Funções Polinomiais e o Mundo Digital

Tamanho: px
Começar a partir da página:

Download "Funções Polinomiais e o Mundo Digital"

Transcrição

1 Fuçõs Poliomiais o Mudo Digital Wadrly Moura Rzd Istituto d Matmática Estatística Uivrsidad Fdral Flumis 1 Itrodução Uma fução ral poliomial é uma fução f d IR m IR qu a cada úmro ral associa o 1 úmro ral f ( ) = a + a a1 + ao, od ai IR, i = 0,1,...,. Esta fução, d aturza simpls lmtar, tm um papl dstacado a matmática as ciêcias. Podmos obsrvar divrsas situaçõs do cotidiao ou da ciêcia m qu uma fução poliomial é bastat útil para modlar ou rsolvr um problma. Em gomtria, por mplo, a ára d um círculo é proporcioal ao quadrado do comprimto do su raio a ára do quadrado é igual ao quadrado do comprimto do su lado. Na disciplia d Física, você já dv tr ouvido falar d quação horária d um corpo m quda livr, rgia potcial lástica d uma mola, rgia ciética, tc. A fução poliomial do sgudo grau é bastat útil sss cottos! Outros mplos, a ára d coomia, d biologia ou m áras mais divrsas do cohcimto, podm sr visualizados m ttos d matmática aplicada ou msmo m um bom livro d Cálculo, como é o caso da rfrêcia (Hughs-Halltt t al, 1999), citada o fial dst artigo. Assim, dois fators cospiram a favor das fuçõs poliomiais: ou os fômos citíficos s caiam maravilhosamt m modlos dscritos por fuçõs poliomiais, ou ssas fuçõs satisfazm à codição do mor sforço do itlcto humao qu, para vcr problmas d aturza mais compla, td a ralizar uma simplificação dos modlos a srm utilizados. D um fato tmos crtza: a simplicidad dssas fuçõs é ralmt catadora! Ecatadora porqu é simpls A simplicidad dsss tipos d fuçõs dv-s a sua aturza algébrica. Para calcularmos o valor d uma fução poliomial prcisamos ralizar apas opraçõs algébricas lmtars: adição, multiplicação suas opraçõs ivrsas. Por mplo, para f ( ) = + 0., f (5) pod sr calculado, utilizado uma calculadora padrão, ralizado as sguits opraçõs: = = 4. Outro fato bm itrssat rlacioa-s à visibilidad qu st tipo d fução os ofrc. Uma vz cohcido (+1) valors d uma fução poliomial f d grau, a fução s rvla por complto; qur dizr, uma vz cohcidos f ( 1 ), f ( ),..., f ( + 1), para 1,,..., + 1 IR, podmos 3 calcular f (), para qualqur valor d IR. A fução dfiida por f ( ) = (fig.1) é, com fito, a úica fução poliomial d grau três qu assum os valors f ( 1) =, f ( 0) = 0, f ( 1) = 0 f ( ) = 1. Mais aida, uma vz cohcidos os quatros valors citados sabdo qu sta é uma fução poliomial d grau 3, podmos dtrmiar algbricamt qualqur outro valor d f para um úmro ral. 3 Fuçõs difrciávis aproimaçõs poliomiais Cotiuidad difrciabilidad são virtuds d fuçõs rais qu stão itimamt rlacioadas tr si. S, grosso modo, o gráfico d uma fução ral f : IR IR cotíua é uma curva cotíua, isto é, aqula qu ao dshá-la ão tiramos o lápis do papl algoria d Eulr ( ), a curva qu dscrv o gráfico d uma fução difrciávl dv tr outra

