Escolha Intertemporal

Tamanho: px
Começar a partir da página:

Download "Escolha Intertemporal"

Transcrição

1 Univsidad Fdal d Santa Cataina Fom th SltdWoks of Sgio Da Silva 00 Esolha Inttmpoal Sgio Da Silva Availabl at:

2 Esolha Inttmpoal Hal R Vaian Intmdiat Mioonomis, 8th dition Capítulo 0 Consumi agoa? Consumi dpois, usando a poupança d agoa? Est tipo d solha d onsumo qu laiona o psnt ao futuo é um xmplo d solha inttmpoal Rstição oçamntáia inttmpoal Digamos qu o onsumido pis solh quanto onsumi d to bm m dois píodos d tmpo Dnotamos a quantidad d onsumo m ada píodo po (, ) ; supomos qu os pços d ada píodo fiqum onstants iguais a um: p = p = ; dnotamos a quantidad d dinhio qu o onsumido possui m ada píodo po ( m, m ) ; supomos qu dinhio sja tansfido do píodo paa o píodo atavés d uma poupança qu não nd juos ( = 0 ) supomos qu o onsumido não pod toma dinhio mpstado: o máximo qu pod gasta no píodo é m Na Figua, vmos qu, nss modlo, a ta oçamntáia apsnta inlinação p m m m m = = =, intpto hoizontal = = = m intpto vtial = = = m p p p O onsumido onsom toda a sua nda (dotação) m ada píodo ( = m no píodo = m no píodo ) ou onsom mnos do qu m no píodo, poupando paa onsumi mais do qu m no píodo Ess modlo pod s ampliado paa lva m onta o fato d qu o onsumido pod mpsta ou toma mpstado a uma taxa d juos Podmos ontinua supondo qu

3 p = p = S o onsumido poupa ( < m ), b juos pla quantidad poupada m a quantidad qu podá s onsumida no píodo sá dada po: = m + ( m ) + ( m ) = m + ( + )( m ), () ond m ( ) é a nda d juos bida pla quantidad poupada no píodo S, no píodo, o onsumido onsumi mais do qu sua nda ( > m ), tomando mpstado paa paga a quantia m om juos ( m) no píodo, ntão a quantidad qu podá s onsumida no píodo sá: = m ( m ) ( m ) Podmos simplifia ssa xpssão paa: = m ( + )( m ), qu é a msma quação () Potanto, a quação () fon a ta oçamntáia inttmpoal Po la, sabmos qu, s m > 0, o onsumido bá juos po sua poupança; s m < 0, o onsumido pagaá juos plo mpéstimo fito s m = 0, ntão m = m =, o qu signifia qu o onsumido não tomaá mpstado, potanto, não bá nm pagaá juos Podmos sv a quação () omo: = m + ( + )( m ) () = m + ( + ) m ( + ) ( + ) + = ( + m ) + m ( ) Como a quação ( ) é uma ta oçamntáia, stá implíito qu o pço do onsumo no psnt é p = + qu o pço do onsumo no futuo é p = Como o pço do onsumo futuo é igual a, a quação ( ) fon a ta oçamntáia m tmos do valo futuo Podmos dividi a quação ( ) po + : m + = m+ + + ( ) Agoa o pço do onsumo psnt fia sndo p = o pço do onsumo futuo, p + = Como o pço do onsumo psnt é igual a, a quação ( ) fon a ta oçamntáia m tmos do valo psnt

4 Na Figua, o intpto hoizontal é nontado onsidando = 0 na ta m oçamntáia m tmos do valo psnt ( ) Fiamos om = m + + O intpto vtial, po sua vz, é nontado onsidando = 0 na ta oçamntáia m tmos do valo futuo ( ) Fiamos om = ( + ) m+ m Como p = p + = na quação ( ), a inlinação =, logo p p Inlinação = = ( + ) + Potanto, s aumnta, a ta oçamntáia fiaá mais íngm na Figua, giando m tono do ponto d dotação A ta gia m tono do ponto d dotação plo fato d qu a dotação sá smp assívl Assim, paa dtminada dução m, o onsumido obtá mais d Pfênias inttmpoais O fomato d uma uva d indifnça inttmpoal infoma o gosto do onsumido nt onsumi agoa ou dpois Po xmplo, na uva d indifnça d inlinação igual a (Figua 3), o onsumido sá indifnt nt onsumi hoj ou amanhã O onsumo d hoj o d amanhã são bns substitutos pfitos a TMS nt hoj amanhã sá igual a Na Figua 4, tmos uma uva d indifnça qu psnta o gosto d onsumi quantidads iguais hoj amanhã, sm s qu substitui o onsumo d um píodo plo do outo: o onsumo d hoj o d amanhã são bns omplmntas pfitos Na Figua 5, tmos uma uva d indifnça onvxa qu psnta o gosto d onsumi ta quantidad média m ada píodo Paa onsgui isso, o onsumido pod

5 qu substitui ta quantidad do onsumo d hoj po ta quantidad do onsumo d amanhã Estátia ompaativa Dada a ta oçamntáia inttmpoal do onsumido suas pfênias d onsumo * * inttmpoais, s, na solha ótima (, ), < m, o onsumido sá um mpstado (Figua 6a); s > m, l sá um tomado d mpéstimo (Figua 6b)

6 No aso m qu l é um mpstado ( < m ), s ( + ) (Figua 7), a ta oçamntáia inttmpoal fiaá mais íngm, otando m tono do ponto d dotação o onsumo psnt ontinuaá mno do qu m Potanto, o onsumido ontinuaá na ondição d mpstado Obsv qu não podá fia à diita d m poqu isto violaia a pfênia vlada: solhas à diita d m stavam disponívis na solha iniial mas foam ptidas m função da solha d S ( + ) (Figua 8), a ta oçamntáia inttmpoal fiaá mais ditada, giando m tono do ponto d dotação o onsumo psnt podá fia maio do qu m Potanto, o onsumido podá sai da ondição d mpstado (ou não, já qu não podmos o ao agumnto da pfênia vlada nsta situação)

