Introdução aos Problemas de Roteirização e Programação de Veículos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Introdução aos Problemas de Roteirização e Programação de Veículos"

Transcrição

1 Introdução aos Problemas de Roterzação e Programação de Veículos PNV-2450 André Bergsten Mendes

2 Problema de Programação de Veículos

3 Problema de Programação de Veículos Premssas Os roteros ncam e termnam na base Nem todos os veículos necesstam ser utlzados A frota é fxa e homogênea A demanda é conhecda e deverá ser atendda ntegralmente O problema é de coleta (ou, de entrega) Há janelas de tempo no atendmento dos clentes

4 Problema de Programação de Veículos Parâmetros - Conjuntos R N A ( N; A) { 01,, n } N N \{0} V, j :, j N Rede assocada ao problema Conjunto de nós (depósto + clentes) Conjunto de nós (clentes) Conjunto de arcos { 01,, m} Conjunto de Veículos (índce k)

5 Problema de Programação de Veículos Parâmetros c t j j Q d t ~ T a b Custo de percorrer o arco (,j) Capacdade de carga do veículo Demanda do clente Tempo de atendmento no clente Tempo de vagem entre e j Jornada de trabalho Instante de abertuda da janela de tempo Instante de encerramento da janela de tempo

6 Problema de Programação de Veículos Varáves de Decsão x k j 1, se o arco, j A for veículo k V 0, em caso contráro percorrdo pelo s Instante de níco do atendmento do clente

7 Problema de Programação de Veículos Função Objetvo mnc Restrções N j jn kv k x 1 kv N jn c j x j k xj 1 j N 0 j k V k

8 Restrções j h N h k jh j N k x j x k N j N j k j cap x d Problema de Programação de Veículos N k x 1 0 V k V k N j, k V

9 Restrções Problema de Programação de Veículos V A k j x k j, ), ( 01, b s a N T x t t s s k j j j ) (1 ~ V k N j N,, 0 s N

10 Problema de Programação de Veículos Restrção de duração total do rotero (jornada de trabalho) s0 T k V

11 Problema de Programação de Veículos Janelas de tempo & Progressão temporal j a b k a b

12 HEURÍSTICA DE INSERÇÃO DE SOLOMON (VRPTW)

13 Heurístca de Inserção de Solomon Estratéga: construr uma solução por meo da nserção de clentes à rota, tal que os clentes já que já fazem parte da solução não tenham seus nstantes de níco modfcados a ponto de volar suas janelas de tempo.

14 Heurístca de Inserção de Solomon Parâmetros s e l t d c j j tempo de atendmento no clente nstante ncal da janela de tempo do clente nstante fnal da janela de tempo do clente j tempo de vagem entre os clentes e j dstânca entre os clentes e j custo de vagem entre os clentes e j

15 Heurístca de Inserção de Solomon Varáves b w nstante efetvo de níco de atendmento do clente tempo de espera no clente

16 Heurístca de Inserção de Solomon Defnção de c j c d b j Instante de níco do atendmento no clente j j Crtéro de vabldade b, 0 1 j 2 j b max b s t ; e j Consdere uma rota parcal vável 0 = m =0 j em que Avalação da nserção do clente u entre os clentes p-1 e p, 1,, 0 m

17 Heurístca de Inserção de Solomon Crtéro de vabldade A nserção do clente u pode causar nvabldade nos clentes p em dante O nstante efetvo de níco de atendmento do clente p novo em vrtude da nserção do clente u é: O adamento do níco do atendmento do clente p é: novo PF b b 0 p p Para os clentes fnas da rota PF max 0, PF w p b p p r m 1 r1 r r

18 Heurístca de Inserção de Solomon Rota Parcal 1 u 2 3 A nserção de u não nterfere 1 u 2 3 A nserção de u atrasa o níco de 2 1 u 2 3

19 Heurístca de Inserção de Solomon Crtéro de vabldade As condções necessáras e sufcentes para vabldade da nserção do clente u são: b l b PF l p r m u u r Crtéro de ncalzação de uma rota r r Escolher o clente mas dstante anda não alocado ou o clente não alocado cujo fnal da janela de tempo seja o menor de todos;

20 Heurístca de Inserção de Solomon Crtéro de nserção Consdere rota parcal vável Calcular para clente u anda não alocado, a melhor posção vável de nserção, defnda por: C, 1,, 0 u), u, j( u) mn, u, p 1,, m 1 ( c 1 p1 p p c 1, u, j 1c11, u, j 2c12, u, j onde : c c , u, j 1 d u d uj, u, j bj / u bj d j 1 0 m 0, 2 0

21 Heurístca de Inserção de Solomon Crtéro de nserção: qual clente u escolher? Aplcar o crtéro C ( u*), u*, j( u*) c 2 2 maxc ( u), u, j( u), u, j d (, u, j) 0u c 1 u 2 onde :

22 Exercíco Para o problema de roterzação com janela de tempo abaxo ndcado, gere uma solução por meo da Heurístca de Inserção de Solomon. Adote os valores que julgar convenente para α1, α2, μ e λ.