2 propridad gométrica bm itrssat: além d sr cotíua la dv sr suav! Qur dizr: o gráfico d uma fução difrciávl é uma curva cotíua sm cúspids (bicos), com formato arrdodado ou com parts rtas uidas d forma imprcptívl às suas formas arrdodadas. Obsrv, por mplo, qu a fução f ( ) = 1 ão é difrciávl m atamt três potos do su domíio: 1 = -1, = 0 3 = 1 (fig.). Por outro lado, a fução poliomial ilustrada a figura 1, assim como qualqur outra fução poliomial, é difrciávl. A fução pocial, a fução logarítmica, as fuçõs trigoométricas so cosso, bm cohcidas do sio scudário, também são mplos d fuçõs difrciávis. Vjamos a qustão da difrciabiliadad mais d prto! Figura 1 3 gráfico d f ( ) = Figura gráfico d uma fução cotíua qu ão é difrciávl O gráfico d uma fução difrciávl pod, localmt, sr aproimado por uma rta. Obsrv qu ao ampliarmos o gráfico d uma fução difrciávl uma squêcia d vzs, st fica similar a uma rta (vja a squêcia d zoom ilustrada a fig. 3). E isso é muito bom! Tal fato quival a dizr qu podmos aproimar localmt uma fução difrciávl por uma fução poliomial d grau um. Assim, podrmos calcular valors aproimados d uma fução difrciávl m uma vizihaça d um poto do su domíio por mio d uma fução poliomial d grau um. Uma dmostração dst rsultado pod sr cotrado m divrsos livros d Cálculo (cofira, por mplo, Guidorizzi, 001, p ). Figura 3 - squêcia d zoom dado o gráfico d uma fução difrciávl ralizado com softwar GoGbra Ora, diat do qu discutimos o parágrafo atrior, surg uma qustão qu ão qur calar: srá qu podmos aproimar uma fução difrciávl por uma fução poliomial d grau dois? Brook Taylor ( ), um dos mlhors aluos d Nwto ( ) tiha qu sr bom aluo para prcbr isso, prcbu qu s uma fução ral é -vzs difrciávl, tão podmos aproimar sta fução por uma fução poliomial d grau a vizihaça d um poto do

3 su domíio. Na vrdad, como Taylor também obsrvou, quato maior o grau do poliômio, mlhor sria a aproimação ralizada. Isso tora a família d fuçõs poliomiais uma class d fuçõs aida mais spcial. A fução pocial, as fuçõs trigoométricas so cosso, assim como a fução poliomial, são d uma class mais do qu spcial: las são ifiitamt difrciávis. Assim, todas las podm sr aproimadas localmt por uma fução poliomial d grau od o rro comtido srá tato mor quato maior for o grau do poliômio (poliômio d Taylor, ss é o om) utilizado. Para a fução pocial f ( ) =, o poliômio d Taylor d grau associado é: 3 1 j P ( ) = = j j! =! 3! 0.! Figura 4 rprstação gráfica das sis primiras fuçõs poliomiais qu aproimam a fução pocial f ( ) = a vizihaça d = 0 Em codiçõs idais (fazdo crscr idfiidamt, ) tm-s a sguit idtidad: ! = j = para qualqur ral. j = 0 j! 3!! Qur dizr, para qualqur úmro ral, a squêcia d somas parciais, S 1 = 1, S = 1 +, 3 3 S 3 = ,..., S = irá covrgir para. Nss stido,! 3!! 3!! pod-s rprstar a fução pocial por uma fução poliomial d grau ifiito! Assim como a fução pocial, as fuçõs trigoométricas so cosso também podm sr rprstadas por uma séri d Taylor (ss é o om técico dado ao osso poliômio d Taylor d grau ifiito): j 4 6 ( 1) cos = j = j = 0 ( j)!! 4! 6! j ( 1) s = j + 1 = j = 0 ( j + 1)! 3! 5! 7! Portato, como vimos para as fuçõs dstacadas atriormt, as séris d Taylor covrgm potualmt para o valor da fução m todos os potos do su domíio. No tato, um litor prspicaz otará qu ao scolhrmos um poliômio d Taylor d grau para uma fução dada, podmos obtr rros d aproimação maiors m potos do domíio da fução distats da origm.