7 No aso m qu o onsumido é um tomado d mpéstimo ( > m ), s ( + ) (Figua 9), a ta oçamntáia inttmpoal fiaá mais ditada, giando m tono do ponto d dotação o novo onsumo psnt ontinuaá maio do qu m Potanto, o onsumido mantá a ondição d tomado d mpéstimo, o qu é gaantido pla pfênia vlada S ( + ), a ta giaá m tono do ponto d dotação, fiando mais íngm Potanto, o onsumido podá ou não s tona mpstado (já qu não podmos o à pfênia vlada nsta situação) Contudo, s l ontinua sndo tomado d mpéstimo

8 (omo dsnhado na Figua 0), sua situação pioaá, pois fiaá m uma uva d indifnça mais baixa Equação d Slutsky na solha inttmpoal Uma vaiação d pço apsnta tanto um fito-substituição omo um fito-nda na quantidad dmandada A quação d Slutsky spaa sts dois fitos:

9 p p m, t s m = + ( m ) t s ond p é o fito total, p é o fito substituição m é o fito nda Na solha inttmpoal, s p aumnta fia mais alto do qu p, o onsumido substituiá onsumo psnt po onsumo futuo, além disso, fiaá mnos io no psnt, omo s sua nda m diminuíss S p : o onsumo d hoj fia mais ao do qu o d amanhã Isto pod s visto atavés da ta oçamntáia m tmos d valo futuo ( ), ond p = +, potanto, p ( ) = + Como p signifia qu o onsumido vai qu onsumi mnos no píodo, s, assim, o fito-substituição signifia qu: m p s < 0 m Quanto ao fito-nda, s o onsumo psnt fo d um bm nomal, m, potanto, m m > 0 Lvando m onta os dois sultados antios na quação d Slutsky, o sntido do fito total do aumnto d p, dado po p, dpndá m última anális do sinal d m Assim, s o onsumido fo tomado d mpéstimo, m < 0 t < p t 0 Isto signifia qu o aumnto da taxa d juos duziá o onsumo psnt do tomado d mpéstimo, poqu l tia qu paga mais juos no futuo Poém, s o onsumido fo mpstado, a quação d Slutsky não nos pmit sab o fito do aumnto d sob o t onsumo psnt D fato, om m > 0, p pod apsnta qualqu sinal Vaiação d pços Podmos agoa abandona a hipóts d qu os pços m ada píodo são onstants ( p = p = ) paa onsida inflação ou dflação Supomos qu o pço om onstant dpois dix d s Substituindo, ntão, p = p na ta oçamntáia inttmpoal (), fiamos om:

10 p = p m + ( + )( m ) () ou + = m + ( m ) ( ) p Compaando om (), o qu mudou foi o tmo + m vz d + Como p p =, p = + π, (3) ond π é a taxa d simnto do pço qu o onsumido spa paa o póximo píodo Substituindo (3) m ( ): + = m + ( m ) ( ) + π A taxa d juos al ρ é dfinida omo: + + ρ = (4) + π Substituindo (4) m ( ): = m + ( + ρ)( m ) ( ) Enquanto a quação () infoma o onsumo adiional do píodo no aso m qu o onsumido ab mão d unidads montáias no psnt, a quação ( ) infoma o onsumo adiional do píodo no aso m qu o onsumido ab mão d unidads d bns d onsumo no psnt Considando (4): + + ρ = + π + + ( + π ) + π ρ = = = + π + π + π π ρ = (4 ) + π Paa um valo d π pquno, + π ρ π, (4 )

11 ond é onhida π, não, já qu é uma pvisão Po xmplo, s a taxa d juos nominal fo 7% o onsumido ata na pvisão da taxa d inflação m %, a taxa d juos al aabaá sndo 6%: ρ = 6% Valo psnt Nas tas oçamntáias: ( + ) + = ( + m ) + m ( ) m + = m+ + +, ( ) o tmo à diita da igualdad da quação ( ) infoma o valo da dotação m tmos d valo futuo, nquanto o tmo à diita da igualdad da quação ( ) infoma o valo da dotação m tmos d valo psnt No qu s f ao valo futuo, s o onsumido pud toma mpstado ou mpsta $ atual à taxa d juos nominal, no futuo o quivalnt sá + dólas, poqu o onsumido pod mpsta a um bano $ hoj à taxa d juos st sá tansfomado m $ ( + ) no póximo píodo Potanto, $ ( + ) no póximo píodo quivalm a $ hoj Potanto, + é o pço d $ hoj m lação a $ no póximo píodo Como as unidads montáias do píodo têm pço igual a na quação ( ), sta stá sndo xpssa m tmos d unidads montáias futuas No qu s f ao valo psnt, tudo é mdido m tmos d unidads montáias d hoj Na quação ( ), as unidads montáias do píodo têm pço igual a Quanto valá $ no póximo píodo m dólas d hoj? Rsposta: + dólas Poqu $ podm + s tansfomados m $ no píodo sguint, poupando-s bndo-s juos à taxa Assim, o valo psnt do dóla a s ntgu no póximo píodo é + Um plano d onsumo sá assívl s o valo psnt do onsumo fo igual ao valo psnt da nda S o onsumido pud ompa vnd bns livmnt a pços onstants, l pfiá a dotação mais alta, poqu isto signifia a ta oçamntáia mais aima Analogamnt, s o onsumido pud mpsta ou toma mpstado livmnt a uma taxa d juos onstant, l pfiá a dotação d maio valo psnt, poqu a ta oçamntáia inttmpoal staá mais aima o onsumido podá aumnta su onsumo nos dois píodos Quanto maio fo o valo psnt d uma dotação, maio também sá o valo futuo Costumamos solh a anális plo valo psnt apnas po ma onvniênia A dotação d maio valo psnt popoiona maio onsumo m ada píodo s o onsumido pud mpsta toma mpstado à taxa d juos (Figua ) Esolhndo a taxa d juos apopiada Como há difnts taxas d juos, paa o álulo do valo psnt solhmos aqula qu sja a mlho altnativa do uso do dinhio, já qu a taxa d juos md o usto d opotunidad do dinhio Paa um fluxo d pagamntos nvolvndo um dtminado gau d

12 iso, pisamos o a uma taxa d iso smlhant Paa um fluxo d tinta anos, usamos uma taxa d juos d tinta anos, assim po diant Valo psnt paa tês píodos Com a taxa d juos onstant po tês píodos, $ apliado hoj ndá $ ( + ) no píodo sguint Rapliando sta nova quantia, la ndá $ ( + ) no tio píodo Comçando om $ + hoj, st s tansfoma m $ no píodo 3 A ta oçamntáia inttmpoal fia sndo m m + + = m ( + ) + ( + ) 3 3 (5) Not qu p = p = + p = ( + ) 3 Em gal, p = t ( + ) t