23 Exercíco 7 clentes (os clentes 0 e 8 referem-se à base) A operação de dstrbução nca-se às 7hs, com os veículos já carregados, e é encerrada às 18hs Há, no máxmo, 3 veículos homogêneos, com capacdade gual a 50 undades de carga, cada As colunas a e b referem-se aos lmtes nferor e superor da janela de tempo para chegada aos clentes A coluna Servço ndca o tempo de atendmento do veículo junto a cada clente

24 Exercíco Clente Demanda Servço a (h) b (h) (undades) (h) , , ,

25 Matrz de Dstânca (km) , , ,6 11,1 21, ,2 0 32,5 14,5 32,2 32,2 24, , ,5 0 34,4 20,2 23,8 16,4 36, ,3 14,5 34, ,7 33,5 35,3 22, ,2 20, ,2 31, ,6 32,2 23,8 42,7 41, ,6 20,6 6 11,1 24,8 16,4 33,5 31, ,6 11,1 7 21, ,2 35, ,6 20,6 0 21, , , ,6 11,1 21,2 0

26 Tempo de Deslocamento (h) ,7 0,9 1,1 1,2 1 0, ,7 0 1,6 0,7 1,6 1,6 1,2 1 0,7 2 0,9 1,6 0 1,7 1 1,1 0,8 1,8 0,9 3 1,1 0,7 1,7 0 1,2 2,1 1,6 1,7 1,1 4 1,2 1,6 1 1, ,5 2,3 1, ,6 1,1 2, , ,5 1,2 0,8 1,6 1,5 0, , ,8 1,7 2, ,7 0,9 1,1 1,2 1 0,5 1 0

27 Solução Ótma Veículo Rota Veículo Instantes , ,5 Dstânca total = 191,1

28 MÉTODOS DE BUSCA

29 Estratégas de Solução Busca Local Vsa a melhora de uma solução, sem a garanta de otmaldade; requer a préva defnção da solução ncal que será explorada, da forma de geração da vznhança, do crtéro de acetação de uma solução gerada e de um crtéro de parada; A geração da vznhança ocorre em função do mecansmo empregado para crar novas soluções a partr da solução corrente como, por exemplo, a troca da posção de clentes e a substtução de arcos, entre outras;

30 Estratégas de Solução Busca Local Se a solução na vznhança da solução corrente é melhor, então esta se torna a solução corrente, substtundo a anteror. Os crtéros de acetação comumente empregados são: escolhe-o-prmero ( frst-accept ) em que a prmera solução gerada melhor que a corrente é escolhda ou, escolhe-a-melhor ( best-accept ) de todas as soluções na vznhança da solução corrente; Caso não haja uma solução melhor, ter-se-á chegado a uma solução ótma local e o algortmo encerra;

31 Operadores para geração de vznhança Remoção Inserção (mesma rota) Jarbou et al. (2013)

32 Operadores para geração de vznhança Remoção Inserção (entre rotas) Jarbou et al. (2013)

33 Operadores para geração de vznhança Swap (mesma rota) Jarbou et al. (2013)

34 Operadores para geração de vznhança Swap (entre rotas) Jarbou et al. (2013)

35 Operadores para geração de vznhança Or-opt (mesma rota) Jarbou et al. (2013)

36 Operadores para geração de vznhança Or-opt (entre rotas) Jarbou et al. (2013)

37 Operadores para geração de vznhança Or-opt nvertdo (mesma rota) Jarbou et al. (2013)

38 Operadores para geração de vznhança Or-opt nvertdo (entre rotas) Jarbou et al. (2013)

39 Operadores para geração de vznhança k=1 k genérco

40 Operadores para geração de vznhança Vznhança: "b-cyclc, k-transfer scheme - k clentes consecutvos de cada uma das b rotas são transferdas para a próxma rota

41 Algumas referêncas Heurístca de Busca Heurístcas desenvolvdas para problemas de roterzação e programação de veículos: 2-Opt (Ln, 1965), 2-Opt* (Potvn; Rousseau, 1995), relocate, exchange, cross (Savelsbergh, 1992), CROSS (Tallard et al., 1997) GENI (Gendreau et al., 1992) e cyclc transfer (Thompson; Orln, 1993)

42 Método de Busca 2-Opt Este método consste em dentfcar 2 arcos nãoadjacentes que serão elmnados da rede, para que novos arcos sejam relgados, com o objetvo de reduzr a dstânca total; É necessáro partr de uma solução ncal vável (fornecdo por alguma heurístca); O método encerra quando não houver mas arcos que permtam a redução de dstânca;

43 Método de Busca 2-Opt Exemplo - PCV 30,0 Local Clentes 25,0 20, ,0 10,0 5, ,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

