Técnicas de Demonstração Um contra exemplo para esta implicação é o inteiro PRÁTICA 1: Forneça contra exemplos para as seguintes sentenças: a. Todos os animais que vivem nos oceanos são peixes. b. As entradas para um programa de computador são sempre fornecidas através do teclado.

17 Exercícios Propostos 2- Encontre contra exemplos para cada uma das seguintes afirmações: a. Toda figura geométrica plana com quatro ângulos retos é um quadrado. Sol: b. Se um número real não é positivo, então ele deve ser negativo. Sol: c. Todas as pessoas ruivas têm olhos verdes ou são altas. Sol:

18 Exercícios Propostos d. Todas as pessoas ruivas têm olhos verdes e são altas. Sol:

19 Técnicas de Demonstração Demonstração Direta: No caso geral, como podemos demonstrar que P=>Q é verdadeira? 19 Assume-se a hipótese P como verdadeira e deduz-se a tese Q. Exemplo 2: "Se um inteiro é divisível por 6, então ele também é divisível por 3." O teorema faz uma afirmação sobre um inteiro arbitrário, sua forma é: ( x) ( x divisível por 6 x divisível por 3)

20 Técnicas de Demonstração Hipótese: x é divisível por 6 (verdadeiro) Conclusão: x é divisível por 3 (definição de divisibilidade) (verdadeiro) PRÁTICA 2: Demonstre de forma direta o Teorema "Se um inteiro é divisível por 6, então duas vezes o inteiro é divisível por 4".

21 Solução: Técnicas de Demonstração

22 Técnicas de Demonstração Exemplo 3: demonstre de forma direta de que o produto de dois números pares é par. Solução:

23 Técnicas de Demonstração Demonstração por Contraposição É uma variante da técnica de prova direta. Se você pode demonstrar o teorema P Q,pode concluir que P Q pelo uso da tautologia (Q P ) (P Q). (Q P ) é a contrapositividade de P Q. A técnica para demonstrar que P Q construindo uma prova direta de Q P é chamada de demonstração por contraposição.

24 Técnicas de Demonstração Exemplo 4: Qual a contrapositiva do teorema Se um inteiro é divisível por 6, então ele também é divisível por 3" Sol:

25 Técnicas de Demonstração PRÁTICA 3- Escreva a contraposição para cada sentença: a. Se a chuva continuar, o rio vai transbordar. Sol: b. Uma condição suficiente para a falha de uma rede é que a chave geral pare de funcionar. Sol:

26 Técnicas de Demonstração c. Os abacates só estão maduros quando estão escuros e macios. Sol: d. Uma boa dieta é uma condição necessária para um gato saudável. Sol:

27 Exercícios Propostos 27 1-Escreva a contrapositiva para cada sentença: a. O crescimento sadio das plantas é consequência da quantidade suficiente de água. Contrapositiva: b. O crescimento da oferta de computadores é uma condição necessária para o desenvolvimento científico. Contrapositiva:

28 Exercícios Propostos 28 c. Haverá novos erros apenas se o programa for alterado. Contrapositiva: d. A economia de combustível implica um bom isolamento, ou todas as janelas são janelas para tempestades. Contrapositiva:

29 Técnicas de Demonstração 30 Exemplo 6 - A implicação "Se a > 5 então a > 2" é verdadeira, no entanto a sua recíproca "Se a > 2 então a > 5" é falsa. Atenção: Lembre-se de que qualquer teorema do tipo "se e somente se" requer uma demonstração em ambas as direções.

30 Técnicas de Demonstração Exemplo 7- Demonstre que o produto xy é ímpar se, e somente se, x e y são inteiros ímpares. Solução:

31 Técnicas de Demonstração

32 Técnicas de Demonstração Parte da demonstração do Exemplo 7 utiliza a técnica conhecida como demonstração por exaustão( ou por casos) que algumas vezes é muito útil.