4 D fato. Cosidr, por mplo, f ( ) = P ( ) = 1+ +!. Como já obsrvamos, P é uma boa aproimação para a fução f m uma vizihaça d = 0. Not, trtato, qu f ( ) = é um úmro bm mor qu 1, qu, por sua vz, é mor qu P ( ) = 41. Em vrdad, quado td a, P ( ) td a +, quato, por outro lado, sabmos qu os valors da fução pocial f td a zro (vja figura 4). A difrça tr os valors d P () f() ficam cada vz maiors, à mdida qu td a. 4 O mudo digital as fuçõs poliomiais Na socidad cotmporâa o procsso d digitalização pad-s a vlocidads crscts, a poto d muitos autors afirmarm qu vivmos m um mudo digital, o qual s istaura a vida digital. No mudo digital tudo é fiito tudo é discrto. O procssador d um computador só raliza as quatro opraçõs básicas: adição, subtração, multiplicação divisão. Assim, toda qualqur fução lmtar dvrá sr implmtada m um computador a partir dssas opraçõs. Nss stido, a idéia d aproimar fuçõs lmtars por fuçõs poliomiais é um camiho bm razoávl. Ora, para valors d próimos da origm sabmos qu os poliômios d Taylor, qu podm sr calculados Figura 5 poliômios a calculadora usado as quatro opraçõs básicas, os forcm uma boa aproimação. O poliômio d Taylor d grau, ( ) 1 P = + +, os dá, por mplo, uma aproimação d, para todo o itrvalo [-0.1, 0.1], com plo mos duas casas dcimais corrtas. Já o poliômio d Taylor d grau 4, ( ) 1 P = , os forc uma aproimação d, para todo o itrvalo [-0.1, ], com plo mos sis casas dcimais corrtas. Como o computador calcula tão os valors (aproimados) d para valors distats d? Assuma, por mplo, =. Utilizado as propridads d potêcias m IR, obsrv qu: 5 5/ 5/ 4 5/8 5/16 5/3 = ( ) = (( ) ) = ((( ) ) ) = (((( ) ) ) ) = ((((( ) ) ) ) ) = (((((( ) ) ) ) ) ) = 5/ 64 = ((((((( ) ) ) ) ) ) ) A igualdad 5/64 = ((((((( ) ) ) ) ) ) ) obtida, prmit-os calcular tomado como 5/64 rfrêcia o valor d. Por outro lado, sab-s qu 5/64 = prtc ao itrvalo 5/64 [-0.1, 0.1], qu, st itrvalo, podmos aproimar por P (5/ 64) ou por P 4 (5/ 64). Assim, ((((((( (5/ 64)) ) ) ) ) ) ) P = ou ((((((( P (5/ 64)) ) ) ) ) ) ) = Not qu sts valors cotram-s bm próimos d, qu é igual a O valor obtido por mio d P 4, coform ra d s sprar, é bm mlhor do qu o obtido com P. Usado P 4 o squma d sucssivos "lvar ao quadrado" ( isso o computador comprd) obtém-s uma aproimação d com uma casa dcimal corrta (após a vírgula). 4

5 Uma forma d mlhorar a prcisão da aproimação sria cosidrar um itrvalo d l l comprimto mor. Mullr (1997) sugr o itrvalo, m vz d [-0.1, 0.1]. Para l calcular para valors distats d, faz-s iicialmt uma rdução d scala: r =, 56 l l d modo qu r (ot qu l 0, ). O valor d é calculado tão por r + l 56r l r r r 56 ( ) ( ) = = = = 1 + r P ( r).! 3! (cf. Mullr, 1997, p.181) Obsrv agora qu, usado a fórmula d Mullr com P, obtém-s , uma aproimação com duas casas dcimais após a vírgula corrtas, com P 4, obtém-s , uma aproimação com ov casas dcimais após a vírgula corrtas, quado comparados ao valor d qu é igual a Figura 6 o itrvalo [-0.1,0.1] o itrvalo sugrido por Mullr. Esta técica pod sr utilizada com outras aproimaçõs poliomiais ou msmo para outras fuçõs lmtars. A toria do cálculo d aproimaçõs das fuçõs lmtars, dpddo do tipo d prcisão (fia ou múltipla) usa técicas mais avaçadas (míimos quadrados) outros tipos d poliômios (Chbyshv, por mplo). Esta tarfa árdua d rprstar oprar os úmros é ralizada tão por mio d algoritmos cada vz mais sofisticados dsvolvidos plo trlaçamto d cohcimtos tato da Aritmética Computacioal quato da Aális Numérica. As rfrêcias (Mullr, 1997) (Kor, 00) rtratam com dtalhs sts trlaçamtos. D fudamtal importâcia para as rprstaçõs das fuçõs difrciávis, as fuçõs poliomiais podm sr algoritmizávis por mio apas das opraçõs aritméticas lmtars. E sss dois igrdits fazm dos rprstats dsta família d fuçõs lmtos ssciais os cálculos ralizados itramt os procdimtos computacioais. As fuçõs poliomiais, d forma simpls catadora, dão, d fato, susttação à vida digital. 5 Rfrêcias Guidorizzi, H.L. Um Curso d Cálculo. 5ª d. Vol.1. Rio d Jairo: LTC Livros Técicos Citíficos S.A., 001. Hughs-Halltt, D., Glaso, A. M., Lock, P. F., Flath, D. E. t al. Cálculo Aplicaçõs. São Paulo: Editora Edgard Blüchr, Kor. I. Computr arithmtic algorithms. d d. Natick: Massachustts, A K Ptrs Ltd, 00. Mullr, J.M. Elmtary fuctios : algorithms ad implmtatio. Bosto: Birkhausr, 1997.