44 Método de Busca 2-Opt Exemplo - PCV ,0 12,4 6,7 12,9 7,6 8,6 6,2 1 12,4 0,0 10,2 4,6 7,9 17,1 15,5 2 6,7 10,2 0,0 13,1 10,4 15,2 5,8 3 12,9 4,6 13,1 0,0 6,0 15,0 17,6 4 7,6 7,9 10,4 6,0 0,0 9,2 13,2 5 8,6 17,1 15,2 15,0 9,2 0,0 14,1 6 6,2 15,5 5,8 17,6 13,2 14,1 0,0

45 Método de Melhora 2-Opt Solução Incal Local Clentes Dstânca Total = 70,0 km 30,0 25,0 20, ,0 10, ,0 0,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

46 Método de Busca 2-Opt Identfcar arcos 30,0 Local Clentes 25,0 20, ,0 10,0 5, ,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

47 Método de Busca 2-Opt Elmnar arcos 30,0 Local Clentes 25,0 20, ,0 10,0 5, ,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

48 Método de Busca 2-Opt Relgar & Ajustar o Sentdo dos Arcos 30,0 Local Clentes 25,0 20, ,0 10,0 5, ,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

49 Método de Busca 2-Opt Relgar & Ajustar o Sentdo dos Arcos 30,0 Local Clentes 25,0 20, ,0 10,0 5, ,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

50 Método de Busca 2-Opt Solução 1 Local Clentes Dstânca Total = 64,4 km 30,0 25,0 20, ,0 10, ,0 0,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

51 Método de Busca 2-Opt Identfcar Arcos 30,0 Local Clentes 25,0 20, ,0 10,0 5, ,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

52 Método de Busca 2-Opt Elmnar Arcos 30,0 Local Clentes 25,0 20, ,0 10,0 5, ,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

53 Método de Busca 2-Opt Relgar & Ajustar o Sentdo dos Arcos 30,0 Local Clentes 25,0 20, ,0 10, ,0 0,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

54 Método de Busca 2-Opt Relgar & Ajustar o Sentdo dos Arcos 30,0 Local Clentes 25,0 20, ,0 10, ,0 0,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

55 Método de Busca 2-Opt Solução 2 Local Clentes Dstânca Total = 56,9 km 30,0 25,0 20, ,0 10, ,0 0,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

56 Método de Busca 2-Opt Identfcar Arcos 30,0 Local Clentes 25,0 20, ,0 10, ,0 0,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

57 Método de Busca 2-Opt Elmnar Arcos 30,0 Local Clentes 25,0 20, ,0 10, ,0 0,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

58 Método de Busca 2-Opt Relgar & Ajustar o Sentdo dos Arcos 30,0 Local Clentes 25,0 20, ,0 10, ,0 0,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

59 Método de Busca 2-Opt Relgar & Ajustar o Sentdo dos Arcos 30,0 Local Clentes 25,0 20, ,0 10, ,0 0,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

60 Método de Busca 2-Opt Solução 3 Local Clentes Dstânca Total = 50,6 km 30,0 25,0 20, ,0 10, ,0 0,0 0,0 5,0 10,0 15,0 20,0 25,0 30,0

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Programação Linear 1

Programação Linear 1 Programação Lnear 1 Programação Lnear Mutos dos problemas algortmcos são problemas de otmzação: encontrar o menor camnho, o maor fluxo a árvore geradora de menor custo Programação lnear rovê um framework

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

Chapter 9 Location INTRODUÇÃO. Localização de Instalações. Problemas de comunicação

Chapter 9 Location INTRODUÇÃO. Localização de Instalações.  Problemas de comunicação Chapter 9 Locaton Localzação de Instalações Problemas de comuncação http://www.youtube.com/watch?v=h_qnu4rwlvu INTRODUÇÃO INTRODUÇÃO Analsar padrões de localzação pode ser nteressante Porque a Whte Castle,

Leia mais

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1 Programação Dnâmca Fernando Noguera Programação Dnâmca A Programação Dnâmca procura resolver o problema de otmzação através da análse de uma seqüênca de problemas mas smples do que o problema orgnal. A

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

PROCEDIMENTO PARA ESCOLHA DA LOCALIZAÇÃO DE UM CENTRO REGIONAL DE DISTRIBUIÇÃO E RECOLHA DE EQUIPAMENTOS. N. R. Candido, V.B. G.