33 Técnicas de Demonstração Demonstração por contradição ou absurdo Suponhamos que estamos tentando demonstrar que P Q. Por construção da tabela-verdade, veremos que (P ᴧ Q 0) (P Q)é uma tautologia, então para demonstrar que o teorema P Q é suficiente demonstrar que P ᴧ Q 0

34 Técnicas de Demonstração Exemplo 8- Use a prova por contradição para a sentença "Se um número somado a ele próprio resulta no próprio número, então o número é 0 (zero)". Solução:

35 Técnicas de Demonstração Exemplo 9- Mostra que 2 não é um número racional. Lembrando que um número racional é um número que pode ser escrito na forma p/q onde p e q são inteiros, q 0 e p e q não têm fatores comuns (além de ±1).

36 Sol: Técnicas de Demonstração

37 Técnicas de Demonstração Pratica 5- Prove por contradição que o produto de dois inteiros pares é par. Sol:

38 Técnicas de Demonstração Técnica de Demonstração Abordagem para provar P Q Observações Demonstração por Exaustão Demonstre P Q para todos os casos possíveis Pode ser usada apenas para provar um número finito de casos Demonstração Direta Suponha P, deduza Q Abordagem padrão o que se deve tentar, em geral. Demonstração por Contraposição Demonstração por absurdo Suponha Q, deduza P Use essa técnica se Q parece dar mais munição do que P. Suponha PᴧQ, deduza uma contradição. Use essa técnica quando Q disser que alguma coisa não é verdade

39 Exercícios Propostos 39 As definições a seguir podem ser úteis na resolução de alguns dos exercícios. Um quadrado perfeito é um inteiro n tal que n = k 2 para algum inteiro k. Um número primo é um inteiro n > 1 tal que n não é divisível por nenhum inteiro além de 1 e n. Para dois números x e y, x < y significa y - x > Prove que se n = 25, 100 ou 169 então n é um quadrado perfeito e é a soma de dois quadrados perfeitos.

40 Exercícios Propostos 40 Solução: 6- Prove que se n é um inteiro par, 4 n 12, então n é a soma de dois números primos. Solução:

41 Exercícios Propostos 4. Dê contra exemplos para as proposições a seguir: a. O número n é um inteiro se, e somente se, 3n+5 é um inteiro par. Solução: 41

42 Exercícios Propostos Prove que o número n é um número impar se, e somente se, 3n+5=6k+8 para algum inteiro k. Solução:

43 Exercícios Propostos 43 b. O número n é um inteiro par se, e somente se, 3n+2 é inteiro par. Solução:

44 Exercícios Propostos Prove que o número n é um número par se, e somente se, 3n+2=6k+2 para algum inteiro k. Solução:

45 Exercícios Propostos Prove que para qualquer inteiro positivo n 3, n! < 2 n. Solução: 08. Prove que para 2 n 4, 2 n n 2. Solução:

46 Exercícios Propostos Forneça uma demonstração direta de que a soma de inteiros pares é par. Sol: 10. Forneça uma demonstração por absurdo de que a soma de inteiros pares é par. Sol:

47 Exercícios Propostos Prove que a soma de dois inteiros ímpares é par. Solução:

48 Exercícios Propostos Prove que a soma de um inteiro par e um inteiro ímpar é ímpar. Solução: 15. Prove que o quadrado de um número par é divisível por 4. Solução:

49 Exercícios Propostos Sejam x e y números positivos, prove que x < y se, e somente se, x 2 < y 2. Solução :

50 Exercícios Propostos Prove que se dois inteiros são ambos divisíveis por um inteiro n, então a sua soma é divisível por n. Solução:

51 Exercícios Propostos Prove que o quadrado de um inteiro ímpar pode ser escrito como 8k + 1 para algum inteiro k. Solução: 29- Prove que o produto dos quadrados de dois inteiros é um quadrado perfeito. Solução:

52 Limites 52 AGORA É A SUA VEZ BONS ESTUDOS

53 BÁSICA Referências Bibliográficas 1. GERSTING, J. Fundamentos Matemáticos para Ciência da Computação. Rio de Janeiro: LTC, LOPES, L. Manual de Indução Matemática. Rio de Janeiro: Interciência, MOLLUZZO, J. C. A First Course in Discrete Mathematics. Springer- Verlag Ny, COMPLEMENTAR SCHEINERMAN, Edward R. Matemática Discreta: Uma introdução. 2ª Ed. São Paulo: Cengage Learning, ALENCAR FILHO, Edgard de. Iniciação à lógica matemática. São Paulo: Nobel, YAGLON, I. M. Álgebra Booleana. São Paulo: Atual, DE APOIO RECOMENDADA 1. Utilizar os slides enviados se possível na forma impressa em sala de

1. Métodos de prova: Construção; Contradição.

1. Métodos de prova: Construção; Contradição. Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Bacharelado em Ciência da Computação Fundamentos Matemáticos para Computação 1. Métodos de prova: Construção; Contradição.