sen( x h) sen( x) sen xcos h sen hcos x sen x

sen( x h) sen( x) sen xcos h sen hcos x sen x MAT00 Cálculo Difrcial Itgral I RESUMO DA AULA TEÓRICA Livro do Stwart: Sçõs 3., 3.4 3.8. DEMONSTRAÇÕES Nssa aula srão aprstadas dmostraçõs, ou sboços d dmostraçõs, d algus rsultados importats do cálculo

Leia mais

Exercícios de Cálculo Numérico - Erros

Exercícios de Cálculo Numérico - Erros Ercícios d Cálculo Numérico - Erros. Cosidr um computador d bits com pot máimo ( a rprstação m aritmética lutuat a bas. (a Dtrmi o mor úmro positivo rprstávl sta máquia a bas. (b Dtrmi o maior úmro positivo

Leia mais

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul?

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul? (9) - www.litcampias.com.br O ELITE RESOLVE IME 8 TESTES MATEMÁTICA MATEMÁTICA QUESTÃO D quatas mairas bolas idêticas podm sr distribuídas m três cstos d cors vrd, amarlo azul? a) b) d) ( )! ) Rsolução

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Eam Fial d ª Época m d Jairo 9 Tópicos d Corrcção Duração: horas miutos É proibido usar máquias d calcular ou tlmóvis

Leia mais

Variáveis aleatórias Conceito de variável aleatória

Variáveis aleatórias Conceito de variável aleatória Variávis alatórias Muitos primtos alatórios produzm rsultados ão-uméricos. Ats d aalisá-los, é covit trasformar sus rsultados m úmros, o qu é fito através da variávl alatória, qu é uma rgra d associação

Leia mais

Regra dos Trapézios Composta i :

Regra dos Trapézios Composta i : FP_Ex1: Calcul um valor aproximado do itgral I = / 0 x si( x) dx com um rro d trucatura, ão suprior, m valor absoluto a 0.01 usado: a) a rgra dos Trapézios a rgra d Simpso (composta) Rgra dos Trapézios

Leia mais

Proposta de Exame Final de Matemática A

Proposta de Exame Final de Matemática A Proposta d Eam Fial d Matmática. N DE ESCLRIDDE Duração da prova: 50 miutos. Tolrâcia: 30 miutos Data: Grupo I Na rsposta aos its dst grupo, slcio a opção corrta. Escrva, a olha d rspostas, o úmro do itm

Leia mais

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. Distribuições Notáveis

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. Distribuições Notáveis MOQ-: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS Distribuiçõs Discrtas: Distribuição Uiform Discrta: Distribuiçõs Notávis Uma va discrta dfiida os potos,,..., tm distribuição uiform discrta s assum cada um

Leia mais

EXAME NACIONAL DE SELEÇÃO 2016

EXAME NACIONAL DE SELEÇÃO 2016 EXAME NACIONAL DE SELEÇÃO 016 PROA DE MATEMÁTICA o Dia: 4/09/015 QUINTA-EIRA HORÁRIO: 8h00m às 10h15m (horário d Brasília) EXAME NACIONAL DE SELEÇÃO 016 PROA DE MATEMÁTICA º Dia: 4/09 - QUINTA-EIRA (Mahã)

Leia mais

1. O domínio de uma sucessão é o conjunto dos números naturais. A única representação gráfica que obedece a esta condição é a da opção D.