PROCEDIMENTO PARA ESCOLHA DA LOCALIZAÇÃO DE UM CENTRO REGIONAL DE DISTRIBUIÇÃO E RECOLHA DE EQUIPAMENTOS. N. R. Candido, V.B. G. PROCEDIMENTO PARA ESCOLHA DA LOCALIZAÇÃO DE UM CENTRO REGIONAL DE DISTRIBUIÇÃO E RECOLHA DE EQUIPAMENTOS N. R. Canddo, V.B. G. Campos RESUMO Apresenta-se neste trabalho um procedmento de auxílo à decsão

Leia mais

27 a 30/09/05, Gramado, RS. Pesquisa Operacional e o Desenvolvimento Sustentável

27 a 30/09/05, Gramado, RS. Pesquisa Operacional e o Desenvolvimento Sustentável ALGORITMO DE GERAÇÃO DE COLUNAS PARA O PROBLEMA DE ROTEAMENTO DE VEÍCULOS COM FROTA HETEROGÊNEA E JANELAS DE TEMPO COM APLICAÇÃO NA DISTRIBUIÇÃO DE JORNAIS Fernanda Menezes Departamento de Engenhara Elétrca

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

3 Algoritmo das Medidas Corretivas

3 Algoritmo das Medidas Corretivas 3 Algortmo das Meddas Corretvas 3.1 Introdução Conforme apresentado no Capítulo, o algortmo das Meddas Corretvas compõe o conjunto das etapas responsáves pela análse de desempenho do sstema de potênca.

Leia mais

3 O Problema de Fluxo de Potência Ótimo

3 O Problema de Fluxo de Potência Ótimo 3 O Problema de Fluxo de Potênca Ótmo 3.. Introdução Como fo vsto no capítulo anteror, para realzar uma repartção de custos ou benefícos, é necessáro determnar a função de custo do servço que será utlzado

Leia mais

Modelos para Localização de Instalações

Modelos para Localização de Instalações Modelos para Localzação de Instalações Prof. Dr. Ncolau D. Fares Gualda Escola Poltécnca da Unversdade de São Paulo Departamento de Engenhara de Transportes CLASSIFICAÇÃO DE WEBER (WEBER, Alfred. Uber

Leia mais

5. Estratégias de distribuição

5. Estratégias de distribuição 5. Estratégas de dstrbução Segundo BALLOU[1993], a Dstrbução Físca é o ramo da Logístca Empresaral que trata da movmentação, estocagem e processamento de peddos dos produtos fnas de uma empresa. O seu

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Preço Base = 2,581 US$/MMBTU x TMD 0

Preço Base = 2,581 US$/MMBTU x TMD 0 Portara Intermnsteral MME/MF/nº 176, de 01 de junho de 2001. OS MINISTROS DE ESTADO DE MINAS E ENERGIA E DA FAZENDA, no uso das atrbuções que lhes são conferdas pelo art. 87, parágrafo únco, ncso II, da

Leia mais

do Semi-Árido - UFERSA

do Semi-Árido - UFERSA Unversdade Federal Rural do Sem-Árdo - UFERSA Temperatura e Calor Subêna Karne de Mederos Mossoró, Outubro de 2009 Defnção: A Termodnâmca explca as prncpas propredades damatéra e a correlação entre estas

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

Classificação e Pesquisa de Dados

Classificação e Pesquisa de Dados Classcação por Trocas Classcação e Pesqusa de Dados Aula 05 Classcação de dados por Troca:, ntrodução ao Qucksort UFRGS INF01124 Classcação por comparação entre pares de chaves, trocando-as de posção caso

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

UMA HEURÍSTICA PARA O PROBLEMA DA ALOCAÇÃO DE SONDAS DE PRODUÇÃO EM POÇOS DE PETRÓLEO

UMA HEURÍSTICA PARA O PROBLEMA DA ALOCAÇÃO DE SONDAS DE PRODUÇÃO EM POÇOS DE PETRÓLEO XXIX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO. UMA HEURÍSTICA PARA O PROBLEMA DA ALOCAÇÃO DE SONDAS DE PRODUÇÃO EM POÇOS DE PETRÓLEO Alexandre Venturn Faccn Pacheco (UFES) alexandreventurn@gmal.com

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

A VELOCIDADE ESCALAR. Prof. Alberto Ricardo Präss

A VELOCIDADE ESCALAR. Prof. Alberto Ricardo Präss Pro. Alberto Rcardo Präss A VELOCIDADE ESCALAR O conceto de velocdade. Imagnemos que um jornal tenha envado um correspondente especal à selva amazônca a m de azer uma reportagem sobre o Pco da Neblna,

Leia mais

3.2. Solução livre de ciclos e solução como uma árvore geradora

3.2. Solução livre de ciclos e solução como uma árvore geradora Smplex Para Redes.. Noções Incas O algortmo Smplex para Redes pode ser entenddo como uma especalzação do método Smplex para aplcação em problemas de programação lnear do tpo fluxo de custo mínmo. O Smplex

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Introdução Aprendzagem de Máquna Alessandro L. Koerch Redes Bayesanas A suposção Naïve Bayes da ndependênca condconal (a 1,...a n são condconalmente ndependentes dado o valor alvo v): Reduz a complexdade

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL 8 a 11 de novembro de 2002, Rio de Janeiro/RJ A PESQUISA OPERACIONAL E AS CIDADES