Leia mais

Matemática Discreta - 04

Matemática Discreta - 04 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 04 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Demonstrações, Recursão e Análise de Algoritmo

Demonstrações, Recursão e Análise de Algoritmo Demonstrações, Recursão e Análise de Algoritmo Objetivos do Capítulo Após estudar este capítulo, você estará apto a: Realizar demonstrações de conjecturas, usando técnicas de demonstração direta, demonstração

Leia mais

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17)

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática 1

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

Aritmética. Somas de Quadrados

Aritmética. Somas de Quadrados Aritmética Somas de Quadrados Carlos Humberto Soares Júnior PROFMAT - SBM Objetivo Determinar quais números naturais são soma de dois quadrados. PROFMAT - SBM Aritmética, Somas de Quadrados slide 2/14

Leia mais

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues As respostas encontram-se em itálico. 1. Quais das frases a seguir são sentenças? a. A lua é feita de queijo verde. erdadeira, pois é uma

Leia mais

OS DIFERENTES TIPOS DE DEMONSTRAÇÕES: UMA REFLEXÃO PARA OS CURSOS DE LICENCIATURA EM MATEMÁTICA

OS DIFERENTES TIPOS DE DEMONSTRAÇÕES: UMA REFLEXÃO PARA OS CURSOS DE LICENCIATURA EM MATEMÁTICA Revista da Educação Matemática da UFOP, Vol I, 2011 - XI Semana da Matemática e III Semana da Estatística, 2011 ISSN 2237-809X OS DIFERENTES TIPOS DE DEMONSTRAÇÕES: UMA REFLEXÃO PARA OS CURSOS DE LICENCIATURA

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Técnicas de Prova Profa. Sheila Morais de Almeida DAINF-UTFPR-PG julho - 2015 Técnicas de Prova Definição Uma prova é um argumento válido que mostra a veracidade de um enunciado matemático.

Leia mais

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 Neste curso, consideraremos o conjunto dos números naturais como sendo o conjunto N = {0, 1, 2, 3,... }, denotando por N o conjunto N \ {0}. Como

Leia mais

Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização

Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização 1 Provas, lemas, teoremas e corolários Uma prova é um argumento lógico de que uma afirmação é verdadeira Um teorema

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

Álgebra A - Aula 02 Teorema da fatoração única, Propriedade fundamental dos primos, números primos

Álgebra A - Aula 02 Teorema da fatoração única, Propriedade fundamental dos primos, números primos Álgebra A - Aula 02 Teorema da fatoração única, Propriedade fundamental dos primos, números primos Elaine Pimentel Departamento de Matemática, UFMG, Brazil 2 o Semestre - 2010 Teorema da fatoração única

Leia mais

Aula 1 Aula 2. Ana Carolina Boero. Página:

Aula 1 Aula 2. Ana Carolina Boero.   Página: Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática

Leia mais

1.1 Propriedades Básicas

1.1 Propriedades Básicas 1.1 Propriedades Básicas 1. Classi que as a rmações em verdadeiras ou falsas, justi cando cada resposta. (a) Se x < 2, então x 2 < 4: (b) Se x 2 < 4, então x < 2: (c) Se 0 x 2, então x 2 4: (d) Se x

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Argumentação em Matemática Prof. Lenimar Nunes de Andrade e-mail: numerufpb@gmail.com ou lenimar@mat.ufpb.br versão 1.0

Leia mais

e sua relação como número áureo é bem estreito. Temos a aparição desses números em espirais, sejam elas a concha de um molusco, em ondas, em uma

e sua relação como número áureo é bem estreito. Temos a aparição desses números em espirais, sejam elas a concha de um molusco, em ondas, em uma A RAZÃO ÁUREA E A SEQÜÊNCIA DE FIBONACCI Thiago Yukio Tanaka Universidade Federal de Pernambuco t.y.tanaka@hotmail.com.br Lucimarcos José da Silva Universidade Federal de Pernambuco lucimarcos.silva@ufpe.com.br

Leia mais

Prof. Jorge Cavalcanti

Prof. Jorge Cavalcanti Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Olimpíada Pernambucana de Matemática Nível 2 (8 o e 9 o anos)

Olimpíada Pernambucana de Matemática Nível 2 (8 o e 9 o anos) Olimpíada Pernambucana de Matemática - 205 Nível 2 (8 o e 9 o anos). Quantos números com dois algarismos distintos são compostos? Resolução. Para fazer essa contagem utilizaremos o príncipio da inclusão-exclusão.