13 om a taxa d juos onstant, = = S a taxa d juos não fo onstant, a ta oçamntáia s modifia paa m m + + = m + + ( )( ) ( )( ) Qual sá o valo psnt d $ no futuo? Dpnd d quando é o futuo d quanto é a taxa d juos (Tabla ) Tabla Ano Taxa d Juos Na Tabla, onsidando o ano om = 0%, tmos: $ VP = = = = 083 ( + 00) () Já paa o ano 30 om = 5%, tmos: $ VP = = = = ( + 05) (5) 6677 Cálulo d um fluxo d pagamntos O valo psnt pmit onvt dtminado fluxo d pagamntos m unidads montáias d hoj S dois invstimntos gam difnts fluxos d pagamnto, dv-s solh o d maio valo psnt Exmplo O onsumido ompa uma asa fazndo um mpéstimo Su fluxo d nda sá M M, o fluxo d pagamntos sá dado po P + P, + El onsguiá paga s ou M M M M P + > P M P + + P + > 0 M P + P+ > 0

14 VPL > 0 Potanto, sá um bom invstimnto s o valo psnt líquido fo positivo Exmplo O invstimnto A ga $00 agoa $00 no póximo ano O invstimnto B ga $0 agoa $30 no póximo ano Qual é o mlho? Dpnd da taxa d juos Paa = 0, o invstimnto B sá mlho: VP = 00 + A = = VP B = = =, ond VP A é o valo psnt do invstimnto A VP B o valo psnt do invstimnto B Todavia, paa = 00 (0%), o invstimnto A sá mlho: VP A = 00 + = 00 + = VP B = 0 + = Exmplo 3 O onsumido faz uma ompa d $000 no pimio dia do mês usando su atão d édito A taxa d juos obada no atão d édito é 5% ( = 005 ) S o onsumido paga os $000 no final do mês não havá nagos finanios S não paga nada, tá o nago d $30 ( = = 30 ) Poém, s l paga a maio pat, digamos $800, na pátia l tomou mpstado apnas $00 O nago finanio dvia s $3 ( = = 3) Muitas mpsas não fazm sta onta invntam o onito d saldo médio mnsal, signifiando qu o onsumido passou 30 dias om saldo dvdo d $00 O saldo médio mnsal sá d quas $000 o nago d quas $30, omo no aso m qu o onsumido não pagou a onta Títulos A missão d títulos po mpsas govno é uma foma d s toma mpstado ofndo aos onsumidos difnts fluxos d aixa ao longo do tmpo, qu podm s usados paa o onsumo m um píodo ou m outo Bônus são tipos spífios d títulos ond o tomado d mpéstimo (qu mit o bônus) pomt paga a quantia fixa d x unidads montáias (upom) po dtminado píodo, até a data d matuidad T, quando o valo d fa F é pago ao potado do bônus O fluxo d pagamntos do bônus é ( x, xx,,, F ) o valo psnt paa a taxa d juos onstant é: x x F VP = ( + ) ( + ) T

15 Como o pço d um dóla pago no futuo diminui quando a taxa d juos aumnta (Tabla ), o valo psnt d um bônus diminui quando a taxa d juos aumnta Pptuidads (ou onsols) são um tipo d bônus qu faz pagamnto paa smp Paa a pptuidad qu paga $ x po ano, o valo psnt é ou x x VP = + + ( + ) + x x VP = x ( + ) VP = x + VP + ( ) x VP VP = VP x VP = + + VP( + ) VP x = + + VP + VP VP = x x VP = Potanto, quando VP Esta última fómula pod s utilizada paa s alula o valo apoximado d um bônus d longo pazo (po xmplo, d 30 anos) Exmplo 4 S = 0% a pptuidad pomt paga $0 po ano paa smp: 0 VP = = S subi paa 0%, ntão: 0 VP = = Exmplo 5 O onsumido toma mpstado $000 paa paga m pstaçõs mnsais d $00 ada Quanto l iá paga d juos? Tomando o fluxo d pagamntos (000, 00, 00,, 00) igualando su valo psnt a zo pmit aha Há

16 fómulas pontas paa failita st álulo Vja, po xmplo, A sposta do poblma é: o onsumido pagaá 35% d juos (obsv qu não é 0%!) Impostos S a nda d juos fo tibutada, paa ada dóla adiional d nda, m, o imposto a paga aumntaá m t m Apliando-s X m um ativo, b-s X na foma d pagamntos d juos Mas também s paga tx d imposto A taxa d juos após o imposto sá ( t ) a nda qu fia após o imposto sá ( tx ) Est é o ponto d vista do mpstado Do ponto d vista do tomado d mpéstimo, s o pagamnto d juos X fo dsontado do imposto a paga tx, a taxa d juos após o imposto ontinuaá sndo ( t ) o usto d toma mpstado sá ainda X tx = ( t) X Potanto, paa onsumidos na msma faixa d tibutação, a taxa d juos após o imposto sá a msma tanto paa qum mpsta omo paa qum toma mpstado S o imposto fo sob a poupança, l duziá a quantidad d dinhio qu o onsumido qu poupa Já um subsídio à tomada d mpéstimo aumntaá a quantidad d dinhio qu o onsumido dsja toma mpstado Sgio Da Silva 00 sgiodasilvaom

ELECTROMAGNETISMO. TESTE 1 4 de Abril de 2009 RESOLUÇÕES

ELECTROMAGNETISMO. TESTE 1 4 de Abril de 2009 RESOLUÇÕES LTROMAGNTIMO TT 4 d Abil d 009 ROLUÇÕ a Dvido à simtia das cagas, o campo léctico m qualqu ponto no io dos é paallo a ss io, ou sja a componnt é smp nula Paa > 0, o sntido do y campo léctico é o sntido

Leia mais

Aula 8. Nesta aula, iniciaremos o capítulo 4 do livro texto, onde iremos analisar vários fenômenos ondulatórios em plasma.