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL 8 a 11 de novembro de 2002, Rio de Janeiro/RJ A PESQUISA OPERACIONAL E AS CIDADES O PROBLEMA DE CORTE BIDIMENSIONAL COM PLACA DEFEITUOSA ANDRÉA CARLA GONÇALVES VIANNA Unversdade Estadual Paulsta - UNESP Faculdade de Cêncas Departamento de Computação Av. Luz Edmundo Carrjo Coube, s/n,

Leia mais

Medidas de Tendência Central. Prof.: Ademilson Teixeira

Medidas de Tendência Central. Prof.: Ademilson Teixeira Meddas de Tendênca Central Prof.: Ademlson Texera ademlson.texera@fsc.edu.br 1 Servem para descrever característcas báscas de um estudo com dados quanttatvos e comparar resultados. Meddas de Tendênca Central

Leia mais

O F Í C I O C I R C U L A R. Participantes dos Mercados da B3 Segmento BM&FBOVESPA. Ref.: Nova Metodologia do Índice Dividendos BM&FBOVESPA (IDIV).

O F Í C I O C I R C U L A R. Participantes dos Mercados da B3 Segmento BM&FBOVESPA. Ref.: Nova Metodologia do Índice Dividendos BM&FBOVESPA (IDIV). 01 de novembro de 2017 069/2017-DP O F Í C I O C I R C U L A R Partcpantes dos Mercados da B3 Segmento BM&FBOVESPA Ref.: Nova Metodologa do Índce Dvdendos BM&FBOVESPA (IDIV). Concluída a fase de dscussão

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Elaboração: Novembro/2005

Elaboração: Novembro/2005 Elaboração: Novembro/2005 Últma atualzação: 18/07/2011 Apresentação E ste Caderno de Fórmulas tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos referentes às Cédulas

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

Estatística Espacial: Dados de Área

Estatística Espacial: Dados de Área Estatístca Espacal: Dados de Área Dstrbução do número observado de eventos Padronzação e SMR Mapas de Probabldades Mapas com taxas empírcas bayesanas Padronzação Para permtr comparações entre dferentes

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

3 Algoritmo de Busca Tabu

3 Algoritmo de Busca Tabu 3 Algortmo de Busca Tabu 3.1 Introdução A forma básca do algortmo de Busca Tabu está fundamentada nas déas propostas em [Glover Laguna, 1997] e é baseado em procedmentos heurístcos que permtem explorar

Leia mais

Variável discreta: X = número de divórcios por indivíduo

Variável discreta: X = número de divórcios por indivíduo 5. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Caderno de Fórmulas. Notas Comerciais Cetip21

Caderno de Fórmulas. Notas Comerciais Cetip21 Notas Comercas Cetp21 Últma Atualzação: 22/12/2015 E ste Caderno tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos de valorzação de Notas Comercas. É acatado regstro

Leia mais

CARGA MÓVEL. Conjunto de cargas moveis que mantêm uma posição relativa constante.

CARGA MÓVEL. Conjunto de cargas moveis que mantêm uma posição relativa constante. CARGA MÓVEL Força generalsada com ntensdade, drecção e sentdo fxos, mas com uma posção varável na estrutura. COMBOIO DE CARGAS Conjunto de cargas moves que mantêm uma posção relatva constante. CARGA DISTRIBUIDA

Leia mais

Netuno 4. Manual do Usuário. Universidade Federal de Santa Catarina UFSC. Departamento de Engenharia Civil

Netuno 4. Manual do Usuário. Universidade Federal de Santa Catarina UFSC. Departamento de Engenharia Civil Unversdade Federal de Santa Catarna UFSC Departamento de Engenhara Cvl Laboratóro de Efcênca Energétca em Edfcações - LabEEE Netuno 4 Manual do Usuáro Enedr Ghs Marcelo Marcel Cordova Floranópols, Junho

Leia mais

DISTRIBUIÇÃO DE FREQUÊNCIAS

DISTRIBUIÇÃO DE FREQUÊNCIAS Núcleo das Cêncas Bológcas e da Saúde Cursos de Bomedcna, Ed. Físca, Enermagem, Farmáca, Fsoterapa, Fonoaudologa, Medcna Veternára, Muscoterapa, Odontologa, Pscologa DISTRIBUIÇÃO DE FREQUÊNCIAS 5 5. DISTRIBUIÇÃO

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

Caderno de Fórmulas em Implementação. SWAP Alterações na curva Libor

Caderno de Fórmulas em Implementação. SWAP Alterações na curva Libor Caderno de Fórmulas em Implementação SWAP Alterações na curva Lbor Atualzado em: 15/12/217 Comuncado: 12/217 DN Homologação: - Versão: Mar/218 Índce 1 Atualzações... 2 2 Caderno de Fórmulas - SWAP... 3

Leia mais

Caderno de Fórmulas. Títulos do Agronegócio - Cetip21 CDCA, CPR, CRA, CRH, CRP, CRPH, LCA, NCR