Leia mais

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012 NÚMEROS INTEIROS PROF. FRANCISCO MEDEIROS Álgebra Abstrata - Verão 2012 Faremos, nessas notas, uma breve discussão sobre o conjunto dos números inteiros. O texto é basicamente a seção 3 do capítulo 1 de

Leia mais

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4 INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Texto de apoio às aulas. Amélia Bastos, António Bravo Dezembro 2010 Capítulo 1 Números reais As propriedades do conjunto dos números reais têm por base um conjunto restrito

Leia mais

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues CENTRO EUCACIONAL GIRASSOL T de Matemática Prof.: Tiago Rodrigues proftiagorodrigues@gmail.com IVISIBILIAE E RESTO. Introdução O assunto divisibilidade no Conjunto dos Inteiros ( ) é extremamente importante

Leia mais

Teorema do ângulo externo e sua consequencias

Teorema do ângulo externo e sua consequencias Teorema do ângulo externo e sua consequencias Definição. Os ângulos internos de um triângulo são os ângulos formados pelos lados do triângulo. Um ângulo suplementar a um ângulo interno do triângulo é denominado

Leia mais

Iniciação a Lógica Matemática

Iniciação a Lógica Matemática Iniciação a Lógica Matemática Faculdade Pitágoras Prof. Edwar Saliba Júnior Julho de 2012 1 O Nascimento da Lógica É lógico que eu vou!, Lógico que ela disse isso! são expressões que indicam alguma coisa

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas

Leia mais

A resolução desses problemas pode geralmente ser feita com o seguinte procedimento: Problemas de divisibilidade 1

A resolução desses problemas pode geralmente ser feita com o seguinte procedimento: Problemas de divisibilidade 1 Três VIPs da Teoria dos Números É claro, VIP significa Very Important Problems. Os problemas discutidos aqui, além de suas variações, são bastante comuns em Olimpíadas de Matemática e costumam ser resolvidos

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

LÓGICA APLICADA A COMPUTAÇÃO

LÓGICA APLICADA A COMPUTAÇÃO LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Conteúdo Programático Unidade I Linguagens Formais Linguagens Formais Sigma Álgebras Relação entre Linguagens Formais e Sigma Álgebras Sigma Domínios

Leia mais

GAN Matemática Discreta Professores Renata de Freitas e Petrucio Viana. Lista A

GAN Matemática Discreta Professores Renata de Freitas e Petrucio Viana. Lista A GAN 00167 Matemática Discreta Professores Renata de Freitas e Petrucio Viana Lista A 1. Verdadeiro ou falso? Justifique. (a) {3} {3, 4, 5} (b) {3} {{3}, 4, 5} (c) {3} {3, 4, 5} (d) {3} {{3}, 4, 5} 2. Verdadeiro

Leia mais

FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES

FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES FICHA DE TRABALHO N.º MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Considere a condição px : x é um número

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor

Leia mais

Estruturas Discretas INF 1631

Estruturas Discretas INF 1631 Estruturas Discretas INF 1631 Thibaut Vidal Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil

Leia mais

Elementos de Lógica Matemática p. 1/2

Elementos de Lógica Matemática p. 1/2 Elementos de Lógica Matemática Uma Breve Iniciação Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/2 Vamos aprender a falar aramaico? ǫ > 0 ( δ

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 2. Sequências de Números Reais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 2. Sequências de Números Reais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 0 Lista Sequências de Números Reais. Dê o termo geral de cada uma das seguintes sequências: a,, 3, 4,... b, 4, 9, 6,... c,,

Leia mais

Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis

Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites Este trabalho tem como foco, uma abordagem sobre a teoria dos limites. Cujo objetivo é o método para avaliação da disciplina

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Matemática Básica EXERCÍCIOS OBRIGATÓRIOS. Dê um contraexemplo para cada sentença falsa.