Aula 8. Nesta aula, iniciaremos o capítulo 4 do livro texto, onde iremos analisar vários fenômenos ondulatórios em plasma. Aula 8 Nsta aula, iniciamos o capítulo 4 do livo txto, ond imos analisa váios fnômnos ondulatóios m plasma. 4.Ondas m Plasma 4. Rpsntação das Ondas Qualqu movimnto piódico num fluido, pod s dcomposto atavés

Leia mais

Aula 9. Vimos que a freqüência natural de oscilação dos elétrons em torno das suas respectivas posições de equilíbrio, é dada pela expressão 4.2.

Aula 9. Vimos que a freqüência natural de oscilação dos elétrons em torno das suas respectivas posições de equilíbrio, é dada pela expressão 4.2. Aula 9 Nsta aula, continuamos o capítulo 4 do livo txto, ond agoa invstigamos as fitos do movimnto témico, qu oa dsconsidamos, nas oscilaçõs natuais d létons. 4.3 Ondas Eltônicas d Plasma Vimos qu a fqüência

Leia mais

Secção 4. Equações lineares de ordem superior.

Secção 4. Equações lineares de ordem superior. Scção 4 Equaçõs linas d odm supio Falow: Sc 3 a 35 Vamos agoa analisa como podmos solv EDOs linas d odm supio à pimia Uma vz qu os sultados obtidos paa EDOs d sgunda odm são smp gnalizávis paa odns supios,

Leia mais

Soluções das Fichas de trabalho. FICHA DE TRABALHO 1 Propriedades das operações sobre conjuntos

Soluções das Fichas de trabalho. FICHA DE TRABALHO 1 Propriedades das operações sobre conjuntos Soluçõs das FICHA DE TRABALHO Popidads das opaçõs sob conjuntos a) {,, 5} {,,, 5} {,, } {,, 5} ) {} f) {} g) {, 5} h) {,,, 5} i) Q j) {} k) {} l) Q m) {,, 5} a) {, 5,, 7, 8, 9, } {, 8, } {, 5} {, 7, 9}

Leia mais

Aula 11 Mais Ondas de Matéria II

Aula 11 Mais Ondas de Matéria II http://www.bugman3.com/physics/ Aula Mais Ondas d Matéia II Física Gal F-8 O átomo d hidogênio sgundo a Mcânica Quântica Rcodando: O modlo atômico d Boh (93) Motivação xpimntal: Nils H. D. Boh (885-96)

Leia mais

ELECTROMAGNETISMO. EXAME 2ª Época 6 de Julho de 2009 RESOLUÇÕES

ELECTROMAGNETISMO. EXAME 2ª Época 6 de Julho de 2009 RESOLUÇÕES ELECTROMAGNETISMO EXAME ª Época d Julho d 009 RESOLUÇÕES As spostas a algumas das pguntas dvm s acompanhada d sumas ilustativos, u não são poduzidos aui ) a D modo gal F k Nst caso, a foça cida pla caga

Leia mais

Capítulo 3 - Flexão de Peças Curvas

Capítulo 3 - Flexão de Peças Curvas Capítulo - Flxão d Pças Cuvas.1. Gnaldads No studo qu s sgu, admt-s qu a lna qu un os ntos d gavdad das sçõs tansvsas da aa, amada lna dos ntos, sja uma uva plana qu as sçõs tansvsas tnam um xo d smta

Leia mais

Referências 06/07/17 INTRODUÇÃO À ECONOMIA: MICROECONOMIA ESCOLHA INTERTEMPORAL. Ver Capítulo 10. Prof. Salomão Franco Neves

Referências 06/07/17 INTRODUÇÃO À ECONOMIA: MICROECONOMIA ESCOLHA INTERTEMPORAL. Ver Capítulo 10. Prof. Salomão Franco Neves Univesidade Fedeal Teoia Micoeconômica do Amazonas I - Pof. Salomão UFAM Neves Faculdade de Estudos Sociais FES Depatamento de Economia e Análise - DEA INTRODUÇÃO À ECONOMIA: MICROECONOMIA Pof. Salomão

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

6. Lei de Gauss Φ E = EA (6.1) A partir das unidades SI de E ( N / C ) e A, temos que o fluxo eléctrico tem as unidades N m 2 / C.

6. Lei de Gauss Φ E = EA (6.1) A partir das unidades SI de E ( N / C ) e A, temos que o fluxo eléctrico tem as unidades N m 2 / C. 6. L d Gauss Tópcos do Capítulo 6.1. Fluxo léctco 6.. L d Gauss 6.3. Aplcaçõs da L d Gauss 6.4. Condutos m ulíbo lctostátco 6.1 Fluxo léctco Agoa u dscvmos o concto d lnhas do campo léctco ualtatvamnt,

Leia mais

setor 1103 Aula 39 POSIÇÕES RELATIVAS DE DUAS RETAS NO PLANO Então, 1. INTRODUÇÃO Duas retas r e s de um plano podem ser: Distintas: r s = Exemplo:

setor 1103 Aula 39 POSIÇÕES RELATIVAS DE DUAS RETAS NO PLANO Então, 1. INTRODUÇÃO Duas retas r e s de um plano podem ser: Distintas: r s = Exemplo: to 58 Aula 9 POSIÇÕES RELATIVAS DE DUAS RETAS NO PLANO. INTRODUÇÃO Dua ta d um plano podm : Ditinta: = Emplo: Então, O coficint angula ão iguai. O coficint lina ão difnt. Paalla b) ão PARALELAS COINCIDENTES.

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A Eam Final Nacional do Ensino Scundáio Pova Escita d Matmática A 1.º Ano d Escolaidad Dcto-Li n.º 139/01, d 5 d julho Pova 635/1.ª Fas Citéios d Classificação 1 Páginas 014 Pova 635/1.ª F. CC Página 1/

Leia mais

Cinemática e dinâmica da partícula

Cinemática e dinâmica da partícula Sumáio Unia I MECÂNICA 1- a patícula Cinmática inâmica a patícula m moimntos a mais o qu uma imnsão - Rfncial to posição. - Equaçõs paaméticas o moimnto. Equação a tajtóia. - Dslocamnto, locia méia locia.