1. O domínio de uma sucessão é o conjunto dos números naturais. A única representação gráfica que obedece a esta condição é a da opção D. Prarar o Exam 05/06 Matmática A Págia 69. O domíio d uma sucssão é o cojuto dos úmros aturais. A úica rrstação gráfica qu obdc a sta codição é a da oção D. Nota qu DA, D B 0 DC. Rsosta: D. Numa rogrssão

Leia mais

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T)

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T) Axo III mpratura quivalt d ruído, igura d ruído ator d mérito para staçõs d rcpção (/) III.. mpratura Equivalt d Ruído A tmpratura quivalt d ruído d um compot pod sr dfiida como sdo o valor d tmpratura

Leia mais

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma:

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma: NÚMEROS COMPLEXOS DEFINIÇÃO No cojuto dos úmros ras R, tmos qu a a a é smpr um úmro ão gatvo para todo a Ou sja, ão é possívl xtrar a ra quadrada d um úmro gatvo m R Portato, podmos dfr um cojuto d úmros

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

Resposta em frequência

Resposta em frequência Rsposta frquêcia Nocatura a rsposta frquêcia é úti a caractrização d u sista LSI. Dfi d quato a apitud copa d ua pocia copa é atrada ao sr fitrada po sista. Epociais copas são autofuçõs d sistas LSI. Cosidrado

Leia mais

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e Aula 9 Fun»c~osponnciaislogar ³tmicas. Uma rvis~ao o n umro Nsta aula farmos uma pquna rvis~ao das fun»c~os f() =a g() =log a, sndo a uma constant ral, a>0 a 6=. Farmos ainda uma aprsnta»c~ao do n umro,

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

Lista de exercícios sugerida Capítulo 28: 28.4,.12, 13, 14, 15, 16, 19, 20, 21, 33, 35, 38, 42, 43, 52

Lista de exercícios sugerida Capítulo 28: 28.4,.12, 13, 14, 15, 16, 19, 20, 21, 33, 35, 38, 42, 43, 52 CAPÍUO 8 9: Física Quâtica Atôica RSOUÇÃO D XRCÍCIOS RVISÃO SIMUADO PARA A PROVA ista d rcícios sugrida Capítulo 8: 8.,., 3,, 5, 6, 9,,, 33, 35, 38,, 3, 5 ista d rcícios sugrida Capítulo 9: 9.,, 7, 9,,

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Notas de Aulas de Cálculo Diferencial e Integral II Engenharia de Materiais Prof.: Adriana Borssoi 5

Notas de Aulas de Cálculo Diferencial e Integral II Engenharia de Materiais Prof.: Adriana Borssoi 5 Prof: Adriaa Borssoi 5 FUNÇÕES DE VÁRIAS VARIÁVEIS Ercícios Rcomdados: ANTON, H, BIVENS, I DAVIS, S Cálculo vol Tradução: Claus I Dorig 8 d Porto Algr: Bookma, 007 Págias, d 93 à 936 Págias, d 944 945

Leia mais

Capitulo 4 Resolução de Exercícios

Capitulo 4 Resolução de Exercícios FORMULÁRIO i Taxa Proporcioal ou quivalt (juros simpls) i k Taxas Equivalts (juros compostos) 3 i i i i i i i 4 6 360 a s q t b m d Taxa Eftiva Nomial k i i p ao príodo d capitalização ; i k Taxa Ral Taxa

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

TEOREMA DE TAYLOR 2! 1 1. (n) n (n 1) 0 + f x0 x x0 + f (c) x

TEOREMA DE TAYLOR 2! 1 1. (n) n (n 1) 0 + f x0 x x0 + f (c) x (Tóp. Tto Complmta) TEOREMA DE TAYLOR TEOREMA DE TAYLOR S uma ução suas pimias divadas istm um itvalo abto I cotdo, sgu-s do toma do valo médio galizado (dado o tópico dsta aula), substituido a ou b po,

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Física Computacional 5

Física Computacional 5 Física Computacioal 5. Drivaas com irças iitas a. O cocito rivaa mos simpls qu o itgral b. Cálculo umérico a rivaa com irças iitas c. Um outro cocito Equação Dircial Oriária. Solução aalítica as EDO liars.