Matemática Básica EXERCÍCIOS OBRIGATÓRIOS. Dê um contraexemplo para cada sentença falsa. DR. SIMON G. CHIOSSI @ GMA / UFF MB V 1 0/02/2016 NOME LEGÍVEL: Matemática Básica Prova V 1 turma A1 0 / 02 / 2016 MATRÍCULA: EXERCÍCIOS OBRIGATÓRIOS (1) Sejam P(x) o predicado x 2 = x e Q(x) o predicado

Leia mais

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO 5ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1) D) 6) D) 11) E) 16) B) 1) Anulada ) A) 7) D) 1) C) 17) C) ) B) ) D) 8) E) 1) D)

Leia mais

PCC104 - Projeto e Análise de Algoritmos

PCC104 - Projeto e Análise de Algoritmos PCC104 - Projeto e Análise de Algoritmos Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 7 de outubro de 2016 Marco Antonio

Leia mais

Matemática Discreta - 05

Matemática Discreta - 05 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 05 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Inteiros e divisão Definição: Se a e b são inteiros com a 0, dizemos que a divide

Leia mais

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais (inteiros positivos)

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais (inteiros positivos) Capítulo 1 Os Números 1.1 Notação Números naturais: N = {1, 2, 3,...}, mas existem vários autores considerando N = {0, 1, 2, 3,...}. Por isso, é recomendado dizer números positivos, números não negativos,

Leia mais

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular MODULO 1 - AULA 7 Aula 7 Complementos Apresentamos esta aula em forma de Exercícios Resolvidos, mas são resultados importantes que foram omitidos na primeira aula que tratou de Conceitos Básicos. Exercício

Leia mais

SMA Elementos de Matemática Notas de Aulas

SMA Elementos de Matemática Notas de Aulas Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA 341 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2009 Sumário 1 Noções

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Prove que para todo x 0 IR

Leia mais

PROBLEMAS DE LÓGICA. Prof. Élio Mega

PROBLEMAS DE LÓGICA. Prof. Élio Mega PROBLEMAS DE LÓGICA Prof. Élio Mega ALGUNS CONCEITOS DA LÓGICA MATEMÁTICA Sentença é qualquer afirmação que pode ser classificada de verdadeira (V) ou falsa (F) (e exatamente uma dessas coisas, sem ambiguidade).

Leia mais

Fundamentos de Matemática

Fundamentos de Matemática Fundamentos de Matemática Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 1 7 de janeiro de 2013 Aula 1 Fundamentos de Matemática 1 Apresentação Aula 1

Leia mais

Aula 14 DOMÍNIOS FATORIAIS META. Estabelecer o conceito de domínio fatorial. OBJETIVOS

Aula 14 DOMÍNIOS FATORIAIS META. Estabelecer o conceito de domínio fatorial. OBJETIVOS Aula 14 DOMÍNIOS FATORIAIS META Estabelecer o conceito de domínio fatorial. OBJETIVOS Aplicar a definição de domínio fatorial na resolução de problemas. Estabelecer a definição de máximo divisor comum

Leia mais

Aula 02 Introdução à Lógica. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes

Aula 02 Introdução à Lógica. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Aula 02 Introdução à Lógica Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Conceitos Iniciais sobre Lógica; Argumento; Inferência; Princípios. Contextualização: Situação

Leia mais

Recursividade e relações de recorrência

Recursividade e relações de recorrência Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 06 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries)

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries) TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries) Quantos inteiros positivos menores que 1000 têm a soma de seus algarismos igual a 7? PROBLEMA : Considere as seqüências de inteiros positivos tais que cada termo

Leia mais

Algoritmos. OBMEP Teoria dos números - Parte I. Algoritmo da divisão:

Algoritmos. OBMEP Teoria dos números - Parte I. Algoritmo da divisão: OBMEP Teoria dos números - Parte I Elaine Pimentel 1 o Semestre - 2006 Algoritmos Algoritmo = processo de cálculo baseado em regras formais Especificação de um algoritmo: entrada + instruções + saída Perguntas:

Leia mais

Raciocínio Lógico Matemático

Raciocínio Lógico Matemático Raciocínio Lógico Matemático Cap. 4 - Implicação Lógica Implicação Lógica Antes de iniciar a leitura deste capítulo, verifique se de fato os capítulos anteriores ficaram claros e retome os tópicos abordados

Leia mais

MA12 - Unidade 2 Indução Matemática Semana de 04/04 a 10/04

MA12 - Unidade 2 Indução Matemática Semana de 04/04 a 10/04 MA - Unidade Indução Matemática Semana de 04/04 a 0/04 Nesta unidade mostraremos como o Axioma da Indução, que foi apresentado na Unidade como um dos axiomas pilares dos números naturais, nos fornece um

Leia mais

Lógica Computacional

Lógica Computacional Lógica Computacional Aula Teórica 6: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Marco Giunti Departamento de Informática, Faculdade de Ciências e Tecnologia, NOVA LINCS, Universidade

Leia mais

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011 Lic. em Ciências da Computação Matemática Discreta Introdução à Teoria de Números - Exercícios 1 o ano - 2010/2011 1. Determine o quociente e o resto na divisão de: (a) 310156 por 197; (b) 32 por 45; (c)

Leia mais

Diagonal mais curta. Como d = mx e l = nx, teríamos: l 1 = d l = mx nx = (m n)x = n 1 x. d 1 = a:d + b:l = amx + bnx = (am + bn)x = m 1 x

Diagonal mais curta. Como d = mx e l = nx, teríamos: l 1 = d l = mx nx = (m n)x = n 1 x. d 1 = a:d + b:l = amx + bnx = (am + bn)x = m 1 x Diagonal mais curta Seja P um polígono regular de lados ( > 6), d a medida da sua diagonal mais curta e l a medida do seu lado. Supondo que d e l são comensuráveis, temos d mx e l nx, onde m e n são inteiros

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 11 de maio de 2010 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática Segunda Lista de Exercícios de ITN: Números Inteiros Prof. Marnei Luis Mandler Segundo

Leia mais

O TRIÂNGULO PSEUDO-RETÂNGULO E A HIPÉRBOLE EQUILÁTERA

O TRIÂNGULO PSEUDO-RETÂNGULO E A HIPÉRBOLE EQUILÁTERA O TRIÂNGULO PSEUDO-RETÂNGULO E A HIPÉRBOLE EQUILÁTERA SERGIO ALVES IME-USP salves@ime.usp.br Sejam A e A dois pontos distintos de um fixado plano euclidiano E. Se E indica a circunferência de diâmetro

Leia mais

XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio

XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio Reservado para a correção Prova Probl. 1 Probl. Probl. 3 Probl. 4 Probl. 5 Total # 3000 Nota - - - - - - - - - - - - - - - - - - - - - - - -

Leia mais

7º ANO. Lista extra de exercícios

7º ANO. Lista extra de exercícios 7º ANO Lista extra de exercícios 1. Um famoso problema de lógica consiste na seguinte situação. Um viajante precisava pagar sua estadia de uma semana (7 dias) em um hotel, sendo que só possuía uma barra

Leia mais

GEOMETRIA PLANA E ESPACIAL

GEOMETRIA PLANA E ESPACIAL GEOMETRIA PLANA E ESPACIAL A matemática não é uma ciência experimental. As afirmações feitas em matemática devem ser provadas. Conforme Geraldo Garbi em seu livro CQD: Introdução Utilizaremos nesta apostila

Leia mais

MA14 - Aritmética Lista 1. Unidades 1 e 2

MA14 - Aritmética Lista 1. Unidades 1 e 2 MA14 - Aritmética Lista 1 Unidades 1 e 2 Abramo Hefez PROFMAT - SBM 05 a 11 de agosto 2013 Unidade 1 1. Mostre, por indução matemática, que, para todo n N {0}, a) 8 3 2n + 7 b) 9 10 n + 3.4 n+2 + 5 2.

Leia mais

Capítulo O objeto deste livro

Capítulo O objeto deste livro Capítulo 1 Introdução 1.1 O objeto deste livro Podemos dizer que a Geometria, como ciência abstrata, surgiu na Antiguidade a partir das intuições acerca do espaço, principalmente do estudo da Astronomia.