Leia mais

3 Modelo para o Sistema de Controle (Q, R) com Nível de Serviço

3 Modelo para o Sistema de Controle (Q, R) com Nível de Serviço 3 Modlo paa o Sstma d Contol (, com Nívl d Svço No Capítulo, fo apsntado um modlo paa o sstma d contol d stou (,, ond a dmanda é uma vaávl alatóa contínua sgundo uma dstbução nomal, uando foam consdados

Leia mais

FICHA DE AVALIAÇÃO 1 FICHA DE AVALIAÇÃO 2. Grupo I 1 A 2 D 3 A 4 C 5 B. Grupo II. 6 4 rapazes pontos. 8 a) 5040 b) 720 c) 1260

FICHA DE AVALIAÇÃO 1 FICHA DE AVALIAÇÃO 2. Grupo I 1 A 2 D 3 A 4 C 5 B. Grupo II. 6 4 rapazes pontos. 8 a) 5040 b) 720 c) 1260 FICHA DE AVALIAÇÃO A D A C 5 B I 6 apazs 7 5 pontos a) 5 b) 7 c) 6. ( y) 5 5 C 5 5 C y 5 C y 5 C y 5 C y 5 C 5 y 5 ( y) 5 5 C 5 5 C y 5 C y 5 C y 5 C y 5 C 5 y 5 ( y) 5 ( y) 5 ( 5 C 5 5 C y 5 C y ) ( 5

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

FUNÇÕES DE VÁRIAS VARIÁVEIS REAIS

FUNÇÕES DE VÁRIAS VARIÁVEIS REAIS INTRODUÇÃO FUNÇÕES DE VÁRIAS VARIÁVEIS REAIS Uma ganda ísica pod dpnd d divsas outas gandas Po mplo: a vlocidad do som m um gás idal dpnd da dnsidad do gás d sua pssão Muitas unçõs dpndm d mais d uma vaiávl

Leia mais

ÁTOMO DE HIDROGÉNIO z

ÁTOMO DE HIDROGÉNIO z ÁTOMO DE HIDROGÉNIO z quivalnt y V ( x, y, z V ( 4 0 x m n m m n - massa do núclo m - massa do lctão - massa duzida m n ~ 000 m ~ m COORDENADAS ESFÉRICAS (,, Rn. ll, ( n, l, m m m n l, l, (,, m l Obital

Leia mais

Noturno - Prof. Alvaro Vannucci. q R Erad. 4πε. q a

Noturno - Prof. Alvaro Vannucci. q R Erad. 4πε. q a Eletomagnetismo II 1 o Semeste de 7 Notuno - Pof. Alvao Vannui 4 a aula 15jun/7 Vimos: Usando os poteniais de Lienad-Wiehet, os ampos de agas em M..U. são dados po: i) v q ( v ) q 1 E( a ) u ( u ) ii)

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ES PITÉI UIVESIE E SÃ PU pamnto d Ennhaia Mcânica Mcânica I PME 100 Pova n o a 05 / 1 / 017 uação da Pova: hoas ão é pmitido o uso d calculadoas, "tablts", clulas dispositivos similas. pós o início da

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DRLN MOUTINHO VOL. 01 RESOLUÇÕES PÁGIN 42 39 LETR C Sjam as staçõs, B C, cujos lmntos são as pssoas qu scutavam, plo mnos, uma das staçõs, B ou C. Considr o diagrama abaixo: B 31500 17000 7500

Leia mais

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica Sumáio Unidad II Elticidad Magntismo 1- - Engia potncial lética. - Potncial lético. - Supfícis quipotnciais. Movimnto d cagas léticas num campo lético unifom. PS 22 Engia potncial lética potncial lético.

Leia mais

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro.

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro. Gabarito da a Prova Unificada d Cálculo I- 15/, //16 1. (,) Um cilindro circular rto é inscrito m uma sfra d raio r. Encontr a maior ára d suprfíci possívl para ss cilindro. Solução: Como o cilindro rto

Leia mais

Árvores Digitais Letícia Rodrigues Bueno

Árvores Digitais Letícia Rodrigues Bueno Ávo Digitai Ltícia Rodigu Buno UFABC Buca Digital Buca Digital Poblma gal d buca: conjunto d chav S chav x a localiza m S; Buca Digital Poblma gal d buca: conjunto d chav S chav x a localiza m S; Aumido

Leia mais

5- Método de Elementos Finitos Aplicado às Equações Diferenciais Parciais.

5- Método de Elementos Finitos Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 5- Método d Elmntos Finitos Aplicado às Equaçõs Difnciais Paciais. 5.- Bv Intodução Históica. 5.- Solução d Equaçõs Difnciais Odináias: 5.3- Solução

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Problemas de Electromagnetismo e Óptica LEAN + MEAer. 1.3 Electrostática: Momento dipolar; Energia de um dipolo

Problemas de Electromagnetismo e Óptica LEAN + MEAer. 1.3 Electrostática: Momento dipolar; Energia de um dipolo Poblmas d Elctomagntismo Óptica LEAN + MEA.3 Elctostática: Momnto dipola; Engia d um dipolo P-.3. Most u o campo lctostático o potncial d um dipolo léctico num ponto a uma distância do cnto do dipolo,

Leia mais

F = ma. Cinética Plana de uma Partícula: Força e Aceleração Cap. 13. Primeira Lei (equilíbrio) Segunda Lei (movimento acelerado) Terceira Lei

F = ma. Cinética Plana de uma Partícula: Força e Aceleração Cap. 13. Primeira Lei (equilíbrio) Segunda Lei (movimento acelerado) Terceira Lei Objtivos MECÂNIC - INÂMIC Cinética Plana d uma Patícula: Foça clação Cap. 3 Establc as Lis d Nwton paa Movimntos tação Gavitacional dfini massa pso nalisa o movimnto aclado d uma patícula utilizando a

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

Convenção: O momento fletor é positivo quando tende a retificar a. Hipótese Básica: As seções permanecem planas após a deformação (seções cheias).