Caderno de Fórmulas. Títulos do Agronegócio - Cetip21 CDCA, CPR, CRA, CRH, CRP, CRPH, LCA, NCR Caderno de Fórmulas Títulos do Agronegóco - Cetp21 CDCA, CPR, CRA, CRH, CRP, CRPH, LCA, NCR Últma Atualzação: 15/08/2016 Caderno de Fórmulas CDCA CPR CRA - CRH CRP CRPH LCA NCR E ste Caderno de Fórmulas

Leia mais

Capítulo 30: Indução e Indutância

Capítulo 30: Indução e Indutância Capítulo 3: Indução e Indutânca Índce Fatos xpermentas; A e de Faraday; A e de enz; Indução e Tranferênca de nerga; Campos létrcos Induzdos; Indutores e Indutânca; Auto-ndução; Crcuto ; nerga Armazenada

Leia mais

Modelo de Alocação de Vagas Docentes

Modelo de Alocação de Vagas Docentes Reunão Comssão de Estudos de Alocação de Vagas Docentes da UFV Portara 0400/2016 de 04/05/2016 20 de mao de 2016 Comssão de Estudos das Planlhas de Alocação de Vagas e Recursos Ato nº 009/2006/PPO 19/05/2006

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Modelagens Exata e Heurística para Resolução do Problema do Caixeiro Viajante com Coleta de Prêmios

Modelagens Exata e Heurística para Resolução do Problema do Caixeiro Viajante com Coleta de Prêmios XXIV Encontro Nac. de Eng. de Produção - Floranópols, SC, Brasl, 03 a 05 de nov de 2004 Modelagens Exata e Heurístca para Resolução do Problema do Caxero Vajante com Coleta de Prêmos Antôno Augusto Chaves

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

PREFEITURA MUNICIPAL DE CURITIBA

PREFEITURA MUNICIPAL DE CURITIBA Especfcação de Servço Págna 1 de 9 1. DEFINIÇÃO Reforço do subleto é a camada que será executada com espessura varável, conforme defnção de projeto, nos trechos em que for necessáro a remoção de materal

Leia mais

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON 1 PUCPR- Pontfíca Unversdade Católca Do Paraná PPGIA- Programa de Pós-Graduação Em Informátca Aplcada PROF. DR. JACQUES FACON LIMIARIZAÇÃO ITERATIVA DE LAM E LEUNG Resumo: A proposta para essa sére de

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS 22 2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS Como vsto no capítulo 1, a energa frme de uma usna hdrelétrca corresponde à máxma demanda que pode ser suprda contnuamente

Leia mais

PREFEITURA MUNICIPAL DE CURITIBA

PREFEITURA MUNICIPAL DE CURITIBA Especfcação de Servço Págna 1 de 9 1. DEFINIÇÃO Reforço do subleto é a camada que será executada com espessura varável, conforme defnção de projeto, nos trechos em que for necessáro a remoção de materal

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Plano de Aula Aprendzagem de Máquna Aprendzagem Baseada em Instâncas Alessandro L. Koerch Introdução Espaço Eucldano Aprendzagem Baseada em Instâncas (ou Modelos Baseados em Dstânca) Regra knn (k vznhos

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

CARGA E DESCARGA DE UM CAPACITOR

CARGA E DESCARGA DE UM CAPACITOR EXPEIÊNCIA 06 CAGA E DESCAGA DE UM CAPACITO 1. OBJETIVOS a) Levantar, em um crcuto C, curvas de tensão no resstor e no capactor em função do tempo, durante a carga do capactor. b) Levantar, no mesmo crcuto

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 B Teoria dos Jogos Maurício Bugarin. Desenvolver o modelo de jogo repetido

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 B Teoria dos Jogos Maurício Bugarin. Desenvolver o modelo de jogo repetido Teora dos Jogos Prof. Mauríco Bugarn Eco/UnB 015-II Rotero Capítulo 3. Jogos Jogos Repetdos Desenvolver o modelo de jogo repetdo Provar o teorema popular Aplcar para conluo no jogo de dlema dos prsoneros

Leia mais

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do Electromagnetsmo e Óptca Prmero Semestre 007 Sére. O campo magnétco numa dada regão do espaço é dado por B = 4 e x + e y (Tesla. Um electrão (q e =.6 0 9 C entra nesta regão com velocdade v = e x + 3 e

Leia mais

Sumarização dos dados

Sumarização dos dados Inferênca e Decsão I Soluções da Colectânea de Exercícos 22/3 LMAC Capítulo 2 Sumarzação dos dados Nota: neste capítulo é apresentada a resolução apenas de alguns exercícos e a título ndcatvo. Exercíco

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

SÉRIE DE PROBLEMAS: CIRCUITOS DE ARITMÉTICA BINÁRIA. CIRCUITOS ITERATIVOS.