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

Gabarito Zero de Função

Gabarito Zero de Função Gabaito Zo d Fução Ecício : Um mlo é -, R A aiz ão od s dtmiada lo Método da Bissção oqu R. Tmos também qu muda d sial quado s aoima d. Ecício : Sja a aiz d. O método d Nwto-Raso od ão covgi s gad. [ U

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Rsoluçõs d Ercícios MATEMÁTICA II Capítulo 0 Fução Poliomial do o Grau Rsolução d Problmas; Composição d Fuçõs; Fução Ivrsa Iquaçõs BLOCO 0 BLOCO 0 Cohcimtos Algébricos 0 A Nos miutos iiciais, trmos a

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos. Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,

Leia mais

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x Aula Capítulo 6 Aplicaçõs d Intração (pá. 8) UFPA, d junho d 5 Ára ntr duas curvas Dinição d Ára ntr duas curvas - A ára A ntr rião limitada plas curvas a y plas rtas a,, é ond são contínuas A a d y para

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Fvriro/ Nom Nº T: Classificação O Prof. (Lís Abr) ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio a

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva. Teste de MATEMÁTICA A 12º Ano. Duração: 90 minutos Março/ 2014. Nome Nº T:

Escola Básica e Secundária Dr. Ângelo Augusto da Silva. Teste de MATEMÁTICA A 12º Ano. Duração: 90 minutos Março/ 2014. Nome Nº T: Escola Básica Scdária Dr Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Março/ Nom Nº T: Classificação O Prof (Lís Abr) ª PARTE Para cada ma das sgits qstõs d scolha múltipla slcio a rsposta

Leia mais

Curso: Engenharia Industrial Elétrica. Análise de variáveis Complexas MAT 216 Turma: 01

Curso: Engenharia Industrial Elétrica. Análise de variáveis Complexas MAT 216 Turma: 01 urso: Egharia Idustrial Elétrica Aális d variávis omplas MAT 6 Profssora: Edmary S B Araújo Turma: Lista d Provas Rspodu Jsus: Em vrdad, m vrdad t digo: qum ão ascr da água do Espírito ão pod trar o rio

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Teste de MATEMÁTICA A 12º Ano

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Teste de MATEMÁTICA A 12º Ano Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Maio/ Nom Nº T: ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio a rsposta corrcta d tr as altrativas

Leia mais

VII- PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADE.

VII- PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADE. VII- PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADE. 7.. DISTRIBUIÇÕES DISCRETAS;. UNIFORME DISCRETA: Uma v.a. X tm distribuição uiform discrta quado sua fução d probabilidad for dada por:,,..., N p() N I N

Leia mais

Recursos Naturais Renováveis

Recursos Naturais Renováveis Uivrsidad Fdral do ABC UFABC Prof. João M. L. Morira Rcursos Naturais Rovávis Os rcursos aturais rovávis são aquls qu são rostos ao logo do tmo la aturza ou la ação do homm. Esss rcursos odm sr divididos

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OBJETIVO JÚNIOR NOME: N. o : DATA: / /01 FOLHETO DE MATEMÁTICA (V.C. E R.V.) 6. o ANO Est folhto é um rotiro d studo para você rcuprar o contúdo trabalhado m 01. Como l vai srvir d bas para você

Leia mais

Aula 16 Transformada de Fourier Rápida (FFT) - DIT

Aula 16 Transformada de Fourier Rápida (FFT) - DIT Comuicaçõs Digitais Aula 6 Profssor Marcio Eiscraft abril Aula 6 Trasformada d Fourir Rápida (FFT) - DIT Bibliografia OPPEHEIM A. V.; SCHAFER. Discrt-tim sigal procssig 3rd. d. Prtic-Hall. ISB 97839884.

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

VII- PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADE.

VII- PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADE. VII- PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADE. 7.. DISTRIBUIÇÕES DISCRETAS;. UNIFORME DISCRETA: Uma v.a. X tm distribuição uiform discrta quado sua fução d probabilidad for dada por:,,..., N p() N I N

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS.