Convenção: O momento fletor é positivo quando tende a retificar a. Hipótese Básica: As seções permanecem planas após a deformação (seções cheias). C Í T U L O 3 Flxão d ças Cuvas 3.1. Gnaldads No studo qu s sgu, admt-s qu a lna qu un os cntos d gavdad das sçõs tansvsas da aa, camada lna dos cntos, sja uma cuva plana qu as sçõs tansvsas tnam um xo

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

PRODUÇÃO INDUSTRIAL DO AMONÍACO

PRODUÇÃO INDUSTRIAL DO AMONÍACO PRODUÇÃO INDUSTRIAL DO AMONÍACO A ração d sínts do amoníao é uma ração rvrsívl. As quaçõs químias das raçõs das raçõs rvrsívis ontêm duas stas d sntidos opostos a sparar ragnts produtos d ração. Ragnts

Leia mais

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA À ADM 5. Lista 9: Intgrais:

Leia mais

Formação de Gotas de Nuvem

Formação de Gotas de Nuvem Fomação d Gotas d Nuvm a) Aspctos gais da fomação d nuvns pcipitação: As sguints mudanças d fas da água são possívis são sponsávis plo dsnvolvimnto dos hidomtoos: Aumnto da ntopia Vapo Liquido { condnsação/vapoação

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 4 PRODUTOS

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 4 PRODUTOS Li Fancisco da C Dpatamnto d Matmática Unsp/Ba CAPÍTULO 4 PRODUTOS Nos capítlos antios os concitos foam intodidos paa das giõs gométicas também chamadas d Espaços Vtoias: o Plano Gomético, psntado plo

Leia mais

Ondas Electromagnéticas

Ondas Electromagnéticas Faculdad d ngnhaia Ondas lctomagnéticas Op - MIB 7/8 Pogama d Óptica lctomagntismo Faculdad d ngnhaia Anális Vctoial (visão) aulas lctostática Magntostática 8 aulas Ondas lctomagnéticas 6 aulas Óptica

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra 3.9 Camada d G Toma d Stoks Toma d Stoks: sdo S uma supf íci quipotcial d um campo Nwtoiao, cotdo o su itio todas as massas atats, s s modifica a distibuição das massas, sm alta a sua totalidad, po foma

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 0 Em algum momnto da sua vida você dcorou a tabuada (ou boa part dla). Como você mmorizou qu x 6 = 0, não prcisa fazr st cálculo todas as vzs qu s dpara com l. Além

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

Capítulo 3 Análise de Imagens Binárias. Comunicação Visual Interactiva

Capítulo 3 Análise de Imagens Binárias. Comunicação Visual Interactiva Capítulo 3 Anális d Iagns Bináias Couniação Visual Intativa Vizinhanças ais ouns Pixls vizinhanças Utilização d ásaas Vizinhança N 4 Vizinhança N 8 Explo: oig ntada saída CVI - Anális d Iagns Bináias Explo

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

TEOREMA DE TAYLOR 2! 1 1. (n) n (n 1) 0 + f x0 x x0 + f (c) x

TEOREMA DE TAYLOR 2! 1 1. (n) n (n 1) 0 + f x0 x x0 + f (c) x (Tóp. Tto Complmta) TEOREMA DE TAYLOR TEOREMA DE TAYLOR S uma ução suas pimias divadas istm um itvalo abto I cotdo, sgu-s do toma do valo médio galizado (dado o tópico dsta aula), substituido a ou b po,

Leia mais

SOLUÇÃO DA EQUAÇÃO DE LAPLACE PARA O POTENCIAL DE LIGAÇÃO IÔNICA

SOLUÇÃO DA EQUAÇÃO DE LAPLACE PARA O POTENCIAL DE LIGAÇÃO IÔNICA SOLUÇÃO D EQUÇÃO DE LPLCE PR O POTENCIL DE LIGÇÃO IÔNIC Bathista,. L. B. S., Ramos, R. J., Noguia, J. S. Dpatamnto d Física - ICET - UFMT, MT, v. Fnando Coa S/N CEP 786-9 Basil, -mail: andlbbs@hotmail.com

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

Evaporação de líquidos

Evaporação de líquidos Eoação de líquidos uando um líquido eebe alo, oia-se esteja satuada no o desse líquido) (a menos que a atmosfea é impossível have ombustão na intefae líquido-gás (oxidante) ve que o líquido eebe o alo

Leia mais

Antenas. É prática comum a introdução de funções auxiliares, chamadas de potenciais, que irão dar uma ajuda na resolução dos problemas.

Antenas. É prática comum a introdução de funções auxiliares, chamadas de potenciais, que irão dar uma ajuda na resolução dos problemas. ntnas inas - Funçõs potnciais auxiias Na anáis dos pobmas d adiação o pocdimnto noma é o d s spcifica as fonts d adiação do dpois ncssáio obt o campo adiado pas fonts. É pática comum a intodução d funçõs

Leia mais

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada Rsolução do am d nális Matmática I (//) Cursos: C, GE, GEI, IG ª Chamada Ercício > > como uma função ponncial d bas mnor do qu ntão o gráfico dsta função é o rprsntado na figura ao lado. Esta função é

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Rsoluçõs d Exrcícios MATEMÁTICA II Conhc Capítulo 07 Funçõs Equaçõs Exponnciais; Funçõs Equaçõs Logarítmicas 01 A) log 2 16 = log 2 2 4 = 4 log 2 2 = 4 B) 64 = 2 6 = 2 6 = 6 log 2 2 = 4 C) 0,125 = = 2

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci Eletomagnetismo II 1 o Semeste de 7 Notuno - Pof. Alvao annui 5 a aula 13/ma/7 imos na aula passada, das Equações de Maxwell: i) Consevação de Enegia 1 ( E H ) nˆ da = E D + B H d E J d t + S S (Poynting)

Leia mais

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES 33 MATRIZES 1. Dê o tipo d cada uma das sguints prtncm às diagonais principais matrizs: scundárias d A. 1 3 a) A 7 2 7. Qual é o lmnto a 46 da matriz i j 2 j

Leia mais

RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180

RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180 Rvisão 03 RESOLUÇÃO Rsposta da qustão : Sndo XA = AB = K = HI = u, sgu qu 3 Y = X+ 0u = + 0u 6 u =. 5 Rsposta da qustão 6: Considr o diagrama, m qu U é o conjunto univrso do grupo d tradutors, I é o conjunto

Leia mais

Descontos desconto racional e desconto comercial

Descontos desconto racional e desconto comercial Descontos desconto acional e desconto comecial Uma opeação financeia ente dois agentes econômicos é nomalmente documentada po um título de cédito comecial, devendo esse título conte todos os elementos