SÉRIE DE PROBLEMAS: CIRCUITOS DE ARITMÉTICA BINÁRIA. CIRCUITOS ITERATIVOS. I 1. Demonstre que o crcuto da Fg. 1 é um half-adder (semsomador), em que A e B são os bts que se pretendem somar, S é o bt soma e C out é o bt de transporte (carry out). Fg. 1 2. (Taub_5.4-1) O full-adder

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 e 8 06/204 Ajuste de Curvas AJUSTE DE CURVAS Cálculo Nuérco 3/64 INTRODUÇÃO E geral, experentos gera ua gaa de dados que

Leia mais

Fone:

Fone: Prof. Valdr Gumarães Físca para Engenhara FEP111 (4300111) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: valdrg@f.usp.br

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

PROBLEMA DE DIMENSIONAMENTO DE LOTES MONOESTÁGIO COM RESTRIÇÃO DE CAPACIDADE: MODELAGEM, MÉTODO DE RESOLUÇÃO E RESULTADOS COMPUTACIONAIS

PROBLEMA DE DIMENSIONAMENTO DE LOTES MONOESTÁGIO COM RESTRIÇÃO DE CAPACIDADE: MODELAGEM, MÉTODO DE RESOLUÇÃO E RESULTADOS COMPUTACIONAIS Vol. 20, No. 2, p. 287-306, dezembro de 2000 Pesqusa Operaconal 287 PROBLEMA DE DIMENSIONAMENTO DE LOTES MONOESTÁGIO COM RESTRIÇÃO DE CAPACIDADE: MODELAGEM, MÉTODO DE RESOLUÇÃO E RESULTADOS COMPUTACIONAIS

Leia mais

Capítulo 9 Rotação de corpos rígidos

Capítulo 9 Rotação de corpos rígidos Capítulo 9 Rotação de corpos rígdos Defnção de corpo rígdo (CR): um sstema de partículas especal, cuja estrutura é rígda, sto é, cuja forma não muda, para o qual duas partes sempre estão gualmente dstantes

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Estudo para Implementação de um Sistema de Roteirização e um Novo Centro de Distribuição para uma Empresa de Água Mineral do Sul de Minas Gerais

Estudo para Implementação de um Sistema de Roteirização e um Novo Centro de Distribuição para uma Empresa de Água Mineral do Sul de Minas Gerais Estudo para Implementação de um Sstema de Roterzação e um Novo Centro de Dstrbução para uma Empresa de Água Mneral do Sul de Mnas Geras Ilton Curty Leal Junor ltoncurty@gmal.com UFF Dego de Olvera Pexoto

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito.

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito. Matemátca Fnancera Rendas Certas Prof. Benjamn Cesar Sére de Pagamentos Unforme e Peródca. Rendas Certas Anudades. É uma sequênca de n pagamentos de mesmo valor P, espaçados de um mesmo ntervalo de tempo

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL

MEDIDAS DE TENDÊNCIA CENTRAL 3.1- Introdução. ESTATÍSTICA MEDIDAS DE TENDÊNCIA CENTRAL Como na representação tabular e gráfca dos dados a Estatístca Descrtva consste num conjunto de métodos que ensnam a reduzr uma quantdade de dados

Leia mais

PROPOSTA DE ALGORITMO GENÉTICO PARA A SOLUÇÃO DO PROBLEMA DE ROTEAMENTO E SEQUENCIAMENTO DE SONDAS DE MANUTENÇÃO

PROPOSTA DE ALGORITMO GENÉTICO PARA A SOLUÇÃO DO PROBLEMA DE ROTEAMENTO E SEQUENCIAMENTO DE SONDAS DE MANUTENÇÃO PROPOSTA DE ALGORITMO GENÉTICO PARA A SOLUÇÃO DO PROBLEMA DE ROTEAMENTO E SEQUENCIAMENTO DE SONDAS DE MANUTENÇÃO Vanessa Rennó Frota Moraes Alves UFRJ / COPPE / Programa de Engenhara de Produção vanfrota@yahoo.com.br

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 3 Teoria dos Jogos Maurício Bugarin. Roteiro. Horário da disciplina: 14h15 a 15h45

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 3 Teoria dos Jogos Maurício Bugarin. Roteiro. Horário da disciplina: 14h15 a 15h45 Teora dos Jogos Prof. Mauríco Bugarn Eco/UnB 04-I Rotero Horáro da dscplna: 4h5 a 5h45 Introdução: Por que pensar estrategcamente? Exemplos de stuações nas quas pensar estrategcamente faz sentdo Concetos

Leia mais

Análise de Projectos ESAPL / IPVC. Taxas Equivalentes Rendas

Análise de Projectos ESAPL / IPVC. Taxas Equivalentes Rendas Análse de Projectos ESAPL / IPVC Taxas Equvalentes Rendas Taxas Equvalentes Duas taxas e, referentes a períodos dferentes, dzem-se equvalentes se, aplcadas a um mesmo captal, produzrem durante o mesmo

Leia mais

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares novembro 0 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares quadrmestre 0 Além destes eercícos,