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2

Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2 Matemática Frente II CAPÍTULO 22 EQUAÇÕES POLINOMIAIS 1 INTRODUÇÃO Nos capítulos anteriores, durante o estudo de polinômios, já estudamos alguns teoremas que nos ajudam a encontrar as raízes de polinômios.

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique. Universidade Federal de Uberlândia Faculdade de Matemática Disciplina: Geometria euclidiana espacial (GMA010) Assunto: Paralelisno e Perpendicularismo; Distância e Ângulos no Espaço. Prof. Sato 1 a Lista

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

Um número é divisível por 2 se ele é par, ou seja, termina em 0, 2, 4, 6 ou 8.

Um número é divisível por 2 se ele é par, ou seja, termina em 0, 2, 4, 6 ou 8. Alguns critérios de divisibilidade Divisibilidade por 2 Um número é divisível por 2 se ele é par, ou seja, termina em 0, 2, 4, 6 ou 8. Exemplos: O número 5634 é divisível por 2, pois o seu último algarismo

Leia mais

(CONCURSO PÚBLICO DE ADMISSÃO AO COLÉGIO NA VAL /CPACN-2015)

(CONCURSO PÚBLICO DE ADMISSÃO AO COLÉGIO NA VAL /CPACN-2015) MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PÚBLICO DE ADMISSÃO AO COLÉGIO NA VAL /CPACN-2015) NÃO ESTÁ AUTORIZADA A UTILIZAÇÃO DE MATERIAL EXTRA MATEMATICA 1) Seja S a soma dos valores

Leia mais

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de...

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... Página 1 de 12 MATEMÁTICA 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... ( a ) Excêntrico. ( b ) Côncavo. ( c ) Regular. ( d ) Isósceles.

Leia mais

aula 01 (Lógica) Ementa Professor: Renê Furtado Felix Site:

aula 01 (Lógica) Ementa Professor: Renê Furtado Felix   Site: aula 01 (Lógica) Ementa Professor: Renê Furtado Felix E-mail: rffelix70@yahoo.com.br Site: http://www.renecomputer.net/pdflog.html Plano de Ensino CURSO: Tecnologia em Análise e Desenvolvimento de Sistemas

Leia mais

x é igual a: 07. (Colégio Naval) No conjunto R dos números reais, qual será o 01. (PUC) O valor de m, de modo que a equação

x é igual a: 07. (Colégio Naval) No conjunto R dos números reais, qual será o 01. (PUC) O valor de m, de modo que a equação 0. (PUC) O valor de m, de modo que a equação 5 m m 0 b) c) d) 0. Quantos valores de satisfazem a equação a) b) c) d) 5 e) 0 Prof. Paulo Cesar Costa tenha uma das raízes igual a, é: ( ). 07. (Colégio Naval)

Leia mais

Semelhança de triângulos

Semelhança de triângulos Semelhança de triângulos As três proposições a seguir estabelecem as condições suficientes usuais para que dois triângulos sejam semelhantes. Por tal razão, as mesmas são conhecidas como os casos de

Leia mais

O que é uma prova? Paulo Feofiloff

O que é uma prova? Paulo Feofiloff O que é uma prova? Paulo Feofiloff http://www.ime.usp.br/~pf/amostra-de-prova/ Em matemática, uma prova é uma argumentação precisa que procura convencer o leitor de que uma certa proposição, previamente

Leia mais

Álgebra. Progressão geométrica (P.G.)

Álgebra. Progressão geométrica (P.G.) Progressão geométrica (P.G.). Calcule o valor de sabendo que: a) + 6 e 0-6 formam nessa ordem uma P.G.. b) + e + 6 formam nessa ordem uma P.G. crescente.. Calcule o seto termo de uma progressão geométrica

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes

Leia mais

Razões Trigonométricas

Razões Trigonométricas Curso Preparatório - PROFMAT 2014 Germán Ignacio Gomero Ferrer gigferrer@uesc.br 13 de Agosto de 2013 Problema 13 (The New York City Contest - Outono 1983) No triângulo ABC, sin 2 A + sin 2 B = 1. Encontre

Leia mais

NÚMEROS DE FERMAT. (Pedro H. O. Pantoja, Universidade de Lisboa, Portugal)