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES voc m o c voc RESOLUÇÃO voc A1 A4 (ABCD) = AB.BC AB.2 = 6 AB = 3 cm (BCFE) = BC.BE 2.BE = 10 BE = 5 cm Um dos lados vai tr a mdida 10-2x o outro 8-2x. A altura

Leia mais

Parte 1a: para fixar os conceitos:

Parte 1a: para fixar os conceitos: Pat a paa fia os concitos ) A figua a baio psnta u paallpípdo tângulo. Dcidi s é vdadia ou falsa cada ua das afiaçõs abaio a)dh BF b)ab HG c)ab CG d)af BC ) AC HF f) AG DF g)bg//ed h)abbc CG são coplanas

Leia mais

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004 1 a Prova d F-18 Turmas do Noturno Sgundo smstr d 004 18/10/004 1) Um carro s dsloca m uma avnida sgundo a quação x(t) = 0t - 5t, ond x é dado m m t m s. a) Calcul a vlocidad instantâna do carro para os

Leia mais

Problemas Numéricos: 1) Desde que a taxa natural de desemprego é 0.06, π = π e 2 (u 0.06), então u 0.06 = 0.5(π e π), ou u =

Problemas Numéricos: 1) Desde que a taxa natural de desemprego é 0.06, π = π e 2 (u 0.06), então u 0.06 = 0.5(π e π), ou u = Capitulo 12 (ABD) Prguntas para rvisão: 5) Os formuladors d políticas dsjam mantr a inflação baixa porqu a inflação impõ psados custos sobr a conomia. Os custos da inflação antcipado inclum custos d mnu,

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

Experiência 6 - Oscilações harmônicas amortecidas

Experiência 6 - Oscilações harmônicas amortecidas Rotio d Físic Expimntl II 6 Expiênci 6 - Oscilçõs hmônics motcids 1 OBJETIVO O objtivo dst ul é discuti liz xpimntos nvolvndo um conjunto mss-mol no qul o fito d motcimnto sob o movimnto do conjunto não

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 10 Teoria dos Jogos Maurício Bugarin. Roteiro

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 10 Teoria dos Jogos Maurício Bugarin. Roteiro Toria dos Joos Prof. auríio Buarin o/unb -I Aula Toria dos Joos auríio Buarin otiro Capítulo : Joos dinâmios om informação omplta. Joos Dinâmios om Informação Complta Prfita. Joos Dinâmios om Informação

Leia mais

ELECTROMAGNETISMO E ÓPTICA Cursos: MEFT + MEBiom + LMAC 1 o Teste (12/4/2014) Grupo I

ELECTROMAGNETISMO E ÓPTICA Cursos: MEFT + MEBiom + LMAC 1 o Teste (12/4/2014) Grupo I ELECTROMAGNETIMO E PTICA Cusos: MEFT MEBiom LMAC o Tst (/4/04) Gupo I R R 3 ε ε R R ε o A figua psnta um connsao cilínico ial (compimnto iâmto) com amauas conutoas aios R mm, R 8 mm R 3 0 mm. O spaço nt

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

FORÇAS EXTERIORES AS FORÇAS DE ATRITO COMO FORÇAS DE LIGAÇÃO

FORÇAS EXTERIORES AS FORÇAS DE ATRITO COMO FORÇAS DE LIGAÇÃO OÇS EXTEIOES s foças xtios qu atua sob u copo pod faoc o ointo dss copo dsigna-s, nst caso, po foças aplicadas. o caso das foças xtios stingi o ointo do copo, dsigna-s po foças d ligação. S OÇS DE TITO

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci Eltomagntsmo II o Smst 007 Notuno - Pof. Alvao Vannu 7 a aula 08/ma/007 Vmos: Inêna Oblíqua, ntfa léto/onuto. mo mo K planos ampltu onstant K t z K K t planos fas onstant ângulo al Vmos: K Kt + Kt K +

Leia mais

HGP Prática 9 11/12/ HIDRÁULICA GERAL PRÁTICA N 9

HGP Prática 9 11/12/ HIDRÁULICA GERAL PRÁTICA N 9 Tubulento Lamina HGP Pátia 9 11/12/2013 52 TEMA: Medida de azão. HIDÁULICA GEAL PÁTICA N 9 OBJETIOS: Estabeleimento de itéios paa medida de vazões em função do onheimento do pefil de veloidades. FUNDAMENTOS:

Leia mais

Difusão e Resistividade. F. F. Chen Capítulo 5

Difusão e Resistividade. F. F. Chen Capítulo 5 Dfusão Rsstvdad F. F. Chn Capítulo 5 1- Paâmtos d Colsõs Conctos báscos Paâmtos Dfusão m um Gás d Patículas Nutas Scção d Choqu Paâmtos Báscos Lv camnho médo scção d choqu Tmpo médo nt colsõs Fquênca méda

Leia mais

CAMPOS ELETROMAGNÉTICOS VARIÁVEIS NO TEMPO

CAMPOS ELETROMAGNÉTICOS VARIÁVEIS NO TEMPO 3 CAMPO ELETROMAGNÉTICO VARIÁVEI NO TEMPO Nst apítuo studamos a i da indução tomagnétia d Faaday. Ea é uma das pimias is do tomagntismo, o fito qu a ds é d fundamnta impotânia. Máquinas Eétias Tansfomados,

Leia mais

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0. LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas Ectostática OpE - MB 2007/2008 Pogama d Óptica Ectomagntismo Anáis ctoia (visão) 2 auas Ectostática Magntostática 8 auas Campos Ondas Ectomagnéticas 6 auas Óptica Gomética 3 auas Fibas Ópticas 3 auas Lass

Leia mais

Exercícios resolvidos

Exercícios resolvidos Excícios solvidos 1 Um paallpípdo ABCDEFGH d bas ABCD m volum igual a 9 unidads Sabndo-s qu A (1,1,1), B(2,1,2), C(1,2,2), o véic E pnc à a d quação : x = y = 2 z (AE, i) é agudo Dmin as coodnadas do véic

Leia mais

π (II.c) Dualidade em Programação Linear c T Seja o PPL apresentado na forma abaixo: (PRIMAL) Max x (I.a) (I.b) (I.c)

π (II.c) Dualidade em Programação Linear c T Seja o PPL apresentado na forma abaixo: (PRIMAL) Max x (I.a) (I.b) (I.c) 1 Dualidade em Pogamação Linea Sea o PPL apesentado na foma abaio: (PIMAL) Ma (I.a) s.a: A b (I.b) 0 (I.) Então sempe é possível ontui o PPL que se segue: (DUAL) Min b π (II.a) s.a: A π (II.b) π (II.)