Leia mais

Avaliação de Económica de Projectos e Cálculo de Tarifas

Avaliação de Económica de Projectos e Cálculo de Tarifas Gestão Avançada ada de Sstemas de Abastecmento de Água Avalação de Económca de Projectos e Cálculo de Tarfas Antóno Jorge Montero 26 de Mao de 2008 Aula 5-1 COCEITO DE PROJECTO Processo específco utlzado

Leia mais

UNIVERSIDADE FEDERAL DO PIAUI

UNIVERSIDADE FEDERAL DO PIAUI UNIVERSIDADE FEDERAL DO PIAUI UFPI APOSTILA DE ADMINISTRAÇÃO DA PRODUÇÃO I Prof. Wllam Morán UFPI PROBABILIDADE E ESTATÍSTICA II: Prof. Wllam Morán 2 Problema 1: O gráfco PERT fo preparado no níco de um

Leia mais

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica 1 a 5 de Agosto de 006 Belo Horzonte - MG Expressão da ncerteza de Medção para a Grandeza Energa Elétrca Eng. Carlos Alberto Montero Letão CEMG Dstrbução S.A caletao@cemg.com.br Eng. Sérgo Antôno dos Santos

Leia mais

Função de Incidência: uma possível união da Teoria de Metapopulação com a Ecologia da Paisagem?

Função de Incidência: uma possível união da Teoria de Metapopulação com a Ecologia da Paisagem? Função de Incdênca: uma possível unão da Teora de Metapopulação com a Ecologa da Pasagem? Função de Incdênca: uma possível unão da Teora de Metapopulação com a Ecologa da Pasagem? INTRODUÇÃO O que é uma

Leia mais

Algoritmos Genéticos com Parâmetros Contínuos

Algoritmos Genéticos com Parâmetros Contínuos com Parâmetros Contínuos Estéfane G. M. de Lacerda DCA/UFRN Mao/2008 Exemplo FUNÇÃO OBJETIVO : 1,0 f ( x, y) 0, 5 sen x y 0, 5 1, 0 0, 001 x 2 2 2 y 2 2 2 0,8 0,6 0,4 0,2 0,0-100 -75-50 -25 0 25 50 75

Leia mais

Mecanismos de Escalonamento

Mecanismos de Escalonamento Mecansmos de Escalonamento 1.1 Mecansmos de escalonamento O algortmo de escalonamento decde qual o próxmo pacote que será servdo na fla de espera. Este algortmo é um dos mecansmos responsáves por dstrbur

Leia mais

Programação de Computadores II TCC 00.174/Turma A 1

Programação de Computadores II TCC 00.174/Turma A 1 Programação de Computadores II TCC 00.174/Turma A 1 Professor Leandro A. F. Fernandes http://www.c.uff.br/~laffernandes Conteúdo: Introdução ao Java (exercícos) Materal elaborado pelos profs. Anselmo Montenegro

Leia mais

PREFEITURA MUNICIPAL DE CURITIBA

PREFEITURA MUNICIPAL DE CURITIBA Especfcação de Servço Págna 1 de 9 1. DEFINIÇÃO Reforço do subleto é a camada que será executada com espessura varável, conforme defnção de projeto, nos trechos em que for necessáro a remoção de materal

Leia mais

MODELAGEM HEURÍSTICA NO PROBLEMA DE DISTRIBUIÇÃO DE CARGAS FRACIONADAS DE CIMENTO

MODELAGEM HEURÍSTICA NO PROBLEMA DE DISTRIBUIÇÃO DE CARGAS FRACIONADAS DE CIMENTO MODELAGEM HEURÍSTICA NO PROBLEMA DE DISTRIBUIÇÃO DE CARGAS FRACIONADAS DE CIMENTO Marcos Mura Cláudo Barber da Cunha Programa de Pós-Graduação em Engenhara de Sstemas Logístcos Escola Poltécnca da Unversdade

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais Ano lectvo: 2006/2007 Unversdade da Bera Interor Departamento de Matemátca ESTATÍSTICA Fcha de exercícos nº2: Dstrbuções Bdmensonas Curso: Cêncas do Desporto 1. Consdere a segunte tabela de contngênca:

Leia mais

Métodos numéricos para o cálculo de sistemas de equações não lineares

Métodos numéricos para o cálculo de sistemas de equações não lineares Métodos numércos para o cálculo de sstemas de equações não lneares Introdução Um sstema de equações não lneares é um sstema consttuído por combnação de unções alébrcas e unções transcendentes tas como

Leia mais

ROTEAMENTO DE VEÍCULOS DINÂMICO USANDO ALGORITMOS GENÉTICOS

ROTEAMENTO DE VEÍCULOS DINÂMICO USANDO ALGORITMOS GENÉTICOS ROTEAMENTO DE VEÍCULOS DINÂMICO USANDO ALGORITMOS GENÉTICOS Glaydston Mattos Rbero 1 Departamento de Cênca da Computação e Informátca UnAracruz Faculdade de Aracruz Luz Antono Noguera Lorena 2 Laboratóro

Leia mais