NÚMEROS DE FERMAT. (Pedro H. O. Pantoja, Universidade de Lisboa, Portugal) NÚMEROS DE FERMAT (Pedro H. O. Pantoja, Universidade de Lisboa, Portugal) Intrudução: O matemático francês Pierre de fermat (1601-1665) é famoso pelo seu extensivo trabalho em teoria dos números. Suas

Leia mais

Seqüências Numéricas

Seqüências Numéricas Seqüências Numéricas É uma seqüência composta por números que estão dispostos em uma determinada ordem pré-estabelecida. Alguns exemplos de seqüências numéricas: (,, 6, 8, 0,,... ) (0,,, 3,, 5,...) (,,

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

DEMONSTRAÇÃO DOS TEOREMAS DE NAPOLEÃO E PITÁGORAS COM AUXÍLIO DO GEOGEBRA

DEMONSTRAÇÃO DOS TEOREMAS DE NAPOLEÃO E PITÁGORAS COM AUXÍLIO DO GEOGEBRA DEMONSTRAÇÃO DOS TEOREMAS DE NAPOLEÃO E PITÁGORAS COM AUXÍLIO DO GEOGEBRA Ana Clecia Capistrano de Maria 1, Leandro Santos Ribeiro 2, Ana Clívia Capistrano de Maria 3. 1. Instituto Federal de Educação,

Leia mais

XIX Semana Olímpica de Matemática. Nível 2. Divisibilidade. Carlos Shine

XIX Semana Olímpica de Matemática. Nível 2. Divisibilidade. Carlos Shine XIX Semana Olímpica de Matemática Nível 2 Divisibilidade Carlos Shine O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Divisibilidade Carlos Shine 1 Alguns princípios básicos Combinação

Leia mais

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior Lógica Formal Matemática Discreta Prof. Vilson Heck Junior vilson.junior@ifsc.edu.br Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional;

Leia mais

Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de

Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de Obs: tem exercícios na página 6. Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de G. Seja HN = {hn : h H, n N}. Então HN G, H N H e H/H N = HN/N.

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

Soma de Quadrados. Faculdade de Matemática, UFU, MG

Soma de Quadrados. Faculdade de Matemática, UFU, MG Soma de Quadrados Stela Zumerle Soares 1 Antônio Carlos Nogueira (stelazs@gmailcom (anogueira@ufubr Faculdade de Matemática, UFU, MG 1 Resultados Preliminares Historicamente, um problema que tem recebido

Leia mais

Teorema. Existe alguma raiz primitiva módulo n se, e só se, n = 2, n = 4, n = p k ou n = 2p k onde p é primo ímpar.

Teorema. Existe alguma raiz primitiva módulo n se, e só se, n = 2, n = 4, n = p k ou n = 2p k onde p é primo ímpar. raízes primitivas Uma raiz primitiva módulo n é um inteiro b tal que {1, b, b 2,... ( mod n)} = U(n). Teorema. Existe alguma raiz primitiva módulo n se, e só se, n = 2, n = 4, n = p k ou n = 2p k onde

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / 98 1ª QUESTÃO MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / 98 1ª QUESTÃO MÚLTIPLA ESCOLHA 1 1ª QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES A ESQUERDA. Item 01. Dos conjuntos abaixo especificados, o conjunto unitário é o conjunto a. ( ) dos rios

Leia mais

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2013-7-31 1/15 Como o Conhecimento Matemático é Organizado Definições Definição: um enunciado que descreve o significado de um termo.

Leia mais

Tópicos de Matemática. Teoria elementar de conjuntos

Tópicos de Matemática. Teoria elementar de conjuntos Tópicos de Matemática Lic. em Ciências da Computação Teoria elementar de conjuntos Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Tóp. de Matemática - LCC - 2010/2011 Dep. Matemática

Leia mais

Unidade II LÓGICA. Profa. Adriane Paulieli Colossetti

Unidade II LÓGICA. Profa. Adriane Paulieli Colossetti Unidade II LÓGICA Profa. Adriane Paulieli Colossetti Relações de implicação e equivalência Implicação lógica Dadas as proposições compostas p e q, diz-se que ocorre uma implicação lógica entre p e q quando

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,

Leia mais