Leia mais

Análise Matemática IV Problemas para as Aulas Práticas

Análise Matemática IV Problemas para as Aulas Práticas Anális Matmática IV Problmas para as Aulas Práticas 7 d Abril d 003 Smana 1. Us as quaçõs d cauchy-rimann para dtrminar o conjunto dos pontos do plano complo ond as sguints funçõs admitm drivada calcul

Leia mais

Aerodinâmica I. Cálculo Numérico do Escoamento em Torno de Perfis Método dos paineis

Aerodinâmica I. Cálculo Numérico do Escoamento em Torno de Perfis Método dos paineis ( P) σ [ ln( ( P, q) )] σ ( q) ds + ( V + γ ov ) np vwp + S π n Γ P O método dos painis tansfoma a quação intgal d Fdholm da sgunda spéci num sistma d quaçõs algébico, cuja solução numéica é simpls. O

Leia mais

UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles)

UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles) UTFPR Trmodinâmica 1 Análi Enrgética para Sitma Abrto (Volum d Control) Princípio d Trmodinâmica para Engnharia Capítulo 4 Part 1 Objtivo Dnvolvr Ilutrar o uo do princípio d conrvação d maa d nrgia na

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A Eam Final Nacional do Ensino Scundáio Pova Escita d Matmática A 1.º Ano d Escolaidad Dcto-Li n.º 139/01, d 5 d julho Pova 635/1.ª Fas Citéios d Classificação 1 Páginas 014 Pova 635/1.ª F. CC Página 1/

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais UFRGS Instituto d Matmática DMPA - Dpto. d Matmática Pura Aplicada MAT 0 353 Cálculo Gomtria Analítica I A Gabarito da a PROVA fila A 5 d novmbro d 005 Qustão (,5 pontos Vrifiqu s a função f dada abaixo

Leia mais

D e A, respectivamente. Após a. transferência de energia eles encontram-se nos respectivos estados D e

D e A, respectivamente. Após a. transferência de energia eles encontram-se nos respectivos estados D e TRNSFERÊNCI E ENERGI NÃO RITIV Tansência d ngia não adiativa na scala nanoscópica, nvolvndo átomos moléculas, é um pocsso d gand impotância na natuza. Nss pocsso não há missão absoção d ótons; a ngia é

Leia mais

CAPÍTULO 12 REGRA DA CADEIA

CAPÍTULO 12 REGRA DA CADEIA CAPÍTULO 12 REGRA DA CADEIA 121 Introdução Em aulas passadas, aprndmos a rgra da cadia para o caso particular m qu s faz a composição ntr uma função scalar d várias variávis f uma função vtorial d uma

Leia mais

AMPLIFICADORES A TRANSISTOR

AMPLIFICADORES A TRANSISTOR MINISTÉIO D DUÇÃO STI D DUÇÃO POFISSION TNOÓGI INSTITUTO FD D DUÇÃO, IÊNI TNOOGI D SNT TIN USO D TOMUNIÇÕS Áa d onhcmnto: ltônca I MPIFIDOS TNSISTO Pofsso: Pdo mando da Sla J São José, nomo d 213 1 1 MPIFIDOS

Leia mais

g) Faça o gráfico da média condicional de X dado Y = y versus y (a curva de regressão).

g) Faça o gráfico da média condicional de X dado Y = y versus y (a curva de regressão). ENCE CÁLCULO DE PROBABILIDADE II Smstr 9 Proa Monia Barros Lista d ríios SOLUÇÕES (PARTE) Problma Sjam X Y va ontínuas om dnsidad onjunta: (, ) +, a) Enontr a onstant qu a dsta prssão uma dnsidad b) Enontr

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas. Mestrado Profissional em Ensino de Ciências

UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas. Mestrado Profissional em Ensino de Ciências UNIERSIDADE FEDERAL DE OURO PRETO Instituto d Ciências Exatas Biológicas Mstado Pofissional m Ensino d Ciências Slção da pimia tapa d avaliação m Física Instuçõs paa a alização da pova Nst cadno sponda

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 A Teoria dos Jogos Maurício Bugarin. Roteiro

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 A Teoria dos Jogos Maurício Bugarin. Roteiro Toria dos Joos Prof. auríio Buarin o/unb -II otiro Capítulo : Joos dinâmios om informação omplta. Joos Dinâmios om Informação Complta Prfita. Joos Dinâmios om Informação Complta mas imprfita Informação

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

Mecânica dos Materiais. Instabilidade de Colunas. Tradução e adaptação: Victor Franco

Mecânica dos Materiais. Instabilidade de Colunas. Tradução e adaptação: Victor Franco Mcânica dos Matiais Instabilidad d Colunas 10 Tadução adaptação: Victo Fanco Rf.: Mchanics of Matials, B, Johnston & DWolf McGaw-Hill. Mchanics of Matials, R. Hibbl, asons Education. Estabilidad d Estutuas

Leia mais

Introdução à Física Quântica

Introdução à Física Quântica Intodução à Físca Quântca m 9, Planck popõ uma xplcação paa a mssão d adação d um copo aqucdo, ou copo ngo. l ntoduz a déa d qu os osclados só podam mt ou absov nga m múltplos ntos d um quantum d nga.

Leia mais

EAE0111 Fundamentos de Macroeconomia. Lista 3 - Gabarito

EAE0111 Fundamentos de Macroeconomia. Lista 3 - Gabarito EE0111 Fundamentos de Macoeconomia Lista 3 - Gabaito Pof: Danilo Iglioi Questões betas Questão 1 a) invenção do chip de alta velocidade aumenta a demanda po investimento, deslocando a cuva IS paa foa.

Leia mais

Componente de Química

Componente de Química Disiplina d Físia Químia A 11º ano d solaridad Componnt d Químia Componnt d Químia 1.4 Produção industrial do amoníao Raçõs rvrsívis quilíbrio químio Em muitas raçõs químias os rants dão orim aos produtos

Leia mais