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS. PRINCIPAIS DISTRIBUIÇÕES DISCRETAS 1 Uifor Discrta: ocorr quado cada u dos valors possävis d ua va discrta t sa probabilidad 1 P ),,, ), i = 1,, i 1, i i i E ) 1 i Var ) 1 E ) fda: F ) P ) P i ), i od

Leia mais

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano DGEstE Dirção-GraL dos Establcimntos Escolars DSRAI Dirção d Srviços da Rgião Algarv AGRUPAMENTO DE ESCOLAS JÚLIO DANTAS LAGOS (145415) Escola Básica Tcnopolis Matmática - PLANIFICAÇÃO ANUAL 6ºano 2013-2014

Leia mais

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico

Leia mais

LISTA DE EXERCÍCIOS 4 GABARITO

LISTA DE EXERCÍCIOS 4 GABARITO LISTA DE EXERCÍCIOS 4 GABARITO 1) Uma sfra d massa 4000 g é abandonada d uma altura d 50 cm num local g = 10 m/s². Calcular a vlocidad do corpo ao atingir o solo. Dsprz os fitos do ar. mas, como o corpo

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA À ADM 5. Lista 9: Intgrais:

Leia mais

Professor Mauricio Lutz LIMITES

Professor Mauricio Lutz LIMITES LIMITES ) Noção ituitiva de ites Seja a fução f ( ) +. Vamos dar valores de que se aproimem de, pela sua direita (valores maiores que ) e pela esquerda (valores meores que ) e calcular o valor correspodete

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

Guião do Professor :: TEMA 2 1º Ciclo

Guião do Professor :: TEMA 2 1º Ciclo Guião do Profssor :: 1º Ciclo quipas! A roda dos alimntos ~ Guiao do Profssor Vamos fazr quipas! :: A roda dos alimntos quipas! Como xplorar o tma Slid 1 Aprsntam-s, no primiro slid d forma disprsa sm

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

Resolução comentada de Estatística - ICMS/RJ Prova Amarela

Resolução comentada de Estatística - ICMS/RJ Prova Amarela Rsolução comtada d Estatística - ICMS/RJ - 008 - Prova Amarla 9. Os jogadors A B s cotram para jogar uma partida d têis m o máimo cico sts, a qual srá vcdor aqul qu primiro gahar três sts. Por mplo, partidas

Leia mais

FÍSICA - ENADE 2005 PADRÃO DE RESPOSTAS - QUESTÕES DISCURSIVAS

FÍSICA - ENADE 2005 PADRÃO DE RESPOSTAS - QUESTÕES DISCURSIVAS FÍSICA - ENADE 5 PADRÃO DE RESPOSTAS - QUESTÕES DISCURSIVAS Qustão 4 a) Plo torma da quipartição da rgia: 3 E c = m v = k T B (valor: 3, potos) E c αk B T, sm mcioar ou rrado o coficit. (valor:, poto)

Leia mais

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos.

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos. DETERMNAÇÃO DA EQUAÇÃO GERAL DO PERÍODO DO PÊNDULO SMPLES Doutor m Ciências plo FUSP Profssor do CEFET-SP Est trabalho aprsnta uma rvisão do problma do pêndulo simpls com a dmonstração da quação do príodo

Leia mais

dy dx dy dx Obs.: a forma canônica pode ser obtida da forma geral dividindo-se a equação geral por a 0 , desde que a ( x) 0 no intervalo x ( a,b)

dy dx dy dx Obs.: a forma canônica pode ser obtida da forma geral dividindo-se a equação geral por a 0 , desde que a ( x) 0 no intervalo x ( a,b) 3 EQUAÇÕES DIFEENIAIS INEAES 3 Toria Gral Estas quaçõs são uito iortats, ois são alicadas à Egharia ara rsolvr roblas d vibraçõs câicas, circuitos létricos, tc Escial atção srá dada às quaçõs d sguda ord

Leia mais

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como:

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como: ASSOCIAÇÃO EDUCACIONA DOM BOSCO FACUDADE DE ENGENHAIA DE ESENDE ENGENHAIA EÉICA EEÔNICA Disciplina: aboratório d Circuitos Elétricos Circuitos m Corrnt Altrnada EXPEIMENO 9 IMPEDÂNCIA DE CICUIOS SÉIE E

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

CAPÍTULO 4 Exercícios Propostos

CAPÍTULO 4 Exercícios Propostos 53. Calcular o valor dos juros pagos por um fiaciamto d capital d giro d $1.500 por cico dias cotratado à taxa d 3% a.m., capitalizada diariamt. Dados: P = $1.500, j = 3% a.m.. k =, m = 5 dias, J =? k

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

O emprego da proporção na resolução de problemas

O emprego da proporção na resolução de problemas Proporção O mprgo da proporção na rsolução d problmas Vamos aprndr agora a rsolvr problmas utilizando a proporção. Considr o sguint problma Uma vara d 0 cm fincada vrticalmnt no solo produz numa dtrminada

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

CONTINUIDADE A idéia de uma Função Contínua

CONTINUIDADE A idéia de uma Função Contínua CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

Gestão Ambiental - Gestores Ambientais

Gestão Ambiental - Gestores Ambientais Am bint 9º Fór um amnto n M i o d Sa - Intgração m Políticas Públicas GESTÃO SE FAZ COM CONHECIMENTO E PARTICIPAÇÃO Grir qur dizr administrar, dirigir, mantr dtrminada situação ou procsso sob control m

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

Transformador Monofásico

Transformador Monofásico Trasformador Moofásico. Cocito O trasformador (TR) é um quipamto qu rcb rgia létrica com uma tsão uma corrt forc ssa rgia, a mos das prdas, m outra tsão outra corrt. A frqüêcia létrica s matém ialtrada.

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hwltt-Packard CONJUNTOS NUMÉRICOS Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ramos Ano: 206 Sumário CONJUNTOS NUMÉRICOS 2 Conjunto dos númros Naturais 2 Conjunto dos númros Intiros 2 Conjunto

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

Memorize as integrais imediatas e veja como usar a técnica de substituição.

Memorize as integrais imediatas e veja como usar a técnica de substituição. Blém, d maio d 0 aro aluno, om início das intgrais spro qu vocês não troqum as rgras com as da drivada principalmnt d sno d sno. Isso tnho dito assim qu comçamos a studar drivada, lmbra? Mmoriz as intgrais

Leia mais

A B LM. A onde Y Y ; P. P P, no PONTO. T o que provocará um C 0. T 0 desloca curva IS para a direita IS IS

A B LM. A onde Y Y ; P. P P, no PONTO. T o que provocará um C 0. T 0 desloca curva IS para a direita IS IS Gabarto Blachard Capítulo 7 2) Choqu d gasto médo prazo MODELO AD AS (OA-DA) Rdução do Imposto d Rda (T): C c c T 0 0 c 0 - cosumo autôomo c - propsão margal a cosumr T 0 dsloca curva IS para a drta Dado

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

Amplificador diferencial com transistor bipolar

Amplificador diferencial com transistor bipolar Amplificador difrncial com transistor bipolar - ntrodução O amplificador difrncial é um bloco funcional largamnt mprgado m circuitos analógicos intgrados, bm como nos circuitos digitais da família ECL.

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA Marília Brasil Xavir REITORA Pro. Rubs Vilha Fosca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA MATERIAL DIDÁTICO EDITORAÇÃO ELETRONICA Odivaldo Tiira Lops ARTE FINAL DA CAPA Odivaldo Tiira Lops REALIZAÇÃO

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

AGRUPAMENTO DE ESCOLAS D. JOÃO V ESCOLA SECUNDÁRIA c/ 2º e 3º CICLOS D. JOÃO V

AGRUPAMENTO DE ESCOLAS D. JOÃO V ESCOLA SECUNDÁRIA c/ 2º e 3º CICLOS D. JOÃO V AGRUPAMENTO DE ESCOLAS D. JOÃO V 172431 ESCOLA SECUNDÁRIA c/ 2º 3º CICLOS D. JOÃO V Ensino Rgular Ára Disciplinar d Matmática Planificaçõs 2014/15 Ciclo 5.º ano Manual scolar adotado: Matmática 5.º ano,

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

Encontro na casa de Dona Altina

Encontro na casa de Dona Altina Ano 1 Lagdo, Domingo, 29 d junho d 2014 N o 2 Encontro na casa d Dona Altina Na última visita dos studants da UFMG não foi possívl fazr a runião sobr a água. Houv um ncontro com a Associação Quilombola,

Leia mais